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Tight Bounds for Parallel Randomized Load Balancing
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Abstract Given a distributed system of n balls and n

bins, how evenly can we distribute the balls to the bins,

minimizing communication? The fastest non-adaptive

and symmetric algorithm achieving a constant max-

imum bin load requires Θ(log log n) rounds, and any

such algorithm running for r ∈ O(1) rounds incurs a

bin load of Ω((log n/ log log n)1/r). In this work, we ex-

plore the fundamental limits of the general problem.

We present a simple adaptive symmetric algorithm

that achieves a bin load of 2 in log∗ n + O(1) com-

munication rounds using O(n) messages in total. Our

main result, however, is a matching lower bound of

(1 − o(1)) log∗ n on the time complexity of symmetric

algorithms that guarantee small bin loads. The essen-

tial preconditions of the proof are (i) a limit of O(n)

on the total number of messages sent by the algorithm

and (ii) anonymity of bins, i.e., the port numberings of

balls need not be globally consistent. In order to show

that our technique yields indeed tight bounds, we pro-

vide for each assumption an algorithm violating it, in

turn achieving a constant maximum bin load in con-

stant time.

An extended abstract of preliminary work appeared at STOC
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1 Introduction

Consider a synchronous distributed system of n identi-

cal balls and n bins. In each round of computation,

(i) each ball may send messages to O(log n) bins,

(ii) bins may respond to the balls that contacted them,

and

(iii) each ball may commit to a bin, notify it, and termi-

nate.

The goal is that each ball commits to a bin, minimiz-

ing the maximal number of balls in a bin, the num-

ber of rounds, and the number of messages. There are

no restrictions on local computations or the amount of

randomness that is employed, so the main obstacle is

the lack of global coordination: fast algorithms run in

O(log log n) rounds, implying that balls and bins can
exchange information with only a small part of the sys-

tem, even if multi-hop communication is used.

Clearly, this is a very generic load balancing task,

with many applications: canonical examples are job

assignment tasks such as sharing work load among

multiple processors, servers, or storage locations, but

balls-into-bins games also play a vital role in e.g. low-

congestion circuit routing, channel bandwidth assign-

ment, or hashing, cf. [33].

Adler et al. [1] devised algorithms for the above

problem whose running times and maximum bin loads

are essentially doubly-logarithmic. They also provide

a lower bound essentially showing that this running

time is necessary for small bin loads.1 However, their

lower bound proof requires two critical restrictions: al-

gorithms must (i) break ties symmetrically and (ii) be

non-adaptive, i.e., each ball restricts itself to a fixed

number of candidate bins before communication starts.

1 Strictly speaking, the bound is shown for constant round
numbers only, but a generalization seems feasible.
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We believe that there are many systems that do not

impose these restrictions, especially (ii), motivating us

to study more general classes of algorithms. In this

work, we provide a complete characterization of the

time/load-tradeoffs that can be achieved by adaptive

algorithms.

1.1 Detailed Contributions

Our main result, and the technically most challenging

one, is a lower bound of (1−o(1)) log∗ n on the running

time of symmetric algorithms that achieve small (near-

constant) bin loads with O(n) messages (Section 4);

symmetric algorithms are characterized by balls choos-

ing the bins to contact uniformly. Our bound necessi-

tates a new proof technique; it is not a consequence

of an impossibility to gather reliable information in

time (e.g. due to asynchronicity, faults, or explicitly

limited local views of the system), rather it emerges

from bounding the total amount of communication.

By providing the following complementing adaptive

algorithms, we show that this bound is essentially tight

in each assumption.2

– A simple symmetric algorithm achieving a maxi-

mum bin load of 2 within log∗ n + O(1) rounds

of communication using O(n) messages. As a plus,

the algorithm also works if communication is asyn-

chronous and is highly resilient to faults. (Section 3)

– An asymmetric algorithm achieving load 3 in O(1)

rounds, also using O(n) messages. (Section 5.1)

– A symmetric algorithm achieving load O(1) in

O(log∗ n − log∗ l) rounds, using O(nl) messages.

(Section 5.2)

All our results hold with high probability (w.h.p.), that

is, with probability at least 1 − 1/nc for an arbitrarily

selected constant c > 0.

2 Related Work

2.1 Upper Bounds

Probably one of the earliest applications of random-

ized load balancing has been hashing. In this context,

Gonnet [15] proved that when throwing n balls uni-

formly and independently at random (u.i.r.) into n

bins, the fullest bin has load (1 + o(1)) log n/ log log n

in expectation. It is also common knowledge that

2 We refer to [23] for a number of additional upper bounds;
for the sake of a streamlined presentation, we focus on the
main techniques and results here.

the maximum bin load of this simple approach is

Ω(log n/ log log n) w.h.p. [10].

With growing interest in parallel computing, since

the beginning of the nineties the topic received increas-

ingly more attention. Karp et al. [18] demonstrated for

the first time that two random choices are superior to

one. By combining two (possibly not fully independent)

hashing functions, they simulated a parallel random ac-

cess machine (PRAM) on a distributed memory ma-

chine (DMM) with a factorO(log log n log∗ n) overhead;

in essence, their result was a solution to balls-into-bins

with maximum bin load of O(log log n) w.h.p. Azar et

al. [3] generalized their result by showing that if the

balls choose sequentially from d ≥ 2 u.i.r. bins greedily,

i.e., the currently least loaded one, the maximum load

is log log n/ log d + O(1) w.h.p.3 Given that contacted

bins are chosen u.i.r., they prove that this bound is

stochastically optimal in the sense that any other strat-

egy to assign the balls majorizes4 their approach. The

expected number of bins each ball queries during the

execution of the algorithm was later improved to 1 + ε

(for any constant ε > 0) by Czumaj and Stemann [8].

This is achieved by placing each ball immediately if the

load of an inspected bin is not too large, rather than

always querying d bins.

So far the question remained open whether strong

upper bounds can be achieved in a parallel setting.

Adler et al. [1] answered this affirmatively by devising a

parallel greedy algorithm obtaining a maximum load of

O(d+log log n/ log d) within the same number of rounds

w.h.p. Thus, choosing d ∈ Θ(log log n/ log log log n),

the best possible maximum bin load of their algo-

rithm is O(log log n/ log log log n). On the other hand,

they prove that a certain subclass of algorithms can-

not perform much better with probability larger than

1 − 1/ polylog n. The main characteristics of this sub-

class are that algorithms are non-adaptive, i.e., balls

have to choose a fixed number of d candidate bins be-

fore communication starts, and symmetric, i.e., these

bins are chosen u.i.r. Moreover, communication takes

place only between balls and their candidate bins. In

this setting, Adler et al. show also that for any con-

stant values of d and the number of rounds r the max-

3 There is no common agreement on the notion of w.h.p.
Frequently it refers to probabilities of at least 1 − 1/n or
1 − o(1), as so in the work of Azar et al.; however, their
proof also provides their result w.h.p. in the sense we use
throughout this paper.
4 Roughly speaking, this means that any other algorithm is

as least as likely to produce bad load vectors as the greedy al-
gorithm. An n-dimensional load vector is worse than another,
if after reordering the components of both vectors descend-
ingly, any partial sum of the first i ∈ {1, . . . , n} entries of the
one vector is greater or equal to the corresponding partial
sum of the other.
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Table 2.1 Comparison of parallel balls-into-bins algorithms. Varying the parameters d, l, or r yields different trade-offs.

algorithm sym. adt. choices rounds maximum bin load messages

naive [15] yes no 1 1 (only commit) O
(

logn
log logn

)
n

greedy [1] yes no 2 2 O
(√

logn
log logn

)
O(n)

greedy [1] yes no Θ
(

log logn
log log logn

)
Θ
(

log logn
log log logn

)
O
(

log logn
log log logn

)
O
(
n log logn
log log logn

)
collision [38] yes no 2 r O

((
logn

log logn

)1/r) O(n)

Theorem 3.2 yes yes O(1) exp. log∗ n+O(1) 2 O(n)

Theorem 5.2 no yes O(1) exp. O(1) 3 O(n)

Theorem 5.4 yes yes O(l) exp. log∗ n− log∗ l +O(1) O(1) O(ln)

