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Abstract A dominating set is a subset of the nodes of

a graph such that all nodes are in the set or adjacent to

a node in the set. A minimum dominating set approx-

imation is a dominating set that is not much larger

than a dominating set with the fewest possible number

of nodes. This article summarizes the state-of-the-art

with respect to finding minimum dominating set ap-

proximations in distributed systems, where each node

locally executes a protocol on its own, communicating

with its neighbors in order to achieve a solution with

good global properties.

Moreover, we present a number of recent results for

specific families of graphs in detail. A unit disk graph

is given by an embedding of the nodes in the Euclidean

plane, where two nodes are joined by an edge exactly

if they are in distance at most one. For this family of

graphs, we prove an asymptotically tight lower bound

on the trade-off between time complexity and approxi-

mation ratio of deterministic algorithms. Next, we con-

sider graphs of small arboricity, whose edge sets can be

decomposed into a small number of forests. We give two
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algorithms, a randomized one excelling in its approx-

imation ratio and a uniform deterministic one which

is faster and simpler. Finally, we show that in planar

graphs, which can be drawn in the Euclidean plane

without intersecting edges, a constant approximation

factor can be ensured within a constant number of com-

munication rounds.

Keywords upper bound · lower bound · unit disk ·
bounded arboricity · planar

1 Introduction and Notation

For the efficient operation of a network its participants

(nodes) need to coordinate their actions. In a decentral-

ized setting, i.e., without a central authority assigning
tasks, the nodes have to organize themselves. In many

cases partitioning the nodes into clusters with a des-

ignated cluster head can help to solve a problem ef-

ficiently (e.g., routing messages to distant nodes [46,

47,49], communication among adjacent nodes (MAC

protocols) [11], localization [6], saving energy [19]). Of-

ten, these clusterings are based on graph theoretic con-

structs such as dominating sets. Nodes in a dominating

set satisfy the condition that every node has at least

one neighbor in the dominating set.

Definition 1.1 (Dominating Sets) Given a graph

G = (V,E), a node v ∈ V covers its inclusive neigh-

borhood N+(v) := {w ∈ V | {v, w} ∈ E}. A set A ⊆ V

covers its inclusive neighborhood ∪a∈AN+(a). The set

D ⊆ V is a dominating set (DS) if it covers V . A dom-

inating set of minimal cardinality is a minimum domi-

nating set (MDS).

While it is easy to state the problem of finding a mini-

mum dominating set, solving it is notoriously hard. In
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fact, finding a minimum dominating set was one of the

first tasks known to be NP-hard [16]. Consequently, one

typically is satisfied with an approximate solution.

Definition 1.2 (MDS Approximations) Given f ∈
R+, a DS D is an f -approximation to MDS, if |D| ≤
f |M | for any MDS M . For f : N → R+, an f -approxi-

mation algorithm to the MDS problem returns for any

feasible graph of n nodes a DS that is an f(n)-approxi-

mation. For randomized algorithms this might happen

only with at least a certain probability; this probabil-

ity bound however must not depend on the particular

instance.1

In general, it is also NP-hard to compute a (C log∆)-

approximation [41], where C > 0 is some constant and

∆ denotes the maximum degree of the graph. Indeed,

unless NP is a subset of the problems that can be solved

within nO(log logn) steps, a ((1− o(1)) ln∆)-approxima-

tion is intractable in general graphs. This bound is eas-

ily matched by the centralized algorithm that in each

step picks the node covering the most yet uncovered

nodes, until all nodes are covered [22,44].

Note that any hardness result for centralized al-

gorithms also applies to distributed algorithms, i.e.,

one should not expect to find computationally efficient

algorithms with approximation ratio o(∆) for general

graphs. However, in the distributed setting we have to

cope with the additional issues of communication and

concurrency. In particular, the simple greedy algorithm

mentioned above is inherently sequential and therefore

of little use in distributed systems.

It has been shown that a combination of Linear

Programming and randomized rounding can asymptot-

ically match the Ω(log∆) lower bound on the approxi-

mation ratio within O(log n) rounds [27]. Moreover, the

time complexity of any distributed algorithm achiev-

ing a polylogarithmic approximation is in Ω(log∆) and

Ω(
√

log n) [26]. These lower bounds are based on graphs

that have large girth, yet many edges. Although such

graphs exist and demonstrate that there is no algorithm

solving the problem more efficiently in any graph of n

nodes or maximum degree ∆, it is highly unlikely that

such a graph is ever encountered in a practical setting.

1 For central or parallel algorithms, one is typically satisfied
with a guarantee that holds in expectation. In the distributed
setting, this approach has two severe shortcomings. Firstly,
one may not want to run multiple instances of the algorithm
and take the best result by counting the number of nodes
in the obtained MDS: while this will boost the probability
of a good approximation ratio, it also incurs a large over-
head in the running time if the graph has a large diameter.
Secondly, the running times of distributed algorithms are typ-
ically small (all presented algorithms run in O(logn) time),
hence obtaining strong probability bounds at a comparably
low running time can be particularly challenging.

Thus, we argue that it is reasonable to examine graph

families which occur in realistic settings. Of course, this

approach suffers from the drawback that it is not trivial

to find appropriate families of graphs—supposing they

even exist—offering both sufficiently efficient solutions

as well as wide practical applicability. We do not claim

to give a satisfying answer to this problem in this ar-

ticle. Instead, we confine ourselves to studying the dis-

tributed complexity of the MDS problem in restricted

families of graphs.

We will present recent findings on the complexity

of the problem in unit disk graphs, planar graphs, and

graphs of small arboricity in detail. Before we define

these families of graphs, let us mention that each of

them is adequate for modelling some distributed sys-

tems of interest. Unit disk graphs, which can be embed-

ded in the Euclidean plane such that two nodes share

an edge if their distance is below a threshold, are fre-

quently used as a simplified model of communication

and interference graphs for wireless networks [25,35].

The study of planar graphs, which can be drawn in the

plane such that edges intersect only at their endpoints,

is motivated by applications such as VLSI design and

vehicle routing. The arboricity of a graph is the maxi-

mal density of all its subgraphs. Equivalently, it can be

defined by the minimum number of forests into which

the edge set can be partitioned. Graphs of bounded ar-

boricity cover a wide range of graph classes, including

planar graphs, graphs of bounded genus or treewidth,

and, more generally, graphs excluding any fixed minor.

Let us introduce the above families of graphs now,

starting with unit disk graphs.

Definition 1.3 (Unit Disk Graphs) A unit disk
graph G = (V,E) is any graph for which a mapping

ι : V → R2 satisfying the property E = E(ι) :={
{v, w} ∈

(
V
2

) ∣∣ ‖v − w‖R2 ≤ 1
}

exists.

For this family of graphs (for which the MDS problem

remains NP-hard [7]), we generalize the lower bound

from [32] in Section 4 to show that no deterministic al-

gorithm can find a constant-factor MDS approximation

in o(log∗ n) rounds.

Unit disk graphs feature the property that the num-

ber of independent nodes in the r-hop neighborhood of

each node is bounded as a function depending on r only.

Definition 1.4 (Independent Sets) Given a graph

G = (V,E), a subset of the nodes I ⊆ V is an inde-

pendent set (IS), if for any v, w ∈ I, v 6= w, we have

that {v, w} 6∈ E. An IS is a maximal independent set

(MIS), if no nodes can be added without destroying in-

dependence, i.e., for all v ∈ V \ I, the set I ∪ {v} is not

independent.
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Definition 1.5 (Neighborhoods) For a graph G =

(V,E), the (exclusive) neighborhood of a node v ∈ V is

N (v) := {w ∈ V | {v, w} ∈ E}

and δv := |N (v)| its degree. Recall that the inclusive

neighborhoods of v ∈ V and A ⊆ V , respectively, are

N+(v) := {v} ∪ Nv
N+(A) :=

⋃
a∈A
N+(a),

i.e., the sets of nodes covered by v and A.

Moreover, for r ∈ N,

N r(v) :=

{
N+(v) if r = 1

N+(N r−1(v)) otherwise

denotes the (inclusive) r-neighborhood of v.

Given these definitions, the aforementioned property of

unit disk graphs can be formalized as follows.

Definition 1.6 (Bounded Growth) A graph family

exhibits bounded growth, if there is a polynomial p such

that for each instance G = (V,E) it holds that

∀v ∈ V, r ∈ N : max{|I| | I ⊆ N r(v) is an IS} ≤ p(r).

Note that any MIS is a DS. Thus, in unit disk graphs

and any other graph where the number of independent

nodes in each (single-hop) neighborhood is bounded by

a constant, an MIS is also a constant MDS approxima-

tion. Exploiting this property, our lower bound has been

matched asymptotically by an algorithm that computes

within O(log∗ n) rounds an MIS in graphs of bounded

growth [42].

In contrast, in graphs of small arboricity, which are

considered in Section 5, the entire neighborhood of a

node with large degree might be independent.

Definition 1.7 (Forest Decompositions and Ar-

boricity) For f ∈ N0, an f -forest decomposition of a

graph G = (V,E) is a partition of the edge set into

f rooted forests. The arboricity A(G) is the minimum

number of forests in a forest decomposition of G.

The graph class of (constantly) bounded arboricity is

quite general, as any family of graphs excluding a fixed

minor has bounded arboricity [12].

Definition 1.8 (Contractions and Minors) Given

a simple graph G, a minor of G can be obtained by any

sequence of the following operations.

– Deleting an edge.

– Deleting a node.

– Contracting an edge {v, w}, i.e., replacing v and w

by a new node u such that Nu := Nv ∪Nw.

Note, however, that graphs of bounded arboricity may

contain arbitrary minors. In particular, if we take the

complete graph K√n of
√
n nodes and replace its edges

by edge-disjoint paths of length two, we obtain a graph

of fewer than n nodes and arboricity two that has K√n
as minor. Therefore, demanding bounded arboricity is

considerably less restrictive than excluding the exis-

tence of certain minors.

