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Leveraging recent advance in unsupervised

ASR to create pseudo-labeled training data.

Step 2. Train TTS model with ASR-labeled data that contains recognition error.

Inference: synthesize speech with phone sequence from target text.

Results Conclusion

Key contribution
Setup Experiment conducted on LJSpeech([5], a benchmark dataset with about 24 hours of read English speech from single First unsupervised TTS: with simple and

female speaker. Text transcription is not used for unsupervised model. (Multi-speaker result on LibriTTS available in paper.) effective method, we show that training TTS

without human-labeled data is feasible.
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* The quality of synthetic speech from unsupervised model matches supervised method in human evaluation.

* End-to-end training

 Unsupervised model have slightly worse intelligibility when measured by machines. |
* Generalize to low-resource languages where

* The TTS performs better with raw text input despite learning from imperfect pseudo-labeled data. unsupervised methods are preferred.
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