[23] yes no d r + log logn
log d

+O(1) log(r) n

log(r+1) n
+ r + log logn

log d
+O(1) O(n)

[23] yes yes O(1) exp., d r + log logn
log d

+O(1) log(r) n

log(r+1) n
+ r + log logn

log d
+O(1) O(n)

imum bin load is Ω((log n/ log logn)1/r) with constant

probability. Recently, Even and Medina extended these

bounds to a larger spectrum of algorithms by removing

some artificial assumptions [12]. A matching algorithm

was proposed by Stemann [38], which for d = 2 and r ∈
O(log log n) achieves a load of O((log n/ log log n)1/r)

w.h.p.; for r ∈ Θ(log log n) this implies a constantly

bounded bin load. Even and Medina also proposed a

2-round “adaptive” algorithm [11].5 Their synchronous

algorithm uses a constant number of choices and ex-

hibits a maximum bin load of Θ(
√

log n/ log log n)

w.h.p., i.e., exactly the same characteristics as parallel

greedy with 2 rounds and two choices. In comparison,

within this number of rounds our technique is capable

of achieving bin loads of (1+o(1)) log log n/ log log log n

w.h.p. (see [23]). Table 2.1 shows a comparison of our

results to parallel algorithms. Our adaptive algorithms

outperform all previous solutions for the whole range of

parameters.

Given the existing lower bounds, the only possibil-

ity for further improvement has been to search for non-

adaptive or asymmetric algorithms. Vöcking [40] intro-

duced the sequential “always-go-left” algorithm which

employs asymmetric tie-breaking in order to improve

the impact of the number of possible choices d from

logarithmic to linear. Furthermore, he proved that de-

pendency of random choices does not offer asymptoti-

cally better bounds. His upper bound holds also true if

only two bins are chosen randomly, but for each choice

d/2 consecutive bins are queried [19].

Most of the mentioned work considers also the gen-

eral case of m 6= n. If m > n, this basically changes

expected loads to m/n, whereas values considerably

smaller than n (e.g. n1−ε) admit constant maximum bin

5 If balls cannot be allocated, they get an additional ran-
dom choice. However, one could also give all balls this addi-
tional choice and let some of them ignore it, i.e., this kind of
adaptivity cannot circumvent the lower bound.

load in a constant number of rounds. It is noteworthy

that for d ≥ 2 the imbalance between the most loaded

bins and the average load is O(log log n/ log d) w.h.p.

irrespective of m. Recently, Peres et al. [35] proved a

similar result for the case where “d = 1 + β” bins

are queried, i.e., balls choose with constant probabil-

ity β ∈ (0, 1) the least loaded of two bins, otherwise

uniformly at random. In this setting, the imbalance be-

comes Θ((log n)/β) w.h.p.

In addition, quite a few variations of the basic prob-

lem have been studied. Since resources often need to

be assigned to dynamically arriving tasks, infinite pro-

cesses have been considered (e.g. [3,8,29–31,38,40]).

In [32] it is shown that, in the sequential setting, mem-

orizing good choices from previous balls has similar im-

pact as increasing the number of fresh random choices.

Awerbuch et al. [2] studied arbitrary Lp norms instead

of the maximum bin load (i.e., the L∞ norm) as qual-

ity measure, showing that the greedy strategy is p-

competitive to an offline algorithm. Several works ad-

dressed weighted balls (e.g. [6,7,21,39,35]) in order to

model tasks of varying resource consumption. The case

of heterogeneous bins was examined as well [41]. In re-

cent years, balls-into-bins has also been considered from

a game theoretic point of view [5,20].

Many algorithms for hashing problems bear simi-

larity to our symmetric algorithm with running time

log∗ n + O(1). In particular, a number of publications

present algorithms with running times of O(log∗ n) (or

very close) in PRAM models [4,14,17,28]. Furthermore,

recent results on distributed coloring [37] permit to de-

rive a symmetric balls-into-bins algorithm running in

O(log∗ n) time, however, using significantly larger mes-

sages. While at first glance these routines operate in

models that considerably differ from ours, at their heart

lies the same idea we employ in the balls-into-bins set-

ting: In each iteration, an exponentially growing share

of the available resources is dedicated to dealing with
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the remaining keys, bins, or nodes, respectively. Implic-

itly, this approach already occurred in previous work

by Raman [36]. For a more detailed review of results on

hashing we refer the interested reader to [16].

From our point of view, there are two main differ-

ences distinguishing our upper bound results on sym-

metric algorithms. Firstly, the parallel balls-into-bins

model permits to use the algorithmic idea in its most

basic form. Hence, our presentation focuses on the prop-

erties decisive for the log∗ n+O(1) complexity bound of

the basic symmetric algorithm. Secondly, our analysis

shows that the core technique is highly robust and can

therefore tolerate a large number of faults.

The constant-time constant-load asymmetric algo-

rithm presented in Section 5.1 gives rise to a load-

balancing primitive (see [24], Section 3.4), which has

been applied to sort n2 keys in O(1) rounds in fully

connected networks [?]. It was recently shown how to

achieve this result deterministically using an unrelated

approach [?], hence we refrain from presenting this

primitive in this article.

2.2 Lower Bounds

The lower bound by Adler et al. [1] (and the gener-

alization by Even and Medina [12]) on the round com-

plexity of symmetric algorithms is larger than ours, but

it applies to algorithms which are severely restricted in

their abilities only. Essentially, these restrictions uncou-

ple the algorithm’s decisions from the communication

pattern; in particular, communication is restricted to

an initially fixed random graph, where each ball con-

tributes d edges to u.i.r. bins. This prerequisite is useful

in various settings, for instance if the initial communi-

cation overhead is large, or for hashing strategies where

the bins are locations that need to be re-accessed later

on. However, it seems natural to assume that, by de-

fault, the option to use a non-constant number of com-

munication rounds goes hand in hand with the ability

of balls to contact different bins in different rounds. Our

lower bound also applies in this setting, i.e., for adap-

tive algorithms. It arises from the assumption that bins

are anonymous, which fits a wide range of systems.

From a technical perspective, at first glance our

lower bound appears similar to that from [1]: both

bounds argue about tree structures in the graph on

the balls and bins whose edges indicate a communi-

cation relation. This connection is however superficial.

In the adaptive case, this graph is not a simple ran-

dom graph, as the information nodes gain from earlier

communication feeds back to its evolution over time,

i.e., the communication in round r may depend on the

local topology in round r − 1. This property, i.e., that

the communication graph evolves during the course of

the algorithm, also distinguishes our result from other

distributed lower bounds, cf. [13,22,25,27], in particu-

lar an Ω(log∗ n) lower bound on hashing (in a certain

model) by Gil et al. [14]. Finally, we note that the in-

formation theoretic approach underlying the bounds in,

e.g., [9,26,34] cannot be applied to our setting, since the

graph describing which edges could potentially be used

to transmit a message is complete bipartite. Thus, even

with restricted message size, there is no strong bound

on the amount of information that can be exchanged

between nodes that holds a priori, rendering the tech-

nique ineffective. Hence, our lower bound is the first to

prove the existence of a coordination bottleneck in a

system without a physical bottleneck.

3 A Simple Symmetric Algorithm

In this section, we present the symmetric algorithm

Asym achieving a bin load of 2 in log∗ n+O(1) rounds.

Algorithm Asym: Symmetric Algorithm sending

O(n) messages w.h.p.

1 Set k(1) := 1
2 for i = 1, . . . until all balls have terminated do
3 Each non-terminated ball requests from k(i) u.i.r.

bins permission to be placed into them.
4 Each bin responds by admitting permission to (up

to) 2 requesting balls, minus the number of balls
that already committed to it. These choices are
arbitrary.

5 Any ball receiving at least one permission chooses
an arbitrary of the respective bins to commit to,
informs it, and terminates.

6 If i = 1, set k(2) := 4. Otherwise, set

k(i+ 1) := min{k(i)2k(i)/4, dlogne}.
7 end

The intuition behind this approach is that each mes-

sage sent has, independently of others, a constant prob-

ability to be sent to a bin that is willing to accept the

sending ball: there must always be at least n/2 bins

with current load smaller than 2. Thus, the number of

non-terminated balls decrases by a factor that is ex-

ponentially small in k(i). In turn, it is safe to increase

k(i) exponentially for the next round without causing

too many messages to be sent (if ω(n) messages are

sent, the probability that the receiving bin accepts be-

comes o(1)). Once k(i) becomes dlog ne, each remaining

ball terminates within O(1) rounds w.h.p.