Both of the algorithms we present for graphs of

bounded arboricity improve on the results from [27]

that apply to unrestricted graphs. However, although

the lower bound from [26] does not hold for graphs of

bounded arboricity, these algorithms have logarithmic

running times. Hence, in Section 6 we present a dif-

ferent approach that on planar graphs (for which the

MDS problem remains NP-hard [16]) achieves an O(1)-

approximation in a few number of rounds.

Definition 1.9 (Planarity) A graph G is planar if

and only if it can be drawn in the two-dimensional plane

such that no two nodes are mapped to the same point

and edges intersect at their endpoints only.

Equivalently, G is planar if and only if it does nei-

ther contain K3,3 nor K5 as a minor [45], where Kk,k,

k ∈ N, is the complete bipartite graph on k nodes on

each side and Kk is the complete graph on k nodes.

Despite the fact that the algorithm we give for pla-

nar graphs can be considered impractical due to the

use of large messages, we deem this result interesting

because it shows that a fast solution exists in a graph

family where an O(1)-approximation is not immedi-

ately evident. In contrast, in trees the set of inner nodes

forms a 3-approximation, for instance, and in graphs of

bounded maximum degree ∆ taking all nodes yields a

(∆+ 1)-approximation.

The remainder of this article is organized as fol-

lows. We next motivate and introduce our distributed

model of computation. Subsequently, in Section 3, we

detail our findings and compare them to related results.

Section 4 presents our lower bound on the trade-off be-

tween running time and approximation ratio on unit

disk graphs. Finally, Sections 5 and 6 present our al-

gorithms for graphs of bounded arboricity and planar

graphs, respectively, as well as the proofs of their run-

ning time bounds and approximation guarantees.

2 System Model

We make use of a very simple network model. We as-

sume a fault-free distributed system. A simple graph

G = (V,E) describes the MDS problem instance as

well as the communication infrastructure. In each syn-

chronous round, each node v ∈ V may send a (different)
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message to each of its neighbors w ∈ N (v), receives all

messages from its neighbors, and may perform arbi-

trary finite local computations. Initially, node v knows

its neighbors N (v) and possibly a unique identifier of

size O(log n).

For some algorithms a port numbering is sufficient,

i.e., the node v has a bijective mapping p(v, ·) : N (v)→
{1, . . . , |N (v)|} at hand. When sending messages, the

node specifies which neighbor receives which message

by means of the respective port numbers. When receiv-

ing, it can tell apart which neighbor sent which message,

also in terms of its port numbering. At termination, the

node must output whether it is part of the DS or not,

and these outputs must define a valid solution of the

problem with regard to G.

In the context of distributed graph algorithms, this

abstract model can be motivated as follows.

– Asynchronicity can be dealt with by a synchronizer

(cf. [2]).

– Recovery from transient faults can be ensured by

making an algorithm self-stabilizing (cf. [14]). There

is a simple transformation from algorithms obeying

the given model to self-stabilizing ones [3].

– Changing topology due to joining and leaving nodes,

crash failures, etc. also changes the input, i.e., we

need to rerun the algorithm on the new topology.

– With respect to lower bounds, we typically restrict

neither the number of messages nor their size. For

algorithms, these values should of course be small.

This is not enforced by the model, but considered

as quality measure like the running time.

– Local computation and memory are typically not

critical resources, as the most efficient algorithms

usually are not highly complicated (within a small

number of rounds, only little information is available

that can be processed).2

It is common practice to focus on the communi-

cation complexity and not on the local computational

complexity (we refer to [51] for an introduction of the

models and complexity measures of distributed com-

puting). In fact, it holds for the algorithms presented in

this article that in all but one case the number of local

steps per round is linear in the respective node’s degree.

For the single exception occurring in our algorithm for

planar graphs, we discuss how the computations can be

polynomially bounded in a note.

Observe that if the algorithm terminates within T

communication rounds, recovery from faults or adap-

2 Exceptions are algorithms where nodes learn about the
entire neighborhood up to a certain distance and then solve
a hard problem on this neighborhood. Note, however, that
this approach is also in conflict with the goal of few, small
messages.

tion to new topology require local operations up to dis-

tance at most T from the event only. In particular, if

T is sublogarithmic and degrees are bounded, we get a

non-trivial bound on the size of the subgraph that may

affect the outcome of a node’s computations. This un-

derlines the importance of both upper and lower bounds

on the time complexity of algorithms in this model. For

small time complexities, this might even be the most

significant impact of such bounds, since the difference

between 5 and 10 communication rounds might be neg-

ligible for many applications. However, whether a small

fraction or the majority of the nodes has to re-execute

the algorithm and change its state in face of e.g. a sin-

gle node joining the network could change the system

performance to a large extent.

3 Distributed MDS Approximations and our

Contributions

In Section 4, we study the problem of approximating

an MDS in unit disk graphs. Leveraging Linial’s lower

bound [32] of (log∗ n − 1)/2 on the number of rounds

required to compute a 3-coloring or maximal indepen-

dent set on the ring, we can show that no deterministic

algorithm can compute an f(n)-approximation in g(n)

rounds if f(n)g(n) ∈ o(log∗ n).

Definition 3.1 (Node Coloring) Given a graph G =

(V,E), a node coloring with k ∈ N colors is a mapping

C : V → {1, . . . , k} such that no two neighbors have the

same color, i.e., {v, w} ∈ E ⇒ C(v) 6= C(w).

Independently, Czygrinow et al. showed by a related,

but different approach that a constant approximation

is impossible within o(log∗ n) rounds [10].

On the other hand, we already mentioned that unit

disk graphs feature bounded growth, permitting to com-

pute an MIS in O(log∗ n) deterministic rounds [42].

Note that graphs of bounded growth (and thus in par-

ticular unit disk graphs) also exhibit the weaker prop-

erty of bounded independence, i.e., the neighborhood

of each node contains a constantly bounded number

of independent nodes only. This implies that an MIS

(which is always a DS) is an O(1)-approximation to

MDS, as the size of any IS is bounded by the size of

an MDS times the respective constant. Therefore, our

lower bound is matched asymptotically for the class

of graphs of bounded growth. In contrast, the fastest

known MIS algorithms on graphs of bounded indepen-

dence are just the ones for general graphs [1,21,33,36],

leaving a gap ofO(
√

log n) to the lower bound from [26],

which in case of MIS applies to line graphs which have

bounded independence. Note, however, that for deter-

ministic algorithms that are not based on computing
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an MIS, our lower bound is the strongest known, and it

remains open whether randomized algorithms that do

not compute an MIS may perform better. If the nodes

know their position, e.g., by using GPS, a deterministic

(1 + ε)-approximation is feasible in a number of rounds

that depends on the choice of ε > 0 only [48]. For a

communication model where concurrent transmissions

interfere and prevent the correct reception of a mes-

sage [43] provides an algorithm that computes a con-

stant approximation in O(log n) rounds with collision

detection in graphs of bounded growth and a matching

lower bound. Without collision detection, the bounds

are O(log2 n) [37] and Ω(log2 n/ log log n) [23].

In Section 5, we consider graphs of small arboric-

ity. Such graphs can be very different from graphs with

small independence. While in the latter case the num-

ber of edges may be large (in particular, in the complete

graph there are no two independent nodes), graphs of

constantly bounded arboricity have O(n) edges, but po-

tentially large sets of independent neighbors (the star

graph has arboricity one). We remark that it is not dif-

ficult to see that demanding both bounded growth and

arboricity is equivalent to asking for bounded degree.

In the family of graphs of maximum degree ∆ simply

taking all nodes yields a trivial (∆+ 1)-approximation

to MDS.

We devise two algorithms for graphs of small ar-

boricity A. The first employs a forest decomposition to

obtain an O(A2)-approximation to MDS within time

O(log n) w.h.p. This algorithm utilizes the fact that

not too many nodes may be covered by their children

in a given forest decomposition, implying that a good

approximation ratio can be maintained if we cover all

nodes (that have one) by a parent. Solving this prob-

lem approximately can be reduced to computing an ar-

bitrary MIS in some helper graph. Therefore, we get a

randomized running time of O(log n) w.h.p., whereas

the approximation guarantee of O(A2) is deterministic.

The second algorithm we propose is based on the

property that subgraphs of graphs of bounded arboric-

ity are sparse, i.e., if having n′ nodes, they contain at

most A(n′ − 1) edges. For this reason, we can build on

the very simple greedy strategy of adding all nodes of lo-

cally large degree to the output set simultaneously, until

eventually, after O(log∆) rounds, all nodes are covered.

This straightforward approach yields an O(A log∆)-

approximation if one makes sure that the number of

covered nodes in each repetition is at least the number

of selected nodes. The latter can easily be done by re-

quiring that uncovered nodes choose one of their eligible

neighbors to enter the set instead of just electing all pos-

sible candidates into the set. Playing with the factor up

to which joining nodes are required to have largest de-

gree within their two-neighborhood, the algorithm can

be modified to an O(αA logα∆)-approximation within

O(logα∆) time, for any integer α ≥ 2. This second al-

gorithm appeals by its simplicity; unlike the first, it is

uniform, deterministic, and merely requires port num-

bers.

Recall that the best algorithm with polylogarith-

mically sized messages for general graphs has running

time O(log2∆) and approximation ratio O(log∆) [27].

Thus, the algorithms given in Section 5 clearly improve

on this result for graphs of bounded arboricity. How-

ever, although the lower bound from [26] does not hold

for such graphs, our algorithms’ running times are not

below the thresholds of Ω(
√

log n) and Ω(log∆), re-

spectively. In contrast, we show in Section 6 that in

planar graphs an O(1)-approximation can be computed

in O(1) rounds.3 Our algorithm makes use of the facts

that planar graphs and their minors are sparse, i.e., con-

tain only O(n) edges, and that in planar graphs circles

separate their interior (with respect to an embedding)

from their outside.