Lemma 3.1 The following invariants hold w.h.p. in

rounds i ∈ {2, . . . , log∗ n+O(1)} of the above algorithm

(if n is sufficiently large).
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– The number of non-terminated balls ni at the begin-

ning of the round is bounded by n/(5 · 2i−3k(i)).

– The total number of messages sent in the round is

at most n/(5 · 2i−3).

– Pick any message sent by a ball in round i. After

fixing all random decisions up to and including this

round except the destination of this message, it has

a probability of at least 3/10 to receive a response.

– ni+1 ∈ min{2−k(i)/2ni,O(log n)}.

Proof For any constant l ∈ N0, the expected number of

bins receiving exactly l messages in the first round is(
n

l

)(
1

n

)l(
1− 1

n

)n−l
∈ (1± o(1))

n

l!e
,

where 0! = 1. It is known that these bounds also hold

w.h.p. [10] (see [23] for more details). Summing up a

constant number of terms, we can conclude that for

sufficiently large n, it holds that n2 ≤ n/10 w.h.p. This

shows the first statement for round 2.

Now consider round i > 1 and assume that the first

statement is satisfied in round i. The second statement

follows immediately. Also, the first statement implies

that when fixing all but one message sent in this round,

there must be at least

2n− (n− ni)− nik(i)

2
>
n− 2n/5

2
=

3n

10

bins that will still accept a message. This shows the

third statement for round i. The fourth statement for

round i follows from the third by observing that each

node sends k(i) messages, thus the probability that

none of them is sent to an accepting bin is bounded

by (7/10)k(i) = (49/100)k(i)/2, and applying Chernoff’s

bound to see that ni+1 ∈ min{2−k(i)/2ni,O(log n)}
w.h.p. Finally, the first statement for round i + 1 fol-

lows (i) because 2−k(i)/2ni ≤ 2−k(i)/4−1ni as k(i) is

an integer multiple of 4 for all i ≥ 2 and (ii) clearly

n/(5 · 2i−3k(i)) ≥ n/(5 · 2i−3dlog ne) ∈ ω(log n) for all

i ∈ log∗ n+O(1).

Thus, we can use induction over i to prove all claims;

since each individual statement follows w.h.p., applying

the union bound over all O(log∗ n) statements shows

that they hold concurrently w.h.p. ut

From these invariants it is straightforward to derive

the following theorem.

Theorem 3.2 Algorithm Asym satisfies the following:

– it terminates in log∗ n+O(1) rounds w.h.p.

– the maximum bin load is 2

– the total number of messages is O(n) w.h.p.

– each ball and bin sends and receives O(1) messages

in expectation and O(log n) messages w.h.p.

Proof Basic calculations show that given the growth

of k(i), there is a round i0 ∈ log∗ n + O(1) such that

k(i) = dlog ne for all i ≥ i0 (cf. Lemma 4.14). By the

third statement of Lemma 3.1, we conclude that in each

such round, each remaining ball terminates with prob-

ability at least 1−n−Ω(1). By independence of the ran-

dom choices in each round and the union bound, thus

all balls terminate within log∗ n + O(1) rounds w.h.p.

The fact that the maximum bin load is 2 is a direct

consequence of bins accepting at most 2 balls.

The bound on the total number of messages im-

mediately follows from the second invariant shown in

Lemma 3.1. By symmetry, balls (bins) send and re-

ceive the same expected number of messages, show-

ing that the expected values are all constant. As∑log∗ n+O(1)
i=1 k(i) ∈ O(log n), each ball sends O(log n)

messages w.h.p. Trivially, no ball can receive more than

dlog ne messages, as it terminates in the round in which

it receives its first message. Since all messages have

u.i.r. destinations, the bound on the total number of

messages and Chernoff’s bound show that, w.h.p., bins

receive (and thus also send) at most O(log n) messages.

ut

We remark that it is simple to adapt algorithm Asym to

asynchrony. If bins also send messages if they refuse a

ball, balls can make sure not to send too many messages

by waiting for all k(i) responses of “round i” (according

to their local view) before sending the next batch of

k(i+1) messages; because the total number of messages

remains linear w.h.p. provided that each message has

a constant probability of being “successful”, and each

message has a constant probability of success as long

as not more than O(n) messages are sent, the approach

works out similar to the synchronous case.

Another interesting point is that Asym is extremely

simple and robust: each message merely needs to con-

vey the information that it has been sent (in a given

phase of a given round), local computations are trivial,

and losing a constant (but roughly uniformly chosen)

fraction of all messages will not break the algorithm

(if k(i) is increased more conservatively). For further

details and variants of the algorithm, we refer to [23].

Finally, one can compare the results of the tech-

nique to those of non-adaptive algorithms when apply-

ing fixing a budget of d u.i.r. bins a ball may contact

throughout the course of the algorithm. Table 2.1 lists

the respective bounds from [23]. Essentially, one cuts

off the growth of k(i) at d, after which log log n/ log d

additional rounds suffice to place the remaining balls.

For instance, a time complexity of O(log∗ n) can be

achieved for d ∈ log1/O(log∗ n) n. The advantage over a

non-adaptive approach here lies in the fact that a to-

tal message complexity of O(n) is maintained despite
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d ∈ ω(1). Note, however, that for small values of d Ste-

mann’s collision algorithm (which uses d = 2) achieves a

better trade-off between loads and running time using

O(n) messages. It is an open question whether adap-

tiveness allows for a faster variant of the protocol.

4 Lower Bound

In this section, we show that Asym is near-optimal, in

a very strict sense. After presenting some initial defini-

tions and outlining the approach, we proceed to proving

the following result.

Theorem 4.1 For each L ∈ N, there exists t ∈ (1 −
o(1)) log∗ n− log∗ L with the following property. If any

symmetric Algorithm A that sends in total O(n) mes-

sages in expectation terminates within t rounds, then

w.h.p. n1−o(1) bins have load larger than L.

We will briefly present some generalizations of this re-

sult in Section 4.3.

4.1 Preliminaries and Outline

The requirement of “symmetry”, i.e., of unbiased ran-

dom choices, so far has been formulated as property of

the algorithm. However, it can also be interpreted as

a property of the system. Instead of the bins having

unique identifiers, balls identify them by so-called port

numberings.

Definition 4.2 (Port Numberings)

A port numbering is a permutation of {1, . . . , n}. If ball

b addresses bins by its port numbering pb, this means

that it sends each message to some port i ∈ {1, . . . , n},
which then is received by bin pb(i). In turn, b receives

any message bin pb(i) sends at port i.

In other words, port numberings enable balls to distin-

guish bins (which clearly is necessary to e.g. re-contact

a bin and commit to it), but do not guarantee that there

is any correlation between the addresses different balls

use to refer to a given bin.

Problem 4.3 (Symmetric Balls-into-Bins)

An instance of the balls-into-bins problem is symmet-

ric, if balls address bins by u.i.r. port numberings (i.e.,

each pb is drawn u.i.r. from the symmetric group of per-

mutations of {1, . . . , n}). We call an algorithm that can

be implemented under this assumption symmetric.

This is a property that may naturally arise from the

system, as opposed to the notion of symmetry intro-

duced in [1], which imposes a restriction on algorithms’

behavior.

Observation 4.4 If at any point of the execution of

a symmetric algorithm a ball contacts a bin it has not

contacted yet, the contacted bin is drawn uniformly at

random from all bins it has not contacted yet. This also

holds when conditioning on arbitrary other events, pro-

vided that these do not constrain the port numbers of

bins the ball has not contacted so far.

In other words, u.i.r. port numberings “mask” any

asymmetry the algorithm may seek to introduce based

on the information the respective ball has gathered so

far.

In order to show Theorem 4.1, we need to bound

the fraction of the global state balls can access during

the course of an algorithm running for t rounds. As a

ball may systematically contact each bin it contacted

before, this information is a subset of the information

available in its (2t)-neighborhood in the graph where

an edge between a ball and a bin is added in round i if

the ball contacts the bin in round i for the first time.