A drawback of our algorithm for planar graphs is

that it is rendered impractical because it relies on mes-

sages that in the worst case encode the whole graph. For

the same reason, the technique by Czygrinow et al. [10]

to obtain a (1+ε)-approximation in O(log∗ n) rounds is

also of theoretical significance only. If the message size

is required to be (poly)logarithmic in n, to the best of

our knowledge the currently most efficient distributed

algorithms are the ones from Section 5. More gener-

ally, the same is true for any graph family excluding

fixed minors. Also here distributed 1+ε approximations

are known [8,9], however of polylogarithmic running

time with large exponent and again using large mes-

sages. Excluding particular minors is a rich source of

graph families, apart from planar graphs including e.g.

graphs of bounded genus or treewidth. Again to the best

of our knowledge, currently no distributed algorithms

tailored to these families of graphs exist. Moreover, as

mentioned before, graphs of bounded (or non-constant,

but slowly growing) arboricity extend beyond minor-

free graph families. Therefore, the algorithms presented

in Section 5 improve on the best known solutions for a

wide range of inputs. See Table 3.1 for a comparison of

distributed MDS approximations.

A number of works strive for fault-tolerant MDS

approximation algorithms. One kind of fault-tolerance

considered frequently is self-stabilization [14]. A self-

stabilizing algorithm recovers from arbitrary transient

3 This result was claimed previously, in [28] by us and inde-
pendently in [10] by others. Sadly, our algorithm was wrong
and the proof from [10] is incomplete. In this article, we
present corrected versions of our algorithm and proof.
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Table 3.1 Complexity bounds on distributed MDS approximation in various graph families. NP-hardness results imply
impossibility of the stated approximation ratio if P 6= NP and computations are polynomial in n. For upper bounds, the
message size is stated to be “trivial” if the whole topology might be collected at individual nodes. The column labeled “det.”
indicates whether an algorithm is deterministic or whether a lower bound applies to deterministic algorithms only, respectively.

graph family type running time approximation det. message size
general [27] upper bound O(logn) O(log∆) no trivial
general [27] upper bound O(log2∆) O(log∆) no O(log∆)
general [26] lower bound Ω

(
min

{√
logn, log∆

})
polylogn no arbitrary

general [41] NP-hardness any (polynomial computations) Ω(log∆) no arbitrary
bounded independence [36] upper bound O(logn) O(1) no O(1)

bounded independence [39] upper bound 2O(
√

logn) O(1) yes trivial
bounded growth [42] upper bound O(log∗ n) O(1) yes O(logn)

unit disk (Section 4) lower bound g(n) ∈ o(log∗ n) 6∈ o
(

log∗ n
g(n)

)
yes arbitrary

unit disk [7] NP-hardness any (polynomial computations) 1 (exact) no arbitrary
maximum degree ∆ (trivial) upper bound 0 ∆+ 1 yes N/A

forests (trivial) upper bound 1 3 yes O(1)
planar (Section 6) upper bound 6 130 yes trivial

planar [10] upper bound O(log∗ n) 1 + ε yes trivial
planar [16] NP-hardness any (polynomial computations) 1 (exact) no arbitrary
ring [10] lower bound 6∈ o(log∗ n) 5− ε yes arbitrary

excluded minor [8,9] upper bound polylogn 1 + ε yes trivial
arboricity A (Section 5) upper bound O(A2) O(logn) no O(logn)
arboricity A (Section 5) upper bound O(logα∆) O(αA logα∆) yes O(log logα∆)

faults by recomputing a correct solution after faults

cease. To the best of our knowledge, the most efficient

algorithms in this model are obtained from determinis-

tic distributed algorithms by means of a simple trans-

formation [3]. Executing any deterministic distributed

algorithm of time complexity T and maximum mes-

sage size M in an infinite loop, one can construct a

self-stabilizing algorithm of message size TM stabiliz-

ing in T rounds. By splitting messages, one can for any

F ≤ TM reduce the message size to O(TM/F ) at the

expense of increasing the time the system requires to

recover from faults to FT . Note that network dynam-

ics can be treated in a similar manner, i.e., by simply

rerunning the algorithm whenever a topology change

occurs, and any self-stabilizing algorithm will implic-

itly do so. Other approaches seek to mask failures, i.e.,

maintain functional solutions in face of a limited num-

ber of crash failures. For instance, for the k-connected

m-dominating set problem in UDG’s constant approx-

imation algorithms are presented in [50]. We are not

aware of research concerning byzantine failures in the

context of the MDS problem.

Finally, there are many tasks that are related to

the MDS problem. These include for example the in-

dependent dominating set problem [5], the connected

correlation-dominating set problem [18], the connected

coverage problem [15], and computing a family of con-

nected dominating sets minimizing how often nodes are

part of a dominating set [20]. A capacitated version of

the MDS problem, where each node v in the dominat-

ing set may cover at most cap(v) neighbors, has been

considered in [24] for general graphs and bounded in-

dependence graphs. A (1 + ε)-approximation (for ε > 0

arbitrary) to the connected MDS problem in UDG’s

can be computed deterministically in O(ε−O(1) log∗ n)

rounds [17]. If the nodes know their position, e.g., by us-

ing GPS, for any constant ε > 0 a (1+ε)-approximation

to a connected MDS can be obtained in a constant num-

ber of rounds by a deterministic algorithm [48].

4 Lower Bound for Unit Disk Graphs

In this section, we will show that in unit disk graphs,

no deterministic distributed algorithm can compute an

f(n)-approximation to MDS in g(n) rounds for any f ,

g with f(n)g(n) ∈ o(log∗ n). This bound holds even

if message size is unbounded, the nodes have unique

identifiers, and the nodes know n. This section is based

on [30].

4.1 Definitions and Preliminary Statements

The lower bound proof will reason about the following

highly symmetric graphs.

Definition 4.1 (Rkn) For integers k, n ∈ N, we define

the k-ring with n nodes Rkn := (Vn, E
k
n) by

Vn := {1, . . . , n}

En :=

{
{i, j} ∈

(
Vn
2

) ∣∣∣∣∣ |(i− j) mod n| ≤ k
}
.
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See Figure 4.1 for an illustration. By Rn := R1
n we de-

note the “simple” ring. Moreover, we will take numbers

modulo n when designating nodes on the ring, e.g. we

identify 3n+ 5 ≡ 5 ∈ Vn.

For any k and n this graph is a UDG (see Defini-

tion 1.3).

Lemma 4.2 Rkn can be realized as a UDG.

Proof For n > 2k + 1, place all nodes equidistantly on

a circle of radius 1/(2 sin(kπ/n)). Otherwise, use any

circle of radius at most 1/2. ut

Fig. 4.1 R3
16. Realized as UDG k is controlled by the scaling.

Our bound will be inferred from a classical result by

Linial [32], which was later generalized to randomized

algorithms by Naor [38].

Theorem 4.3 There is no deterministic distributed al-

gorithm 3-coloring the ring Rn in fewer than 1
2 (log∗ n−

1) communication rounds, even if the nodes know n.

Proof See e.g. [40]. ut

We will use the following notion, which captures the

amount of symmetry breaking information in the out-

put of an algorithm.

Definition 4.4 (σ(n)-Alternating Algorithms)

Suppose A is an algorithm operating on Rn which as-

signs each node i ∈ Vn a binary output b(i) ∈ {0, 1}. We

call A σ(n)-alternating, if the length ` of any monochro-

matic sequence b(i) = b(i + 1) = . . . = b(i + `) in the

output of A is less than σ(n).

If a σ(n)-alternating algorithm is given, one can easily

obtain a 3-coloring of the ring Rn in O(σ(n)) time.

Algorithm 1: 3-coloring the ring Rn based on

σ-alternating inputs.

input : σ-alternating values b(i) for each node i
output: the color C(i) ∈ {1, 2, 3} of each node i

1 for i ∈ Vn in parallel do
2 find closest node j with b(j) = 1 and b(j + 1) = 0

or b(j − 1) = 0
3 d(i) := |i− j|
4 C(i) = (d(i) mod 2) + 1 // “coloring with conflicts”
5 if (C(i− 1) = C(i) ∧ l(i) > l(i− 1))
6 ∨ (C(i+ 1) = C(i) ∧ l(i) > l(i+ 1)) then
7 C(i) := C(i) + 2 // resolve conflict
8 end
9 // remove temporary color 4

10 if C(i) = 4 then
11 C(i) := min{1, 2, 3} \ {C(i− 1), C(i+ 1)}
12 end

13 end

Lemma 4.5 Given any σ(n)-alternating algorithm A
running in O(σ(n)) rounds, a 3-coloring of the ring can

be computed in O(σ(n)) rounds.

Proof Essentially, nodes simply need to find the clos-

est switch from 0 to 1 (or vice versa) in the output of

A. From there, nodes are colored alternatingly, while

the third color is used to resolve conflicts where the

alternating sequences meet. One can e.g. employ Algo-

rithm 1 to this end.

Clearly, this algorithm can be executed in O(σ(n))

rounds, as the definition of σ(n) guarantees that the

closest switch from 0 to 1 (or vice versa) in the inputs

b(j) is within distance σ(n). The initially constructed

2-coloring can be interpreted as coloring all nodes with

input 1 and some neighbor of input 0 with color 1 and

than proceed with alternating colors along monochro-

matic input values. Since such nodes cannot be adja-

cent and we get conflicts only where the alternating se-

quences meet, we have that for each node, at least one

of its neighbors has a different color. This is resolved

by coloring exactly one of the two nodes of a conflict-

ing pair by a different color; using color 3 for 1-pairs

and color 4 for 2-pairs ensures the resulting colors to

form a 4-coloring. Finally, color 4 is removed by choos-

ing a free color; since no two neighbors share color 4,

this results in a 3-coloring. ut

4.2 Proof of the Lower Bound

To establish our lower bound, we construct a σ(n)-

alternating algorithm using an MDS approximation al-

gorithm.