Definition 4.5 (Balls-into-Bins Graph)

The (bipartite and simple) balls-into-bins graph GA(t)

associated with an execution of the symmetric algo-

rithm A that has run for t ∈ N0 rounds is con-

structed as follows. The node set V := B ∪̇U con-

sists of |B| = |U | = n balls and bins. In each round

i ∈ {1, . . . , t}, each ball b ∈ B adds an edge connect-

ing itself to bin u ∈ U if b contacts u for the first time

in that round. By EA(i) we denote the edges added

in round i and GA(t) = (V,∪ti=1EA(i)) is the graph

containing all edges added until and including round t.

Note that GA(0) = (V, ∅).

In the remainder of the section, we will consider such

graphs only.

We will not examine GA(t) for an arbitrary symmet-

ric algorithm, since it does not sufficiently expose the

symmetry between different executions of A (which are

functions of the random inputs and port numberings).

Instead, we will modify the communication pattern of

A, without affecting its output distribution.

Definition 4.6 (Simulation)

Algorithm A′ simulates Algorithm A, if the distribu-

tions of bin loads and balls’ termination times are iden-

tical for A′ and A.

At the heart of the proof of Theorem 4.1 lies an

induction executed in Lemma 4.15. The claim of the

induction is that for each i ∈ {1, . . . , t}, there is an

algorithm Ai simulating A for which GAi(i) contains

many disjoint copies of a certain highly symmetric sub-

graph; the induction is anchored by setting A0 := A.

For the induction step,
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Fig. 4.1 A ((2), (3), 2)-tree rooted at the bin on top. Note
that the 2-hop neighborhoods of the balls adjacent to the root
are isomorphic. The leaf bins may have edges to balls outside
the tree, which are not depicted.

1. we argue that, w.h.p., for a constant fraction of these

copies, the constituent balls send few messages in

round i (Lemma 4.10),

2. there is an algorithm Ai+1 that simulates A and in

which the aforementioned balls all send the same

number of messages (Lemma 4.11), and

3. this entails that many disjoint copies of a symmet-

ric subgraph of similar structure will be present in

GAi+1(i+ 1) w.h.p. (Lemma 4.13).

The induction will halt after t ∈ (1 − o(1)) log∗ n −
log∗ L steps (Lemma 4.14). The theorem then follows

because (i) if all balls in a copy of the subgraph for

round t commit to a bin, this incurs a large expected

bin load (Lemma 4.16) and (ii) the induction proved

that there are many such copies.

The critical subgraphs have a recursive structure: In

each step of the induction, we piece together copies of

the new subgraphs out of the copies of the preceding

one and bins that have not been contacted by any balls

yet.

Definition 4.7 ((∆U , ∆B , D)-Trees)

Given ∆U = (∆U
1 , . . . ,∆

U
i ), ∆B = (∆B

1 , . . . ,∆
B
i ), and

an Algorithm A, the subgraph of GA(i) induced by the

set of nodes in distance at most 2D from bin R is a

(∆U , ∆B , D)-tree rooted at bin R, if the following con-

ditions are met.

– It is a tree.

– Each ball has degree
∑i
j=1∆

B
j .

– R has degree ∆U
i , with all incident edges in EA(i).

– For each inner non-root bin, there is some round

j ∈ {1, . . . , i} such that its degree is ∆U
j and all its

incident edges are from EA(j).

To simplify the notation, we may simply refer to i-trees

without specifying ∆U , ∆B , or D explicitly when these

parameters are clear from the context.

To get an idea of the structure and how it arises, ob-

serve that a ((2, 3), (3, 4), D)-tree (cf. Figure 4.2) rooted

at R is constructed if the following conditions are met.

1. Each ball in distance d ≤ 2D from R in GA(2) is in

distance at most d from the root of a ((2), (3), D)-

tree (cf. Figure 4.1) in GA(1).

2. Each such ball contacts exactly 4 random bins in

round 2 of A.

3. All corresponding messages are received by previ-

ously isolated bins.

4. Each such isolated bin is contacted by exactly 3 such

balls (1 for leaves), without creating any cycles.

5. No inner bin in the tree is contacted in round 2 by

a random choice of a ball outside the tree.

Note that we examine the (2D)-neighborhood of R

here, since D communication rounds in the balls-into-

bins graph enable to relay information over at most 2D

hops. We remark that we can choose the parameters∆U

and D fairly freely, whereas ∆B is under the control of

the algorithm: ∆B
i is the number of new bins contacted

by a ball in an (i− 1)-tree in round i; we introduce the

simulating Algorithm Ai to ensure uniformity of this

choice.

Azuma’s Inequality. The main body of the proof will

be concerned with establishing that many t-trees will

be constructed. Our inductive approach rests on the

hypothesis that, in each step, many suitable “building

blocks” are available with a large probability. To show

that this is the case, we will leverage the following stan-

dard tail bound.

Theorem 4.8 (Azuma’s Inequality) Let X be a

random variable that is a function of independent ran-

dom variables X1, . . . , XN . Assume that changing the

value of a single Xi for some i ∈ {1, . . . , N} changes

the outcome of X by at most δi ∈ R+. Then, for any

τ ∈ R+
0 , we have

P
[
|X − E[X]| > τ

]
≤ 2e−τ

2/(2
∑N
i=1 δ

2
i ).

In all applications of the theorem, we will have that

E[X] ∈ n1−o(1) and choose τ = E[X]/2. Picking the

underlying random variables X1, . . . , XN as the Θ(n)

random bit strings and port numberings of the balls

and bins, all we need is that changing random bits or

port numbering of a single node will affect X by at most

no(1). To ensure this, we assume w.l.o.g. that bins re-

spond to at most O(t log n) balls in each round.6 Since

balls contact at most O(log n) bins in each round, de-

grees in GA(i) are thus uniformly bounded by ∆ ∈
O(t log n). As we are interested in t ∈ O(log∗ n) rounds

only, this yields that changing the behavior of a single

node influences at most (2∆)2t ∈ no(1) nodes through-

out the course of the algorithm.

6 Since each ball sends O(t logn) messages and the algo-
rithm sends O(n) messages in expectation, induction shows
that w.h.p. no bin is contacted by more than O(t logn) balls.
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Fig. 4.2 A subtree of a ((2, 3), (3, 4), 2)-tree rooted at the bin on top. White bins have been contacted in the first round
only, grey bins in the second. Note that (i) the 2-hop neighborhoods of the balls adjacent to the root are isomorphic, (ii) the
neighborhoods of grey non-leaf bins are isomorphic, and (iii) the neighborhoods of white non-leaf bins are isomorphic. The
further a node from the closest leaf, the larger the hop-distance for which the respective neighborhoods look identical. Again,
leaf nodes may have been contacted by balls outside the tree, which is not depicted.

Observation 4.9 If we change the random bits and

port numbering of a single node, this affects at most

no(1) nodes throughout the execution of any algorithm.

Hence, Theorem 4.8 guarantees that |X − E[X]| ≤
E[X]/2 w.h.p. whenever we can prove that (i) E[X] ∈
n1−o(1) and (ii) changing the behavior of no(1) nodes

affects X by no(1).

4.2 Proof

Throughout this subsection, fix a symmetric algorithm

A satisfying that all balls terminate at the latest in

round t and the algorithm sends in total O(n) mes-

sages in expectation. To anchor the induction men-

tioned earlier, observe that trivially every bin is a 0-tree

and set A0 := A. For brevity, we fix some threshold

Tmin ∈ n/ logo(1/ log
∗ n) n in the following; we will halt

the induction at the maximal index t < log∗ n for which

the lower bound Tt on the number of disjoint i-trees in

GAt(t) (that holds w.h.p.) is still larger than Tmin.

We now perform the first part of the induction step,

showing that, for many trees present in round i, the

constituent balls send few messages.

Lemma 4.10 Assume that GAi(i) contains at least

Ti ≥ Tmin disjoint ((∆U
1 , . . . ,∆

U
i ), (∆B

1 , . . . ,∆
B
i ), t+2)-

trees w.h.p., for some 0 ≤ i < t. Then, w.h.p., for each

of Ω(Ti) such trees it holds that its constituent balls

contact in total O(n/Ti) bins in round i+ 1 of A.