Lemma 4.6 Assume that a deterministic f(n)-approx-

imation algorithm A for the MDS problem on UDG’s
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is given that runs in at most g(n) ≥ 1 rounds, where

f(n)g(n) ∈ o(log∗ n). Then an o(log∗ n)-alternating al-

gorithm A′ requiring o(log∗ n) communication rounds

exists.

Proof Assume w.l.o.g. that identifiers on Rkn are from

{1, . . . , n}. Consider Rkn and label each node i ∈ Vn
with its input l(i), i.e., its identifier. Set

σk(n) := max{f(n), k}g(n)

and define

Lkn :=
{

(l1, . . . , lα) ∈
({1, . . . , n}

α

)
|α ≥ σk(n) + 2kg(n) ∧ (l(1) = l1 ∧ . . . ∧ l(α) = lα)

⇒ b(kg(n) + 1) = . . . = b(α− kg(n)) = 1 on Rkn
}
,

i.e., the set of sequences of identifiers such that at least

σk(n) consecutive nodes will take the decision b(v) = 1

when A is executed on Rkn, where the choices of the

leading and trailing kg(n) nodes may also depend on

labels not in the considered sequence. As the decision

of any node i ∈ Vn depends on identifiers of nodes in

N kg(n)(i) only because it cannot learn from information

further away in g(n) rounds of communication on Rkn,

Lkn is well-defined.

We distinguish two cases. The first case assumes

that values k0, n0 ∈ N exist, such that for n ≥ n0 there

is no unique assignment of identifiers {1, . . . , n} to the

n nodes such that at least n/2 nodes participate in non-

overlapping sequences (l(i), . . . , l(i+α)) ∈ Lk0n (for any

possible division of Rk0n into segments of varying lengths

α). Hence, for any fixed n, we may choose a labeling

maximizing the number of nodes/labels that partici-

pate in such sequences, discard the at most n/2 labels

that participate in a sequence from Lk0n , and conclude

that the remaining labels, no matter how arranged, can-

not form another sequence from Lk0n . Thus, for n′ :=

max{n0, 2n}, an injective mapping λn : {1, . . . , n} →
{1, . . . , n′} exists such that no element of Lk0n′ is com-

pletely contained in the image of λn. Now we can define

A′ (running on Rn) such that each node i ∈ {1, . . . , n}
simulates the behaviour it would exhibit when A was

run on Rk0n′ , with input label λn(l(i)), and return the

computed result. Each simulated round of A will re-

quire k0 communication rounds, thus the running time

of A′ is bounded by k0g(n′) ∈ o(log∗ n). As A deter-

mines a DS, at most 2k0 consecutive nodes will compute

b(i) = 0, and, by the definitions of Ln′k0 and λn, at most

σk0(n′) − 1 ∈ O(f(n′)g(n′)) ⊂ o(log∗(n′)) = o(log∗ n)

consecutive nodes take the decision b(i) = 1. Hence A′
is o(log∗ n)-alternating. This completes the proof for

the first case.

In the second case, no pair k0, n0 ∈ N as assumed

in the first case exists. Thus, for any k ∈ N some n ∈ N

exists for which we can construct a labeling of Rkn with

at least n/2 identifiers forming (disjoint) sequences in

Lkn. We line up these sequences one after another and

label the remaining nodes in a way resulting in a valid

labeling of Rkn. RunningA on such an instance will yield

at least

nσk(n)

2(σk(n) + 2kg(n))
≥ n

6
∈ Ω(n)

nodes choosing b(i) = 1.

On the other hand, a minimum dominating set of

Rkn has O(n/k) nodes. For k ∈ N, define that nk is the

minimal value of n for which it is possible to construct

a labeling of Rkn with n/2 identifiers from sequences in

Lkn. Thus, we have a lower bound of

f(nk) ∈ Ω(k) (4.1)

on the approximation ratio of A.

As the approximation quality f of A is sublinear, we

conclude that limk→∞ nk =∞. Therefore, for each n, a

minimum value k(n) exists such that n′ := 2n < nk(n).

Consequently, similarly as in the first case, we can de-

fine an injective relabeling function λn : {1, . . . , n} →
{1, . . . , n′}, such that no element of Lk(n)

n′ lies com-

pletely in the image of λn. We define A′ to be the al-

gorithm operating on Rn, but simulating at each node

the behaviour of A on R
k(n)
n′ , where we relabel all nodes

i ∈ {1, . . . , n} by λn(l(i)). By definition of k(n) we have

nk(n)−1 ≤ n′. Together with (4.1) this yields

k(n) = (k(n)− 1) + 1

∈ O(f(nk(n)−1) + 1)

⊆ O(f(n′)) = O(f(n)),

where the last step exploits that f grows asymptotically

sublinearly. Hence we can estimate the running time

of A′ by k(n)g(n′) ∈ O(f(n)g(n)), using that g grows

asymptotically sublinearly as well.

Since the simulated run of A yields a dominating

set, at worst 2k(n) ∈ O(f(n)) ⊆ O(f(n)g(n)) consecu-

tive nodes may compute b(v) = 0. By the definitions of

Lkn and λn, at most

σk(n)(n
′)− 1 < max{f(n′), k(n)}g(n′) ∈ O(f(n)g(n))

consecutive nodes may take the decision b(i) = 1. Thus

A′ is o(log∗ n)-alternating, as claimed. This completes

the second case and therefore the proof. ut

This result implies the lower bound, as the assump-

tion that a good approximation ratio is possible leads

to the contradiction that the ring could be 3-colored

quickly.
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Theorem 4.7 A deterministic f(n)-approximation to

MDS on UDG’s running in at most g(n) rounds such

that f(n)g(n) ∈ o(log∗ n) is impossible.

Proof Assuming the contrary, we may w.l.o.g. assume

that g(n) ≥ 1 for all n ∈ N. Thus, we can combine

Lemma 4.6 and Lemma 4.5 to construct an algorithm

that 3-colors the ring in o(log∗ n) rounds, contradicting

Theorem 4.3. ut

We remark that it is an open question whether a

randomized algorithm can break this barrier for MDS

approximations. For the MaxIS problem it is known

that in planar graphs (and thus in particular on the

ring), for any fixed constant ε > 0 a constant-time ran-

domized algorithm can guarantee a (1 + ε)-approxima-

tion w.h.p. [10].

5 Algorithms for Graphs of Bounded

Arboricity

We present two MDS approximation algorithms pub-

lished in [31] that are devised for graphs of small ar-

boricity A. The first algorithm employs a forest decom-

position, achieving a guaranteed approximation ratio of

O(A2) within O(log n) rounds w.h.p. The second com-

putes an O(A log∆) approximation deterministically in

O(log∆) rounds. Both algorithms require small mes-

sages only.

5.1 Constant-Factor Approximation

In this section, we give an algorithm that computes a

dominating set at most a factor of O(A2) larger than

optimum. After presenting the algorithm and its key

ideas, we proceed with the formal proof of its properties.

Algorithm

Our first algorithm is based on the following observa-

tions. Given an f -forest decomposition and an MDS

M , the nodes can be partitioned into two sets. One

set contains the nodes which are covered by a parent,

the other contains the remaining nodes, which thus are

themselves in M or have a child in M . Since each dom-

inating set node can cover at most f parents, the latter

set contains in total at most (f + 1)|M | many nodes. If

each such node elects all its parents into the dominating

set, we have chosen at most f(f + 1)|M | nodes.

For the first set, we can exploit the fact that each

node has at most f parents in a more subtle manner.

Covering the nodes in this set by parents only, we need

to solve a special case of set cover where each element

is part of at most f sets. Such instances can be approx-

imated well by a simple centralized greedy algorithm:

Pick any element that is not yet covered and add all

sets containing it; repeat this until no element remains.

Since in each step we add at least one new set from

an optimal solution, we get an f -approximation. This

strategy can be parallelized by computing a maximal

independent set in the graph where two nodes are ad-

jacent exactly if they share a parent, as adding the par-

ents of the nodes in an independent set in any order

would be a feasible execution of the centralized greedy

algorithm.

Putting these two observations together, first all

parents of nodes from a maximal independent set in

a helper graph are elected into the dominating set. In

this helper graph, two nodes are adjacent if they share

a parent. Afterwards, the remaining uncovered nodes

have no parents, therefore it is uncritical with respect

to the approximation ratio to select them all. Denoting

for v ∈ V by P (v) the set of parents of v in a given for-

est decomposition of G, this approach is summarized in

Algorithm 2.

Algorithm 2: Parent Dominating Set

input : f -forest decomposition of G
output: dominating set D

1 H :=
(
V,
{
{v, w} ∈

(
V
2

) ∣∣P (v) ∩ P (w) 6= ∅
})

2 Compute a maximal independent set I on H
3 D :=

⋃
v∈I P (v)

4 D := D ∪ (V \ N+(D))

Analysis

We need to bound the number of nodes that join the

dominating set because they are elected by children.

Lemma 5.1 In Line 3 of Algorithm 2, at most f(f +

2)|M | many nodes enter D, where M denotes an MDS

of G.

Proof Denote by VC ⊆ V the set of nodes that have

a child in M or are themselves in M . We have that

|VC | ≤ (f + 1)|M |, since no node has more than f

parents. Each such node adds at most f parents to D in

Line 3 of the algorithm, i.e., in total at most f(f+1)|M |
many nodes join D because they are elected by children

in I ∩ VC .

Now consider the set of nodes VP ⊆ V that have at

least one parent in M , in particular the nodes in I ∩VP
that are also in the computed independent set. By the

definition of H and the fact that I is an independent

set, no node in M can have two children in I. Thus,
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|I ∩VP | ≤ |M |. Since no node has more than f parents,

we conclude that at most f |M | nodes join D because

they are elected into the set by a child in I ∩ VP .