Proof We condition on the event E that indeed Ti dis-

joint trees are present in GAi(i). Denote by Mj , j ∈
{1, . . . , Ti} the random variable counting the number

of messages sent in round i+ 1 by balls in the jth (dis-

joint) i-tree. Since A (and thus also Ai in round i+ 1)

sends in total at mostO(n) messages in expectation and

E occurs w.h.p., the same holds true when conditioning

on E . Thus, we have that
∑Ti
j=1E[Mj ] ∈ O(n). Hence,

at least half of the Mj satisfy that E[Mj ] ∈ O(n/Ti).

Denote by J ⊆ {1, . . . , Ti} the set of indices so that

E[Mj ] ∈ O(n/Ti) and by Xj , j ∈ J , the indicator vari-

able being 1 if Mj ≤ 2E[Mj ]. By Markov’s inequal-

ity, P [Xj = 0] = P [Mj > 2E[Mj ]] ≤ 1/2. Therefore,

X :=
∑
j∈J Xj satisfies that E[X] ≥ |J |/2 ≥ Ti/4. By

Observation 4.9 and Theorem 4.8 (where the underly-

ing random variables are the random bit strings and

port numberings of the nodes), it follows that

P

[
X ≤ Ti

8

]
≤ P

[
|X − E[X]| > E[X]

2

]
∈ e−Ω(T 2

i /(n·n
o(1)))

⊂ n−ω(1).

In other words, w.h.p. it holds that for Ω(Ti) trees we

have that Mj ∈ O(n/Ti), as claimed. ut

Next, in order to assemble (i + 1)-trees, we need

that the balls in the i-trees we use as building blocks

will each contact exactly ∆B
i+1 new bins in rounds i+1.

To this end, we “grant” the algorithm additional bins

it may contact. The modified algorithm simulates A,

i.e., produces an identical load distribution (see Defini-

tion 4.6).

Lemma 4.11 Assume that, for some 0 ≤ i < t, the

following conditions are met.

– Ai simulates A.

– Ai sends the same messages as A in rounds i +

1, . . . , t.

– If i > 0, Ai sends in total O(in2/Ti−1) messages in

expectation in rounds 1, . . . , i, where n ≥ Ti−1 ≥ Ti.
– W.h.p., GAi(i) contains at least Ti ≥ Tmin disjoint

((∆U
1 , . . . ,∆

U
i ), (∆B

1 , . . . ,∆
B
i ), t+ 2)-trees.

Then an Algorithm Ai+1 with the following properties

exists.

(i) Ai+1 simulates A.

(ii) Ai+1 sends the same messages as A in rounds i +

2, . . . , t.

(iii) Ai+1 sends in total O((i+ 1)n2/Ti) messages in ex-

pectation in rounds 1, . . . , i+ 1, and
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(iv) W.h.p., for each of Ω(Ti) disjoint i-trees in GAi(i) =

GAi+1
(i) it holds that each of its balls contacts ex-

actly ∆B
i+1 ∈ O(n/Ti) new bins in round i+ 1.

Proof Lemma 4.10 proves a statement very similar to

(iv), except that the balls of an i-tree in sum send

∆B
i+1 ∈ O(n/Ti) messages in round i + 1. Algorithm

Ai+1 now lets each such ball contact exactly ∆B
i+1 new

bins.7 The algorithm stores what these additional edges

are. Hence, in subsequent rounds, it can ignore them

and perform the same steps as Ai and therefore A. (If

in A a ball later contacts a bin to which an “extra”

edge has been formed, Ai+1 simply marks it as known

to A from that round on.)

These considerations show that Ai+1 satisfies all

statements except possibly Statement (iii). Regarding

this statement, recall thatA sendsO(n) messages in ex-

pectation. Hence, the same holds true for Ai in round

i+ 1 when conditioning on the event that Ti disjoint i-

trees are present inGAi(i). We addedO(n/Ti) messages

for each of the at most n/Ti balls in each of Θ(Ti) trees,

resulting in O(n2/Ti + in2/Ti−1) ⊆ O((i+ 1)n2/Ti) (if

i = 0 the second term is not present) expected messages

in total. ut
We will use Lemma 4.11 to construct Ai+1 out of

Ai. For the time being, assume that the requirements

of the lemma are met and we can construct Ai+1 with

the stated properties, so that we can continue with the

inductive step. Hence, we have a large number of i-trees

we can use as building blocks to “piece together” (i+1)-

trees in round i+1. However, we will also need an ample

supply of bins that are isolated in GAi+1(i) = GAi(i).

Lemma 4.12 Assume that for 0 ≤ i < t, Ai+1

is an algorithm constructed using Lemma 4.11. Then

GAi+1(i) contains 2−O(tn/Ti)n isolated bins w.h.p.

Proof Observe that, since at most O(log n+n/Tmin) =

O(log n) messages are sent per round and node, degrees

in GAi+1(i) are O(i log n) ⊂ o(n). Hence, whenever a

ball contacts a new bin by a random choice, the proba-

bility to contact a specific bin is at most 1/(n− o(n)).

By Statement (iii) of Lemma 4.11, Ai+1 sends in expec-

tation O(tn2/Ti) messages in the first i+ 1 rounds. By

Observation 4.9 and Theorem 4.8, this bound also ap-

plies w.h.p. Conditioning on the event that this bound

is satisfied, the probability that a specific bin remains

isolated until the end of round i is lower bounded by(
1− 2

n

)O(tn2/Ti)

= e−O(tn/Ti).

7 Note that there is no need to execute Ai+1 in a dis-
tributed fashion, as we only require it to prove statements
about A. Hence, Ai+1 can gather all information to make
the appropriate decision; for the purpose of the proof, we
simply ignore the related communication.

By linearity of expectation, another application of The-

orem 4.8, and the union bound, the statement of the

lemma follows. ut

Having the building blocks in place, we need to show

that indeed a lot of (i+1)-trees are assembled in round

i+ 1.

Lemma 4.13 Suppose that for some 0 ≤ i < t, the

preconditions of Lemma 4.11 are met, let Ai+1 be the

algorithm the lemma shows to exist, and let ∆U
i+1 :=

L∆B
i+1 for some natural L ≤ n/Ti. Then, w.h.p.,

GAi+1(i+ 1) contains at least Ti+1 ∈ 2−(n/Ti)
O(t)

n dis-

joint ((∆U
1 , . . . ,∆

U
i+1), (∆B

1 , . . . ,∆
B
i+1), t+ 2)-trees.

Proof Outline

1. Bound the size of (i+ 1)-trees by (n/Ti)
O(t).

2. Show that the probability for such a tree to occur

is no smaller than 2−(n/Ti)
O(t)

. To see this, we add

the tree edges from EAi+1(i + 1) one by one. Lem-

mas 4.12 and 4.13 show that there are sufficiently

many i-trees and isolated bins that each edge con-

nects to a suitable node with probability at least

2−(n/Ti)
O(t)

. Similarly, the probability that no edges

from balls outside the tree connect to tree bins is

2−(n/Ti)
O(t)

.

3. Since by Lemma 4.12 we have 2−(n/Ti)
O(t)

n poten-

tial roots for (i+ 1)-trees at the beginning of round

i+1, this implies that the expected number of (i+1)-

trees is 2−(n/Ti)
O(t)

n. To obtain a lower bound on
the expected number of disjoint trees, we randomly

orient the edge set and observe that all edges of

a tree point to the root with probability at least

2−(n/Ti)
O(t)

(due to the bound on its size). Count-

ing the roots of correctly oriented trees, any two

roots are either in disjoint trees or one is part of the

other’s tree (but not vice versa). Hence, dividing the

expected number of oriented trees by the tree size,

we get a lower bound of Ti+1 ∈ 2−(n/Ti)
O(t)

n on the

expected number of disjoint trees.