Finally, observe that since M is a dominating set,

we have that VC ∪ VP = V and thus

|D| ≤ f |I ∩ VC |+ f |I ∩ VP |
≤ f(f + 1)|M |+ f |M |
= f(f + 2)|M |,

concluding the proof. ut

The approximation ratio of the algorithm now fol-

lows easily.

Theorem 5.2 Algorithm 2 outputs a dominating set

D containing at most (f2 +3f +1)|M | nodes, where M

is an optimum solution.

Proof By Lemma 5.1, at most f(f + 2)|M | nodes enter

D in Line 3 of the algorithm. Since I is an MIS in H,

all nodes that have a parent are adjacent to at least

one node in D after Line 3. Hence, the nodes selected

in Line 4 must be covered by a child in M or them-

selves be in M . As no node has more than f parents,

thus in Line 4 at most (f + 1)|M | many nodes join D.

Altogether, at most (f2 + 3f + 1)|M | many nodes may

end up in D as claimed. ut

Employing known distributed algorithms for com-

puting an O(G(A))-forest decomposition and an MIS,

we can construct an MDS approximation algorithm.

Corollary 5.3 In any graph G, a factor O(A(G)2)-

approximation to an MDS can be computed distributedly

in O(log n) rounds w.h.p., provided that nodes know a

polynomial upper bound on n or a linear upper bound

on A(G). In particular, on graphs of bounded arboric-

ity a constant-factor approximation can be obtained in

O(log n) rounds w.h.p. This can be accomplished with

messages of size O(log n).

Proof We run Algorithm 2 in a distributed fashion. To

see that this is possible, observe that (i) nodes need to

know whether a neighbor is a parent or a child only,

(ii) that H can be constructed locally in two rounds

and (iii) a synchronous round in H can be simulated by

two rounds in G. Thus, we simply may pick distributed

algorithms to compute a forest decomposition of G and

an MIS and plug them together to obtain a distributed

variant of Algorithm 2.

For the forest decomposition, we employ the algo-

rithm from [4], yielding a decomposition into O(A(G))

forests inO(log n) rounds; this algorithm is the one that

requires the bound on n or A(G), respectively, that is

asked for in the preliminaries of the corollary. An MIS

can be computed in O(log n) rounds w.h.p. by well-

known algorithms [1,21,33], or a more recent similar

technique [36]. In total the algorithm requires O(log n)

rounds w.h.p. and according to Theorem 5.2 the ap-

proximation guarantee is O(A(G)2).

Regarding the message size, the algorithm to com-

pute a forest decomposition requires messages contain-

ing O(log n) bits. Thus, we need to check that we do

not require large messages because we compute an MIS

on H. Formulated abstractly, the algorithm from [36]

breaks symmetry by making each node still eligible for

entering the IS choosing a random value in each round

and permitting it to join the IS if its value is a lo-

cal minimum. This concept can for instance be realized

by taking O(log n) random bits as encoding of some

number and comparing it to neighbors. The respective

values will differ w.h.p. This approach can be emulated

using messages of size O(log n) in G: Nodes send their

random values to all parents in the forest decomposi-

tion, which then forward the smallest values only to

their children.

If (an upper bound on) n is not known, one can

start with constantly many bits and (locally) double

the number of used bits in each round where two nodes

pick the same value. Since for any edge in H there is

some node that sees the random values of both its end-

points (the respective common parent), we can always

inform a node if there is a conflict. In this case, the

nodes (i) pick additional random bits for the round in

question and (ii) increase the number of random bits

for future rounds by a factor of two. There will be at

most log log n + O(1) many such “failed” rounds for

each node until in each round the chosen values will

differ from all others w.h.p. Since nodes can complete

any round for which they broke symmetry to all their

neighbors and we can always locally propagate the cur-

rent maximal number of random bits employed in each

round, we can ensure that in total the running time

of the algorithm increases by asymptotically negligible

O(log log n) rounds w.h.p. due to the lack of knowledge

on n. ut

5.2 Linear-Time Central Algorithm

Algorithm 2 might also be of interest in a centralized

setting. Employing well-known techniques, a central al-

gorithm can compute a suitable forest decomposition

with linear complexity, which gives rise to an efficient

implementation of Algorithm 2.

Lemma 5.4 A 2A(G)-forest decomposition of G can

be computed in O(|E|+ n) ⊆ O(nA(G)) computational

steps.
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Proof For each node, we compute and store its degree

(O(|E|) steps). Now we place the nodes into buckets

according to their degree. We pick a node with smallest

degree, we orient its edges, delete them, and update the

assignment of the nodes to the buckets. This is repeated

until no more nodes remain. Assuming appropriate data

structures, the number of operations will be bounded

by O(|E| + n) ⊆ O(nA(G)), as each edge is accessed

a constant number of times and each node is accessed

no more than once without accessing an edge as well.

Since any graph of arboricity A(G) has average degree

smaller than A(G), the smallest degree of any subgraph

of G is less than 2A(G). Hence we obtain a forest de-

composition into less than 2A(G) forests. ut

Hence, for any graph of arboricity A(G) ∈ O(1)

we can compute an O(1)-approximation to the MDS

problem at linear complexity.

Corollary 5.5 A deterministic, centralized O(A(G)2)-

approximation algorithm for the MDS problem exists

that runs for O(|E|+ n) ⊆ O(A(G)n) steps.

Proof By Lemma 5.4 we can compute a forest decompo-

sition within the stated complexity bounds. In a central

setting, Algorithm 2 can easily be implemented using

O(|E|+n) steps. The approximation guarantee follows

from Theorem 5.2. ut

5.3 Uniform Deterministic Algorithm

Algorithm 2 might be unsatisfactory with regard to

several aspects. Its running time is logarithmic in n

even if the maximum degree ∆ is small. This cannot be

improved upon by any approach that utilizes a forest

decomposition, as a lower bound of Ω(log n/ log f) is

known on the time to compute a forest decomposition

into f forests [4]. The algorithm is not uniform, as it

necessitates global knowledge of a bound on A(G) or n.

Moreover, the algorithm requires randomization in

order to compute an MIS quickly. Considering deter-

ministic algorithms, one might pose the question how

much initial symmetry breaking information needs to

be provided to the nodes. While randomized algorithms

may generate unique identifiers of size O(log n) in con-

stant time w.h.p., many deterministic algorithms as-

sume them to be given as input. Milder assumptions

are the ability to distinguish neighbors by means of a

port numbering and/or an initially given orientation of

the edges.

In this section, we show that a uniform, determin-

istic algorithm exists that requires a port numbering

only, yet achieves a running time of O(log∆) and a

logarithmic approximation ratio. The size of the com-

puted dominating set is bounded linearly in the product

of the arboricity A(G) of the graph and the logarithm

of the maximum degree ∆.

Algorithm

The basic idea of Algorithm Greedy-by-Degree (Algo-

rithm 3) is that it is always feasible to choose nodes of

high residual degree simultaneously, i.e., all the nodes

that cover up to a constant factor as many nodes as the

one covering the most uncovered nodes.

Definition 5.6 (Residual Degree) Given a set D ⊆
V , the residual degree of node v ∈ V with respect to D

is δ̄v := |N+(v) \ N+(D)|.

This permits to obtain strong approximation guaran-

tees without the structural information provided by

knowing A(G) or a forest decomposition; the mere fact

that the graph must be “locally sparse” enforces that

if many nodes are elected into the set, also the domi-

nating set must be large. A difficulty arising from this

approach is that nodes are not aware of the current

maximum residual degree in the graph. Hence, every

node checks whether there is a node in its 2-hop neigh-

borhood having a residual degree larger by a factor two.

If not, the respective nodes may join the dominating set

(even if their degree is not large from a global perspec-

tive), implying that the maximum residual degree drops

by a factor of two in a constant number of rounds.

A second problem occurs once residual degrees be-

come small. In fact, it may happen that a huge number

of already covered nodes can each cover the same small

set of A(G)− 1 nodes. For this reason, it is mandatory

to ensure that not more nodes join the dominating set

than actually need to be covered. To this end, nodes

that still need to be covered elect one of their neigh-

bors (if any) that is feasible according to the criterion

of (locally) large residual degree explained above. This

scheme is described in Algorithm 3.

Note that nodes never leave D once they entered it.

Thus, nodes may terminate based on local knowledge

only when executing the algorithm, as they can cease

executing the algorithm as soon as δ̄v = 0, i.e., their

entire inclusive neighborhood is covered by D.

Analysis

In the sequel, when we talk of a phase of Algorithm 3,

we refer to a complete execution of the while loop. We

start by verifying that one iteration of the loop can be

executed within six rounds by a local algorithm that

relies on port numbers only.
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Algorithm 3: Greedy-by-Degree.

output: dominating set D
1 D := ∅
2 while V 6= N+(D) do
3 C := ∅
4 for v ∈ V in parallel do
5 δ̄v := |N+(v) \ N+(D)|
6 δ̄

(1)
v := maxw∈N+(v){δ̄w}

7 δ̄
(2)
v := maxw∈N+(v){δ̄(1)w }

8 if
⌈
log δ̄v

⌉
≥
⌈
log δ̄

(2)
v

⌉
then

9 C := C ∪ {v}
10 end
11 if v ∈ N+(C) \ N+(D) then
12 choose any w ∈ C ∩N+(v)
13 D := D ∪ {w}
14 end

15 end

16 end

Lemma 5.7 Each phase (i.e., iteration of the while-

loop) of Algorithm 3 can be executed within six rounds.

It is sufficient if nodes have access to a port numbering.

Proof The proof goes by induction on the phases. The

induction hypothesis is that at the beginning of each

phase, node v is aware of N+(v) ∩ N+(D). Clearly,

this holds at the beginning of the first phase. Assuming

that this hypothesis is true for some phase, v can com-

pute δ̄v and send it to all neighbors within one round.

In the next round, v computes δ̄
(1)
v and sends it to all

neighbors. Hence, at the beginning of round three, v

can compute δ̄
(2)
v and determine whether it must join

C. This will be communicated in the same round, im-

plying that in the fourth round, v can, if required, pick

a node from C ∩ N+(v) and inform the chosen node.

Finally, in round five and six, nodes transmit whether

they joined D and whether they became covered by D,

respectively. This completes the induction and shows

the claimed bound on the running time of each phase.

Observe that all the above steps can be executed based

on a port numbering, implying the second statement of

the lemma. ut

Next, we prove that not too many nodes with small

residual degrees enter D.

Lemma 5.8 Denote by M an MDS of G. During the

execution of Algorithm 3, in total at most 16A(G)|M |
nodes v join D in Line 13 of the algorithm after com-

puting δ̄v ≤ 8A(G) in Line 5 of the same phase.

Proof Consider the set S consisting of all nodes v ∈ V
that become covered in some phase by some node w ∈
N+
v that computes δ̄w ≤ 8A(G) and joins D. As ac-

cording to Line 8 nodes join D subject to the condition

that residual degrees throughout their 2-hop neighbor-

hoods are less than twice as large as their own, no node

m ∈ M can cover more than 16A(G) nodes from S.

Hence, |S| ≤ 16A(G)|M |. The rule that a node needs

to be elected by a node it covers in order to enter D

implies that each node joining D while having residual

degree at most 8A(G) is chosen by some node from S in

Line 12. As each node executing Line 12 in some phase

gets covered in this phase, the statement of the lemma

directly follows from the derived bound on |S|. ut

In each phase, at most a constant factor more nodes

of large residual degree are chosen than are in an MDS.

Lemma 5.9 If M is an MDS, in each phase of Algo-

rithm 3 at most 16A(G)|M | nodes v ∈ V that compute

δ̄v > 8A(G) in Line 5 join D in Line 13.

Proof Fix some phase of the algorithm and denote by

D′ the set of nodes v ∈ V joining D in Line 13 of this

phase after computing δ̄v > 8A(G). Define V ′ to be the

set of nodes that had not been covered at the beginning

of the phase. Define for i ∈ {0, . . . , dlog ne} that

Mi := {v ∈M | δ̄v ∈ (2i−1, 2i]}

Vi :=

{
v ∈ V ′

∣∣∣∣ max
w∈N+(v)

{δ̄w} ∈ (2i−1, 2i]

}
Di := {v ∈ D′ | δ̄v ∈ (2i−1, 2i]}.

Note that
⋃dlogne
i=dlog 8A(G)eDi = D′.

Consider any j ∈ {dlog 8A(G)e, . . . , dlog ne}. Nodes

in Vj may be covered by nodes from Mi for i ≤ j only.

Thus
∑j
i=0 2i|Mi| ≥ |Vj |.

Nodes v ∈ Dj cover at least 2j−1 + 1 nodes from

the set
⋃
i∈{j,...,dlogne} Vi, as by definition they have no

neighbors in Vi for i < j. On the other hand, Lines 5 to 8

of the algorithm impose that these nodes must not have

any neighbors of residual degree larger than 2dlog δ̄ve =

2j , i.e., these nodes cannot be in a set Vi for i > j.

Hence, each node v ∈ Dj has at least 2j−1 neighbors in

Vj . This observation implies that the subgraph induced

by Dj ∪ Vj has at least 2j−2|Dj | ≥ 2A(G)|Dj | edges.

On the other hand, by definition of the arboricity, this

subgraph has fewer than A(G)(|Dj | + |Vj |) edges. It

follows that

|Dj | <
A(G)|Vj |

2j−2 −A(G)

≤ 23−jA(G)|Vj |

≤ 23−jA(G)

j∑
i=0

2i|Mi|.
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We conclude that

|D′| =
dlogne∑

j=dlog 8A(G)e

|Dj |

≤
dlogne∑

j=dlog 8A(G)e

23−jA(G)

j∑
i=0

2i|Mi|

≤ 8A(G)

dlogne∑
j=0

j∑
i=0

2i−j |Mi|

< 8A(G)

dlogne∑
i=0

∞∑
j=i

2i−j |Mi|

= 16A(G)

dlogne∑
i=0

|Mi|

≤ 16A(G)|M |,
as claimed. ut

We now can bound the approximation quality of the

algorithm.

Theorem 5.10 Algorithm 3 terminates after at most

6dlog(∆+1)e rounds and outputs a dominating set that

is at most a factor 16A(G) log∆ larger than optimum.

The message size can be bounded by O(log log∆).

Proof We first examine the running time of the algo-

rithm. Denote by ∆(i) the maximal residual degree

after the ith phase, i.e., ∆(0) = ∆ + 1 (as a node

also covers itself). According to Lemma 5.7, each phase

of Algorithm 3 takes six rounds. Because all nodes v

computing a δ̄v satisfying dlog δ̄ve = dlog∆(i)e join C

in phase i and any node in N+(C) becomes covered,

we have that dlog∆(i + 1)e ≤ dlog∆(i)e − 1 for all

phases i. Since the algorithm terminates at the end of

the subsequent phase once ∆(i) ≤ 2, in total at most

dlog∆(0)e = dlog(∆+1)e phases are required. Note also

that in the final phases dlog(∆+1)e−2, dlog(∆+1)e−1,

and dlog(∆+ 1)e we have that ∆(i) ≤ 8.

Having established the bound on the running time

of the algorithm, its approximation ratio follows by ap-

plying Lemma 5.9 to the first dlog(∆ + 1)e − 3 phases

and Lemma 5.8 once, and finally observing that log∆ ≥
dlog(∆+1)e−2. The bound on the message size follows

from the observation that in each phase nodes need to

exchange residual degrees rounded to powers of two and

a constant number of binary values only. ut

Like it is possible for the MDS approximation al-

gorithm for general graphs from [27], we can sacrifice

accuracy in order to speed up the computation.

Corollary 5.11 For any integer α ≥ 2, Algorithm 3

can be modified so that it has running time O(logα∆)

and approximation ratio O(A(G)α logα∆). The size of

messages becomes O(log logα∆) with this modification.

Proof We simply change the base of the logarithms in

Line 8 of the algorithm, i.e., instead of rounding resid-

ual degrees to integer powers of two, we round to integer

powers of α. Naturally, this affects the approximation

guarantees linearly. In the proof of Lemma 5.9, we just

replace the respective powers of two by powers of α

as well, yielding a bound of O(A(G)α logα∆) on the

approximation ratio by the same reasoning as in The-

orem 5.10. Similarly, the bound on the message size

becomes O(log logα∆). ut

If it was not for the computation of an MIS, we

could speed up Algorithm 2 in almost the same manner

(accepting a forest decomposition into a larger number

of forests). However, the constructed helper graph is of

bounded independence, but not arboricity or growth.

For this graph class currently no distributed algorithm

computing an MIS in time o(log n) is known.

Finally, we would like to mention that if nodes know

A(G) (or a reasonable upper bound), a port numbering

is not required anymore. In this case, nodes will join D

without the necessity of being elected by a neighbor,

however only if the prerequisite δ̄v > 8A(G) is satis-

fied. To complete the dominating set, uncovered nodes

may join D independently of δ̄v once their neighbor-

hood contains no more nodes of residual degree larger

than 8A(G). It is not hard to see that with this modifi-

cation, essentially the same analysis as for Algorithm 3

applies, both with regard to time complexity and ap-

proximation ratio.

6 Constant-Time Constant Approximation in

Planar Graphs

In this section, which is based on [29], we introduce

an algorithm computing a constant approximation of a

minimum dominating set in planar graphs in constant

time.4 Assuming maximum degree ∆ and identifiers of

size O(log n), the algorithm makes use of messages of

size O(∆ log n). As planar graphs exhibit unbounded

degree, the algorithm is thus not suitable for practice.

Moreover, the constant in the approximation ratio is

130, i.e., there is a large gap to the strongest known

lower bound of 5 − ε (for any constant ε > 0) [10].

Nevertheless, we demonstrate that in planar graphs in

principle it is feasible to obtain a constant MDS approx-

imation in a constant number of distributed rounds.

4 Note that the original paper [28] contained an error and
the stated algorithm does not compute a constant MDS ap-
proximation. Moreover, the proof of the algorithm from [10]
is incomplete.
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Algorithm 4: MDS Approximation in Planar

Graphs

output: DS D of G
1 D := ∅
2 for v ∈ V in parallel do
3 if @A ⊆ N 2(v) \ {v} such that N (v) ⊆ N+(A)

and |A| ≤ 6 then
4 D := D ∪ {v}
5 end

6 end
7 for v ∈ V in parallel do
8 δ̄v := |N+(v) \ N+(D)|
9 if v ∈ V \ N+(D) then

10 ∆v := maxw∈N+(D){δ̄w}
11 choose any d(v) ∈ {w ∈ N+(v) | δ̄w = ∆v}
12 D := D ∪ {d(v)}
13 end

14 end

6.1 Algorithm

The key idea of the algorithm is to exploit planarity in

two ways. On the one hand, planar graphs have arboric-

ity three, i.e., the number of edges of any subgraph is

linear in its number of nodes. What is more, as planarity

is preserved under taking minors, so does any minor of

the graph. On the other hand, in a planar graph circles

are barriers separating parts of the graph from others;

any node enclosed in a circle cannot cover nodes on the

outside. This is a very strong structural property en-

forcing that dominating sets are either large or exhibit

a simple structure. It will become clear in the analysis

how these properties are utilized by the algorithm.