4. Since Ti+1 ≥ Tmin, this bound is at least n1−o(1).

Hence the claim follows from Observation 4.9 and

Theorem 4.8. ut

Proof Denote by ni ≤ n/Ti the number of nodes in an

i-tree and by ni+1 the number of nodes in an (i + 1)-

tree. Clearly, the number of children of each bin in an

(i + 1)-tree is at most factor ∆U
i+1 + 1 larger than in

an i-tree. Analogously, ball degrees are at most a factor



10 Christoph Lenzen, Roger Wattenhofer

∆B
i+1 + 1 larger than in an i-tree. Therefore,

ni+1 ≤ (∆U
i+1 + 1)t+2(∆B

i+1 + 1)t+2ni

<
(
L(∆B

i+1 + 1)2
)t+2

ni

∈
(
n

Ti

)O(t)

(4.1)

⊆
(

n

Tmin

)O(log∗ n)

⊆ o(Ti), (4.2)

where in the third inequality we exploit that L ≤ n/Ti
by assumption.

Consider the following procedure, constructing an

(i+ 1)-tree.

– Starting at the root (which can be any bin isolated

at the beginning of round i+ 1), we iterate through

the desired tree topology in a breadth-first-search

fashion. In each step, we determine the actual ball

or bin taking the respective place in the tree. When

following edges from rounds 1, . . . , i, the nodes are

predetermined by the topology of GAi+1
(i). Other-

wise, we choose as follows:

– In case the node is a ball, we choose it to be

adjacent to the root of a not yet involved i-tree.

– In case of a bin, we choose a bin that is isolated

in GAi+1
(i).

– For each edge from EA(i + 1), we require that the

respective ball indeed randomly contacted the re-

spective bin in round i+ 1.

– No nodes from outside the tree contact a bin inside

the tree by a random choice in round i+ 1.

Note that because we always pick balls adjacent to roots

of i-trees when the topology of GAi+1(i) does not de-

termine the choice, this procedure guarantees that the

desired topology is constructed, i.e., any leaf bin of a

j-tree for 1 ≤ j ≤ i is in distance at least 2(t+ 2) from

the root.

We would like to lower bound the probability p that

a bin that is isolated in GAi+1
(i) becomes the root of a

(i+ 1)-tree. To this end, we condition on the following

event E .

– GAi+1(i+1) contains at least Ti disjoint i-trees. This

holds w.h.p. by assumption.

– GAi+1
(i) = GAi(i) contains ne−O(tn/Ti) isolated

bins. This holds w.h.p. by Lemma 4.12.

– In round i+ 1 of Ai+1, in total O(n2/Ti) messages

are sent. Since Ai+1 satisfies this in expectation by

Lemma 4.11 and O(log n+n/Tmin) = O(log n) mes-

sages are sent per ball, Observation 4.9 and Theo-

rem 4.8 show that this holds w.h.p. as well.

As p is lower bounded by P [E ] times the probability

that R becomes the root of an (i + 1)-tree conditional

to E , conditioning on E has negligible effect on the com-

puted expectation.

Now we are ready to review the construction pro-

cess for the (i + 1)-tree laid out above. We add the

edges of the tree that are not already determined by

GAi+1
(i) one by one, in each step multiplying with a

lower bound on the probability to form a connection to

a suitable node. Finally, we multiply with the proba-

bility that no ball from outside the tree contacts a bin

in the tree. Leveraging the computed upper bound on

ni+1 and conditioning on E , this is straightforward.

– If for an edge the parent is a bin, we can choose

from at least

Ti − ni+1

(4.2)
∈ Ω(Ti)

root bins of i-trees. Hence the probability of success

is Ω(Ti/n) ⊂ e−O(tn/Ti) in each such step.

– If for an edge the parent is a ball we can choose from

ne−O(tn/Ti) − ni+1

(4.1)

⊆ ne−O(tn/Ti)

bins, where we use that (n/Ti)
O(t) ⊂ eO(tn/Tmin) ⊆

no(1). Hence, we have a probability of at least

e−O(tn/Ti) to succeed in each such step.

– The probability that an individual random contact

of a ball outside the tree does not connect to a bin

in the tree is lower bounded by 1−ni+1/(n− o(n)).

The probability that none of the w.h.p. at most

O(tn2/Ti) such messages is received by a bin in the

tree is thus at least(
1− 2ni+1

n

)tn2/Ti

∈ 2−O(tni+1n/Ti)

(4.1)

⊆ 2−(n/Ti)
O(t)

.

– Since there are ni+1 − 1 edges in the tree, we can

thus lower bound

p ∈ 2−(n/Ti)
O(t)

(
2−O(tn/Ti)

)ni+1 (4.1)

⊆ 2−(n/Ti)
O(t)

.

We conclude that the expected number of (i+ 1)-trees

in GAi+1(i+1) is lower bounded by pTi ∈ 2−(n/Ti)
O(t)

n.

To lower bound the expected number of disjoint

trees, choose a random orientation of the edge set of

GAi+1(i+1) and count the expected number of trees for

which all edges point to the root. The probability that

this happens for a given tree is 2−ni+1+1. Note that the

nodes of a correctly oriented tree T cannot participate

in any correctly oriented tree whose root lies outside the

node set of T . Thus, the expected number of disjoint
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(i+ 1)-trees is lower bounded by

2−ni+1+1

ni+1
· 2−(n/Ti)

O(t)

n
(4.1)
= 2−(n/Ti)

O(t)

n

⊆ 2−(n/Tmin)
O(log∗ n)

n

⊆ n1−o(1).

(The threshold Tmin ∈ n/ logo(1/ log
∗ n) n was chosen to

guarantee the last inequality.) By Observation 4.9 and

Theorem 4.8, we conclude that the probability that

indeed 2−(n/Ti)
O(t)

n disjoint (i + 1)-trees are present

in GAi+1
(i + 1) is at least 1 − 2e−n

2−o(1)/(n1+o(1)) ⊂
1− 1/nω(1). ut

This lemma is the last piece we need for the induc-

tion step. It remains to determine when the induction

halts, i.e., the maximal value of t such that Tt ≥ Tmin.

Lemma 4.14 Given L, t ∈ N, consider any sequence

(Ti)i∈N0
satisfying that

T0 =
⌊n
L

⌋
and ∀i ∈ N0 : Ti+1 ∈ 2−(n/Ti)

O(t)

n.

Then, there exist Tmin ∈ n/ logo(1/ log
∗ n) and

t ∈ (1− o(1)) log∗ n− log∗ L

such that Tt ≥ Tmin.

Proof Denote by

ka := aa
··
·a }

k ∈ N times

the tetration (tower) with basis 2 ≤ a ∈ 2O(t) (where

the constants in the O-term are the same as in the

bound on Ti+1 above), and by log∗a x the smallest inte-

ger such that (log∗a x)a ≥ x. We bound

n

Tt
≤ 2(n/Tt−1)

log(a)

≤ 2

(
2(n/Tt−2)log a

)log a

= 22
log a(n/Tt−2)log a

= 2a
(n/Tt−2)log a

.

Repeating inductively yields

log

(
n

Tt

)
≤
(
t−1a

)(n/T0)
log a

≤
(
t−1a

)(n/T0)
a

≤ t+log∗a(n/T0)a.

Applying log∗, we get the sufficient condition

log∗
(
t+log∗a(n/T0)a

)
≤ log∗ n− 4, (4.3)

since then

n

Tt
≤ log∗(n/Tt)2

= log∗(log(n/Tt))+12
(4.3)

≤ log∗ n−32

≤ log log n

= (log n)log log logn/ log logn

∈ logo(1/ log
∗ n) n.

Hence, there is a choice of Tmin ∈ n/ logo(1/ log
∗ n) so

that Tt ≥ Tmin.

It remains to show that (4.3) is satisfied for suffi-

ciently large values of t. To this end, first recall that

a ≥ 2 and consider some integer k ≥ 2. We estimate

log∗
(
ka(1 + log a)

)
= 1 + log∗

(
log
(
ka(1 + log a)

))
= 1 + log∗

(
k−1a log a+ log(1 + log a)

)
≤ 1 + log∗

(
k−1a(1 + log a)

)
.

By induction on k, it follows that

log∗
(
ka
)
≤ k − 1 + log∗(a(1 + log a)) ≤ k + log∗ a.

This implies

log∗
(
(t+log∗a(n/T0))a

)
≤ t+ log∗a(n/T0) + log∗ a

≤ t+ log∗(n/T0) + log∗ a

∈ t+ log∗ L+ log∗(O(t)) + 2

⊂ (1 + o(1))t+ log∗ L+O(1).