The algorithm consists of two main steps. In the

first step all nodes check whether their neighborhood
can be covered by six or less other nodes. After learn-

ing about their two-hop neighborhood in two rounds,

nodes can determine if this is the case locally with a

polynomial-time algorithm.5 Otherwise, they join the

(future) dominating set. In the second step, any node

that is not yet covered elects a neighbor of maximal

residual degree (i.e., one that covers the most uncov-

ered nodes, see Definition 5.6) into the set. Algorithm 4

summarizes this scheme.

6.2 Analysis

The algorithm can be executed in six rounds and, due

to the second step, computes a dominating set.

Lemma 6.1 Algorithm 4 can be executed in six rounds

and computes a dominating set.

5 Trivially, one can try all combinations of six nodes, but
planarity permits more efficient solutions.

Proof All nodes can learn within two rounds about

the identifiers of their neighbors’ neighbors and decide

whether they need to join D in the first step of the

algorithm or not. In the third round this is commu-

nicated. Rounds 4 and 5 are required for each node

v ∈ V to learn about N+(v) ∩ N+(D) and send δ̄v to

its neighbors. In the final round, uncovered nodes elect

a neighbor into D and communicate their choice. This

step also guarantees that D is a dominating set. ut

Therefore, our task is to bound the number of nodes

selected in each step in terms of the size of a minimum

dominating set M of the planar graph G. For the pur-

pose of our analysis, we fix some MDS M of G. By D1

and D2 we denote the sets of nodes that enter D in

the first and second step of the algorithm, respectively.

Moreover, we denote neighborhoods in a graph H 6= G

by NH(v), N+
H (A), etc. We will need the following basic

statements about planar graphs.

Lemma 6.2 A minor of a planar graph is planar. A

planar graph of n ≥ 3 nodes has at most 3n − 6 edges

(e.g. [13,34]).

We begin by bounding the number of nodes in D1 \
M after the first step.

Lemma 6.3 |D1 \M | < 3|M |.

Proof We construct the subgraph H = (VH , EH) of G

as follows (see Figure 6.1).

– Set VH := N+(D1 \M) ∪M and EH := ∅.
– Add all edges with at least one endpoint in D1 \M

to EH .

– Add a minimal subset of edges from E to EH such

that VH = N+
H (M), i.e., M is a DS in H.

Thus, each node v ∈ VH \ (D1 ∪M) has exactly one

neighbor m ∈ M , as we added a minimal number of

edges for M to cover VH . For all such nodes v, we

contract the edge {v,m}, where we identify the result-

ing node with m. In other words, the star subgraph

of H induced by N+
H (m) \ D1 is collapsed into m. By

Lemma 6.2, the resulting minor H̄ = (VH̄ , EH̄) of G

satisfies that |EH̄ | < 3|VH̄ |. Due to the same lemma,

the subgraph of H̄ induced by D1 \M has fewer than

3|D1 \M | edges. As the neighborhood in G (and thus

also in H) of a node from D1 \ M ⊂ VH̄ cannot be

covered by fewer than seven nodes, the performed edge

contractions did not reduce the degree of such a node

below seven.
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N (d)

d ∈ D1 \M

≥ 7 nodes
from M

Fig. 6.1 Part of the subgraph constructed in Lemma 6.3.

Altogether, we get that

7|D1 \M | − 3|D1 \M |
<

∑
d∈D1\M

δH̄(d)− |{{d, d′} ∈ EH̄ | d, d′ ∈ D1 \M}|

≤ |EH̄ |
< 3|VH̄ |
≤ 3(|D1 \M |+ |M |),

which can be rearranged to yield the claimed bound.

ut

To bound the number of nodes |D2| chosen in the

second step of the algorithm, more effort is required.

Let us first sketch the key ideas behind our reasoning.

The potentially “problematic” nodes with respect to

the approximation ratio are nodes d ∈ D2 \ M that

are not chosen by nodes from M . Such nodes satisfy

two important properties: On the one hand, they had

a large residual degree before they joined D, and on

the other hand they have been chosen by some node in

V \(N+(D1)∪M). For each node in D2\M chosen by a

node not inM , we pick exactly one such node that chose

it, resulting in the set A. Each node in this set must be

covered twice, (i) by a node in M and (ii) by another

node from a set C comprising at most 6|M | nodes. This

is true since each m ∈M whose neighborhood can not

be covered by 6 different nodes has been selected in the

first step of the algorithm, i.e., m ∈ D1.

Assuming that D2 is indeed large compared to M ,

there is now a large number of two-hop paths between

nodes in D2 \M and nodes in M via nodes in A. Con-

tracting these paths results in a minor of G of |M∪C| ≤
7|M | nodes that has O(|M |) edges. Hence, if it holds

that, for all pairs of nodes m ∈ M and v ∈ C \ {m},
there are only few shared neighbors in A, we can bound

|D2| ∈ O(|M |), which is the purpose of Lemma 6.5.

On the other hand, if we have a pair (m, v) ∈M×C,

m 6= v, that shares a lot of neighbors in A, planarity

entails that some of these neighbors are “shielded” by

circles formed by m, v, and the “outer” nodes from A∩
N (m)∩N (v) according to some fixed embedding of the

graph. In case there is no further node from M enclosed,

this implies that all enclosed nodes are connected to m

(or possibly v if v ∈ M as well). Roughly speaking,

leveraging the fact that the elected nodes must be also

inside these circles, they must have larger degrees than

both m and c to be chosen by their corresponding node

in A. However, if there are no further nodes from M

enclosed, additional nodes will also increase the degree

of m (or alternatively v, if v ∈ M), as they must be

covered. The number of required egdes thus becomes

quadratic in the number of enclosed nodes from D2,

resulting in a constant bound on the number of enclosed

nodes from D2. The actual reasoning is more involved,

as it is based on a recursive counting argument using the

above arguments, and will be formalized in Lemma 6.6.

We consider the following subgraph of G, which is

tailored specifically to arguing as outlined above.

Definition 6.4 We define H = (VH , EH) as the sub-

graph of G obtained from the following construction.

– Set VH := ∅ and EH := ∅.
– For each node d ∈ D2 for which this is possible, add

one node v ∈ V \M to VH such that d = d(v) in

Line 11 of the algorithm.

– Add M \D1 to VH and a minimal number of edges

to EH such that N+
H (M \ D1) = VH , i.e., M \ D1

covers the nodes added to H so far (this is possible

as only nodes from V \N+(D1) elect nodes into D2).

– For each m ∈ M \ D1, add a minimal number of

nodes and edges to H such that a set Cm ⊆ VH\{m}
of minimal size satisfyingNH(m) ⊆ N+

H (Cm) exists,

i.e., Cm covers m’s neighbors in H. We define that

C := ∪m∈M\D1
Cm.

– Remove all v ∈ VH\(C∪M) for which d(v) ∈M∪C.

– For each m ∈M \D1, remove all edges to Cm.

See Figure 6.2 for an illustration.
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m ∈M \D1

Cm with |Cm| ≤ 6

NH(m) ⊆ A = VH \ (M ∪ C)

Fig. 6.2 Part of the subgraph H from Definition 6.4.

In order to derive our bound on |D2|, we consider a

special case first.

Lemma 6.5 Assume that for each node m ∈ M \ D1

it holds that

(i) no node m′ ∈M∩Cm covers more than seven nodes

in NH(m) and

(ii) no node v ∈ Cm \M covers more than four nodes

in NH(m).

Then it holds that |D2| < 98|M |.

Proof Each node in VH \M that elects some node into

D2 has exactly two neighbors, one in M and a different

one in C. Denote by A1 ⊆ VH \ (M ∪ C) the nodes in

VH that elect others into D2 and have two neighbors in

M , i.e., when we added C to VH , they became covered

by a node in M ∩ C. Analogously, denote by A2 ⊆
VH \ (M ∪ C) the set of electing nodes for which the

neighbor in C is not in M . Observe that A := A1∪A2 =

VH \ (M ∪ C) and A1 ∩ A2 = ∅. Moreover, we claim

that |A| ≥ |D2| − 14|M |. To see this, recall that in the

first step of the construction of H, we choose for each

element of D2 that is not elected by elements of M

only one voting node v, i.e., at least |D2| − |M | nodes

in total. In the second last step of the construction, we

remove v if d(v) ∈ {m} ∪ Cm for some m ∈ M \ D1.

As m ∈ M \ D1, its neighborhood can be covered by

six or less nodes from V \ {m}. Therefore |Cm| ≤ 6 for

all m ∈ M \ D1 and we remove in total at most 7|M |
nodes in the second last step. Finally, in the last step

we cut off at most |C| ≤ 6|M | voting nodes from their

dominators in M \ D1. The definition of A explicitly

excludes these nodes, hence |A| ≥ |D2| − 14|M |.
Recall that for each node a ∈ A, there is a unique

node m ∈ M \ D1 by which it became covered in the

third step of the construction of H. For each such a,

we contract the edge to m, identifying the resulting

node with m. Denote the resulting minor of G by H̄ =

(VH̄ , EH̄). No pair of nodes m,m′ ∈ M \D1 satisfying

that m ∈ Cm′ and m′ ∈ Cm shares more than seven

neighbors in A1. Thus, there are at least |A1|/7 different

such pairs m,m′ ∈M \D1. For each of these pairs, we

have two nodes less in VH̄ than the upper bound of

|VH̄ | ≤ |M | + |C| ≤ 7|M |. By Lemma 6.2, H̄ thus has

fewer than

3|VH̄ | ≤ 3|M ∪ C|

≤ 3|M |+ 3

(
6|M | − 2|A1|

7

)
= 21|M | − 6|A1|

7

edges.