Hence, the sufficient condition given in Inequality (4.3)

can be satisfied for

t ∈ (1− o(1)) log∗ n− log∗ L. ut

We remark that this interplay between L and t is by

no means arbitrary. If for any r ∈ o(log∗ n) one accepts

a maximum bin load of log(r) n/ log(r+1) n+r+O(1) ⊂
o(log(r) n), where log(r) n denotes the r times iterated

logarithm, Problem 4.3 can be solved in r+O(1) rounds

by a variant of Asym [23].

With the above lemmas in place, we can now stitch

together the induction showing that, for t ∈ (1 −
o(1)) log∗ n− log∗ L, there is an Algorithm At that sim-

ulates A and will produce many (∆U , ∆B , t+ 2)-trees.

Lemma 4.15 There exists t ∈ (1−o(1)) log∗ n−log∗ L

such that for any symmetric algorithm A that sends

O(n) messages in expectation, we can construct an Al-

gorithm At with the following properties.

1. At simulates A.
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2. GAt(t) contains n1−o(1) disjoint (∆U , ∆B , t + 2)-

trees w.h.p., for some vectors ∆U , ∆B ∈ Nt satis-

fying that ∆U = L∆B.

Proof Without loss of generality, suppose that t > 0;

in particular bn/Lc ≥ Tmin. We prove the statement

by induction on rounds i ∈ {0, . . . , t}. The induction

hypothesis is that there is an Algorithm Ai with the

following properties.

(i) Ai simulates A.

(ii) Ai sends the same messages as A in rounds i +

1, . . . , t.

(iii) If i > 0, Ai sends in total O(in2/Ti−1) messages in

expectation in rounds 1, . . . , i.

(iv) For ∆U , ∆B ∈ Ni satisfying that ∆U
j = L∆B

j for all

j ∈ {1, . . . , i}, GAi(i) contains at least Ti disjoint

((∆U
1 , . . . ,∆

U
i ), (∆B

1 , . . . ,∆
B
i ), t+ 2)-trees w.h.p.

(v) Ti ≥ Tmin, n/Ti ≥ L, and for i 6= 0 also Ti ≤ Ti−1.

To anchor the induction at i = 0, set T0 := bn/Lc and

A0 := A. Clearly, this choice satisfies Statements (i),

(ii), (iii), and (v) for index i = 0. Since every bin is a

((), (), t+2)-tree in GA(0), statement (iv) holds as well.

To perform the induction step from 0 ≤ i < t to

i + 1, we apply Lemma 4.11 to construct Ai+1, which

is feasible by the induction hypothesis. According to

the lemma, Statements (i), (ii), and (iii) are satisfied.

By Lemma 4.13 (which also can be applied by the hy-

pothesis), with ∆B
i+1 ∈ O(n/Ti) given by Lemma 4.11

and ∆U
i+1 = L∆B

i+1, we have that GAi+1(i+ 1) contains

2−(n/Ti)
O(t)

disjoint (i+ 1)-trees w.h.p., i.e., Statement

(iv) is true. Since clearly Ti+1 ≤ Ti and therefore also

n/Ti+1 ≥ L, the induction step succeeds provided that

Ti+1 ≥ Tmin. According to Lemma 4.14, this is correct

for all i < t ∈ (1− o(1)) log∗ n− log∗ L.

Evaluating the hypothesis for index t, we obtain

Algorithm At simulating A. By statements (iv) and

(v), GAt(t) contains Tt ≥ Tmin ∈ n1−o(1) disjoint

(∆U , ∆B , t + 2)-trees w.h.p., where ∆U = L∆B ∈ Nt,
as claimed. ut

In other words, there is an algorithm producing

the same output distribution as A that guarantees

that many highly symmetric structures are present in

GAt(t). To bring the main result home, it thus remains

to show that balls presented with the symmetric neigh-

borhoods of (∆U , ∆B , t+2)-trees risk to overload a bin

if they all commit.

Lemma 4.16 For an Algorithm At that terminates

within t rounds, denote by E(i) the expected load of a

bin that is in distance 2 of the root of a (∆U , ∆B , t+2)-

tree in GAt(t) and has been added to the tree in round

i ∈ {1, . . . , t}. If ∆U = L∆B, then
∑t
i=1E(i) = L.

Proof Assume that ball b is within three hops of the

root of a (∆U , ∆B , t+ 2)-tree, but without fixing which

of its 3-hop neighbors is the root bin. Label its (2t)-

neighborhood by the random strings and port number-

ings nodes are given initially. Clearly, this information

determines to which neighbor b commits, as At (up to

the end of round t) can be interpreted as deterministic

algorithm on the labeled graph GAt(t).

Now condition on the event E that this (fixed)

neighborhood partakes in a (∆U , ∆B , t + 2)-tree with

root within 3 hops of b and that b commits by the

end of round t. Note that since the depth of the

(∆U , ∆B , t+2)-tree is 2(t+2) and b is within 3 hops of

the root, the (2t+1)-neighborhood of b obeys the repet-

itive pattern of a t-tree. Now consider i ∈ {1, . . . , t}.
For symmetry reasons, it is equally likely for each bin

u that has been added to the tree in round t and is

within three hops from b to become the root of a t-tree.

Since this holds for any possible (2t)-neighborhood of

b (conditioned on E), the previous statement implies

the following: If u is a bin in distance exactly 2 from

the root of a t-tree that has been added in round i,

the probability that an adjacent ball b commits to it

equals p(i)/∆B
i , where p(i) is the probability that a

ball b within 3 hops of the root commits to one of its

neighboring bins added to the tree in round i.

We have that
∑t
i=1 p(i) = 1, as by assumption the

algorithm terminates within t rounds. By linearity of

expectation,

t∑
i=1

E(i) =

t∑
i=1

∆U
i

p(i)

∆B
i

=

t∑
i=1

Lp(i) = L. ut

We are now in the position to prove our lower bound

on the trade-off between maximum bin load and run-

ning time of symmetric algorithms.

Theorem 4.1 For each L ∈ N, there exists t ∈ (1 −
o(1)) log∗ n− log∗ L with the following property. If any

symmetric Algorithm A that sends in total O(n) mes-

sages in expectation terminates within t rounds, then

w.h.p. n1−o(1) bins have load larger than L.

Proof Set L′ := 2tL. By Lemma 4.15, there is an Al-

gorithm At simulating A which satisfies that GAt(t)

contains n1−o(1) disjoint (∆U , ∆B , t + 2)-trees w.h.p.,

for some ∆U = L′∆B ∈ Nt. Since A terminates by the

end of round t, so does At.
Consider a (∆U , ∆B , t + 2)-tree in GAt(t). Accord-

ing to Lemma 4.16,
∑t
i=1E(i) = L′, where E(i) is the

expected load of a bin in distance 2 from the root that

has been added to the tree in round i. Therefore, there

is an i0 ∈ {1, . . . , t} such that E(i0) ≥ L′/t = 2L. On

the other hand, the maximum possible load of such a
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bin is ∆U
i0
∈ no(1). Denoting by X the random variable

counting the number of balls committing to such a bin,

it must hold that

P [X > L] = P [X > E(i0)/2] ∈ 1/no(1),

since any faster asymptotic decrease of this probability

would lead to the contradiction

2L ≤ E(X)

≤ (1− P [X > L])L+ P [X > L]∆U
i0

∈ L+ o(1).

As the number of disjoint (∆U , ∆B , t + 2)-trees is

n1−o(1) w.h.p., the expected number of bins with load

larger than L is therefore n1−o(1). By Observation 4.9

and Theorem 4.8, we conclude that the number of bins

with load larger than L is also n1−o(1) w.h.p. ut

4.3 Generalizations

There is a number of ways in which Theorem 4.1 can

be strengthened.