On the other hand,

|EH̄ | ≥
|A1|

7
+
|A2|

4
,

as by assumption each pair of nodes from M may share

at most seven neighbors in A1 and pairs of nodes m ∈
M \D1, v ∈ Cm \M share at most four neighbors. We

conclude that

|A2| < 84|M | − 4|A1|

and therefore

|D2| ≤ |A1|+ |A2|+ 14|M | < 98|M | − 3|A1| ≤ 98|M |.ut

In order to complete our analysis, we need to cope

with the case that a node m ∈M \D1 and an element

of Cm share many neighbors. In a planar graph, this

results in a considerable number of nested circles which

separate their interior from their outside space. This

necessitates that nodes from the optimal solution M

are enclosed that we may use to compensate for the

increased number of nodes in A in comparison to the

special case from Lemma 6.5.
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m ∈M \D1

v ∈ Cm ∩M

Ã ⊆ V \M a ∈ Ã

d(a) ∈ D2 \ (M ∪ C)
“inner”
nodes
in Ã

“outer”
nodes
in Ã

“outer”
nodes
in Ã

Fig. 6.3 Example of a subgraph considered in the first case of the proof of Lemma 6.6. While the choices d(a) of the two
leftmost and rightmost nodes a ∈ Ã may have large degrees because of nodes outside the outer circle, the nodes elected by the
four inner nodes must have many neighbors that are not covered by D1 on or inside the outer circle.

Lemma 6.6 Suppose the subgraph from Definition 6.4

violates condition (i) or (ii) from Lemma 6.5. Fix a

planar embedding of G and consider either

(i) nodes m ∈M \D1 and v ∈M ∩Cm with |NH(m)∩
NH(v)| ≥ 8 or

(ii) nodes m ∈M \D1 and v ∈ Cm \M with |NH(m)∩
NH(v)| ≥ 5.

Then the outermost circle formed by m, v, and two of

their common neighbors in H must enclose some node

m′ ∈M (with respect to the embedding).

Proof Set Ã := NH(m)∩NH(v). Consider case (i) first

and assume for contradiction that there is no node from

M enclosed in the outermost circle. W.l.o.g., we may

assume that |Ã| = 8 (otherwise we simply ignore some

nodes from Ã). There are four nodes from Ã that are

enclosed by two nested circles consisting of v, m, and

the four nodes that are the outer nodes from Ã ac-

cording to the embedding (see Figure 6.3). Recall that

by the second last step of the construction of H nodes

a ∈ Ã satisfy that d(a) 6∈ {m, v} ⊆M . Therefore, these

enclosed nodes elected (distinct) nodes into D2 that are

enclosed by the outermost circle. As the electing nodes

a ∈ Ã are connected to m and v, by Line 11 of the Al-

gorithm the nodes d(a) they elected must have at least

residual degree δ̄d(a) ≥ max{δ̄v, δ̄m}. In other words,

they cover at least as many nodes from V \N+(D1) as

both m and v.

Consider the subgraph S of G induced by Ã, v, m

and L, the set of nodes that are enclosed in the outer-

most circle and that are neither in Ã ⊆ V \ N+(D1)

nor already covered by D1. Thus S = (VS , ES) contains

|VS | = |L|+ |Ã|+ |{v,m}| = |L|+ 10 nodes. Regarding

the number of edges we claim that the cardinality of

ES is at least

|ES | ≥ |NS(v)|+ |NS(m)|
+4 max{|NS(v)|, |NS(m)|} − 18

≥ 3(|NS(v)|+ |NS(m)| − 6).

To see that this claim holds note that the subgraph S

contains at least the edges to all neighbors of v and m in

S and the edges incident to the four nodes from Ã that

are enclosed by two nested circles consisting of v, m and

the four outer nodes from Ã according the embedding.

Remember that the residual degree of these four nodes

from Ã in the second step of the algorithm is at least

as large as the residual degrees of v and m, as they

would not have been chosen in Line 11 otherwise. By

adding 4 max{|NS(v)|, |NS(m)|} we might count some

edges twice, therefore we subtract 18 edges to account

for the facts that (i) there might be up to
(

4
2

)
= 6

edges between pairs of the four considered nodes d(a) ∈
D2, (ii) up to 8 edges between these four nodes and

{v,m} might exist, and (iii) each such node d(a) might

contribute 1 to its own residual degree by itself without

the necessity for an edge.

The second construction step of Definition 6.4 en-

sures that Ã∩M = ∅ by only adding nodes from V \M
to VH . Hence, the assumption that no other node from

M is enclosed by the outermost circle implies that ev-

erything inside is covered by {v,m}. Therefore, it holds

that

|NS(v)|+ |NS(m)| ≥ 2|Ã|+ |L| = |L|+ 16.

However, Lemma 6.2 lower bounds |VS | in terms of |ES |,
giving that

3(|L|+ 10) = 3|VS |
> |ES |
≥ 3(|NS(v)|+ |NS(m)| − 6)

≥ 3(|L|+ 10),

a contradiction.

Case (ii) is treated similarly, but it is much sim-

pler. This time, the assumption that no node from M

is enclosed by the outermost circle implies that all the

nodes inside must be covered by m alone, as M is a

DS. Since v and m are connected via the (at least)
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Ã ⊆ V \M

m ∈M \D1

v ∈ Cm \M

d(a) ∈ D2 \ (M ∪ C)

a ∈ Ã
d(a∗)
∈A

a∗

∈A

Fig. 6.4 Example of a subgraph considered in the second
case of the proof of Lemma 6.6. Supposing there is no other
node m′ ∈ M inside the outer circle, apart from v all neigh-
bors of the node chosen by the innermost node from Ã must
also be neighbors of m.

five nodes in Ã, for the node d(a∗) 6∈ {m, v} elected

into D2 by the innermost node a∗ ∈ Ã, it holds that

N+(d(a∗)) \ N+(m) ⊆ {v} (see Figure 6.4). However,

there are at least two nodes in Ã ⊆ V \ N+(D1) that

are not connected to d(a∗), i.e., we get the contradiction

that a∗ would have preferred m over d(a∗) in Line 11

of the algorithm. ut

Next, we repeatedly delete nodes from H until even-

tually the preconditions of Lemma 6.5 are met. Arguing

as in the proof of Lemma 6.6, we can account for deleted

nodes by allocating them to enclosed nodes from M∪C.

Doing this carefully, we can make sure that no nodes

from M ∪ C need to compensate for more than four

deleted nodes.

Corollary 6.7 |D2| < 126|M |.

Proof Fix an embedding of G and thus of all its sub-

graphs. We will argue with respect to this embedding

only. We use the notation from the proof of Lemma 6.5.

Starting from H, we iteratively delete nodes from A :=

VH \ (M ∪C) until we obtain a subgraph H ′ satisfying

the prerequisites of the lemma. Assume that H ′ := H

violates one of the preconditions of Lemma 6.5. No mat-

ter which of the conditions (i) and (ii) from Lemma 6.5

is violated, we choose respective nodes m ∈M \D1 and

v ∈ Cm satisfying precondition (i) or (ii) of Lemma 6.6

such that the smallest circle formed by the nodes m,

v, and some a1, a2 ∈ Ã := N+
H′(v) ∩ NH′(m) enclosing

an element m′ ∈ M has minimal area. We delete the

two elements from Ã ⊆ A participating in the circle.

Since the area of the circle is minimal, there is no third

element from Ã enclosed in the circle.

m ∈ M \D1

v ∈ C

NH(m) ∩NH(v)

m ∈ M

m′ ∈ M

circle X1

circle X2

circle X3

Fig. 6.5 Example of a sequence of three nested circles as
considered in Corollary 6.7. Each pair of two voting nodes
involved in a circle is deleted from H′ after it has been ac-
counted for. Therefore, all neighbors of the two outermost
nodes from NH(m)∩NH(v) are not adjacent to nodes inside
the innermost circle.

We repeat this process until H ′ satisfies the precon-

ditions of Lemma 6.5. We claim that we can account for

deleted nodes in terms of nodes from M ∪ C in a way

such that no element of M ∪ C needs to compensate

for more than four deleted nodes. Whenever we delete

a pair of nodes, we count a node from M ∪ C enclosed

by the respective circle that has not yet been counted

twice.

We need to show that this is indeed always possible.

To see this, observe that the minimality of the enclosed

area of a chosen circle X together with the planarity of

G ensures that any subsequent circle X ′ either encloses

this circle or its enclosed area is disjoint from the one

of X. In the latter case, we obviously must find a dif-

ferent node from M ∪ C enclosed in X ′ than the one

we used when deleting nodes from X. Hence, we need

to examine the case when there are three nested circles

X1, X2, and X3 that occur in the construction. If the

nodes m ∈ M and v ∈ Cm participating in each circle

are not always the same, one node from the first such

pair becomes enclosed by one of the subsequent circles.

Hence, the remaining difficulty is that we could have

three such nested circles formed by nodes m ∈ M , v ∈
Cm, and three pairs of nodes from NH(m) ∩ NH(v)

(see Figure 6.5). Any node chosen by a node a 6∈ {m, v}
lying on the outermost circleX3 is separated from nodes

enclosed by X1. Therefore, nodes in M enclosed by X1

can cover only nodes that are either not adjacent to the

nodes from D2 considered in Lemma 6.6 (when applied

toH ′ afterX1 andX2 have already been removed) or lie

on X1. Since the nodes on X1 are m, v, and two of their

shared neighbors in H, we can thus argue analogously
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to the proof of Lemma 6.6 in order to find a node m′ ∈
M enclosed by X3, but not enclosed by X1.

Altogether, for each element of M ∪C we remove at

most two times two nodes each from A, i.e., in total no

more than 4|M ∪ C| ≤ 28|M | nodes. To the remaining

subgraph H ′, we apply Lemma 6.5, yielding

|D2| < (28 + 98)|M | = 126|M |. ut

Having determined the maximum number of nodes

that enter the dominating set in each step, it remains to

assemble the results and finally state the approximation

ratio our algorithm achieves.

Theorem 6.8 |D| < 130|M |.

Proof Combining Lemma 6.3 and Corollary 6.7, we ob-

tain

|D| ≤ |M |+ |D1 \M |+ |D2|
< (1 + 3 + 126)|M | = 130|M |. ut
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