Probabilistic termination guarantee: The sym-

metric algorithm in question may terminate within t

rounds with some probability p < 1. The same proof

essentially works for such algorithms as well, where the

statement of Lemma 4.16 is weakened to guaranteeing∑L
i=1E(i) ≥ pL. Accordingly, one chooses L′ = 2tL/p

in the proof of Theorem 4.1, implying that the theo-

rem still applies provided that p ∈ 1/o(log
∗ n)2. In par-

ticular, any symmetric algorithm runs for more than

(1−o(1)) log∗ n−log∗ L rounds with probability 1−o(1)

or with high probability suffers a bin load larger than

L whenever it terminates faster.

Larger degrees: We assumed that balls never con-

tact more than O(log n) bins. This can be relaxed to

no(1/ log
∗ n) contacted bins per round, since Observa-

tion 4.9 still applies for t ∈ O(log∗ n) rounds. This can

be generalized to a degree bound of λn for any con-

stant λ < 1 for algorithms that send O(n) messages in

total w.h.p. [23]. However, this requires a more careful

information theoretic argument, exploiting that balls

sufficiently far from leafs in disjoint trees do not com-

municate, and conditional to this their randomness is

independent also in later rounds; this permits to use

Chernoff’s or Azuma’s bound on the random variables

describing the random bits of the nodes conditional to

participating in i-trees in round i ∈ {1, . . . , t− 1}.
Direct communication between bins: One can gen-

eralize the tree structures to account for bins contact-

ing other bins in the same way as balls (i.e., according

to u.i.r. port numberings). Analogous reasoning shows

that the asymptotic bound Ti ∈ 2−(n/Ti−1)
O(t)

Ti−1
holds in this case as well.

Address forwarding: Consider the following addi-

tional ability of the algorithm/system. Each bins has

a unique identifier initially only known to itself, and

any node learning this identifier can contact the bin

directly in future rounds (irrespective of the port num-

bering). This means that nodes now can obtain infor-

mation from up to distance 22t in GA(t). Arguing about

sufficiently deep t-trees, our reasoning still applies, and

Lemma 4.14 is easily adapted by choosing a ∈ 22
O(t)

.

5 Constant-Time Solutions

Considering Theorems 3.2 and 4.1, two questions come

to mind.

– Does the lower bound still hold if random choices

may be asymmetric, i.e., non-uniform choice distri-

butions are possible?

– What happens if the bound of O(n) on the total

number of messages is relaxed?

In this section, we will discuss these issues.

5.1 An Asymmetric Algorithm

In order to answer the first question, we need to specify

precisely what dropping the assumption of symmetry

means.

Problem 5.1 (Asymmetric Balls-into-Bins)

An instance of the balls-into-bins problem is asymmet-

ric, if balls identify bins by globally unique addresses
1, . . . , n. We call an algorithm solving this problem

asymmetric.

“Asymmetric” here means that biased random choices

are permitted. This is impossible for symmetric algo-

rithms, where the uniformity of port numberings evens

out any non-uniformity in the probability distribution

of contacted port numbers.

We will now show that asymmetric algorithms can

indeed obtain constant bin loads in constant time, at

asymptotically optimal communication costs. Note that

for asymmetric algorithms, we can w.l.o.g. assume that

n is a multiple of some number l ∈ o(n), since we may

opt for ignoring negligible n− lbn/lc bins. We will use

this observation in the following. We start by presenting

a simple algorithm demonstrating the basic idea of our

solution. Fix some l ∈ O(log n) that is a factor of n and

consider Algorithm Aasym(l).

Essentially, we create buckets of non-constant size

l in order to ensure that the load of these buckets is
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Algorithm Aasym(l): Simple solution to Prob-

lem 5.1.
1 Each ball contacts one bin chosen uniformly at

random from the set {il | i ∈ {1, . . . , n/l}}.
2 Bin il, i ∈ {1, . . . , n/l}, assigns up to 3l balls to the

bins (i− 1)l+ 1, . . . , il, such that each bin gets at most
three balls. (That is, it informs the respective balls,
which then commit to the respective bin.)

3 The remaining balls (and the bins) proceed as if
executing the symmetric Algorithm Asym starting in
round 2, however, with k(2) initialized to 4 · 2bαlc for
an appropriately chosen constant α > 0.

slightly better balanced than it would be the case for

individual bins. This enables the algorithm to place

more than a constant fraction of the balls immediately.

Small values of l suffice for this algorithm to terminate

quickly.

Theorem 5.2 Algorithm Aasym(l) solves Problem 5.1

with a maximum bin load of three. It terminates within

log∗ n− log∗ l +O(1) rounds w.h.p.

Proof For i ∈ N0, we denote by Y i the random vari-

able counting the number of bins receiving at least

i messages in Step 1 of the algorithm. We can ap-

ply Chernoff’s bound to these variables [10], showing

that |Y i − E(Y i)| ∈ O
(

log n+
√
E(Y i) log n

)
w.h.p.

Consequently, we have that the number Y i − Y i+1 of

bins receiving exactly i messages differs by at most

O
(

log n+
√

max{E(Y i), E(Y i+1)} log n
)

from its ex-

pectation w.h.p. Moreover, Chernoff’s bound states

that these bins receive at most l+O(
√
l log n+log n) ⊂

O(log n) messages w.h.p., i.e., we need to consider only

values of i ∈ O(log n).

Thus, the number of balls that are not accepted in

the first round is bounded by

n∑
i=3l+1

(i− 3l)
(
Y i − Y i+1

)
∈
O(logn)∑
i=3l+1

(i− 3l)E
(
Y i − Y i+1

)
+O

(√
n log n

)

⊆ n

l

O(logn)∑
i=3l+1

(i− 3l)

(
n

i

)(
l

n

)i(
1− l

n

)n−i
+ o(n)

⊆ n

l

O(logn)∑
i=3l+1

(i− 3l)

(
el

i

)i
+ o(n)

⊆ n

l

∞∑
j=1

jl
(e

3

)(j+2)l

+ o(n)

⊆ O
((e

3

)2l
n

)
⊆
(

3

e

)−(2−o(1))l
n

w.h.p., where in the third step we used the inequality(
n
i

)
≤ (en/i)i.

Thus, w.h.p. at most 2−Ω(l)n balls are not assigned

in the first two steps. Hence, we can deal with the

remaining balls within log∗ n − log∗ l + O(1) rounds

by “kick-starting” Asym with a larger initial value of

k = 4 · 2bαlc for some α ∈ Ω(1) (cf. [23]). We conclude

that Aasym(l) will terminate after log∗ n− log∗ l+O(1)

rounds w.h.p. as claimed. ut

In particular, if we set l := log(r) n, for any r ∈ N,

the algorithm terminates within r+O(1) rounds w.h.p.

We remark that Algorithm Aasym(l) is somewhat

unsatisfactory, since a subset of the bins has to deal

with an expected communication load of l + O(1) ∈
ω(1). In [23], we provide a more involved algorithm for

which this expectation is constant.

5.2 A Symmetric Algorithm Using ω(n) Messages

A constant round complexity can also be achieved by

symmetric algorithms if we permit ω(n) messages in

total. Also here the key idea is to organize bins into

groups of size ω(1), in order to assign a non-constant

fraction of the balls in the first round, and then deal

with the remaining balls by the “kick-started” variant

of Algorithm Asym.

Given an integer l ≤ n/ log n, consider the sim-

ple Algorithm Aω(l), which guarantees that a constant

fraction of the bins will be assigned to coordinators of

Ω(l) bins.

Algorithm Aω(l): Helper routine for solving

Problem 4.3 with a superlinear number of mes-

sages.

1 With probability n/l, a ball contacts a uniformly
random subset of l bins.

2 Each bin receiving at least one message responds to
one of these messages, choosing arbitrarily. The
respective ball is the coordinator of the bin.

Lemma 5.3 When executing Aω(l), bins receive at

most O(log n) messages w.h.p. In total O(n) messages

are sent w.h.p. W.h.p., a constant fraction of the bins

is assigned to coordinators of Ω(l) bins.

Proof Chernoff’s bound shows that in Step 1 w.h.p.

Θ(n/l) balls decide to contact bins, i.e., Θ(n) messages

are sent, and a second application of the bound shows

that bins receive O(log n) messages w.h.p. A third ap-

plication (utilizing that the indicator variables for bins
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being non-empty are negatively associated [10]) shows

that w.h.p. a constant fraction of the bins receives at

least one message. Thus, Θ(n/l) balls coordinate in to-

tal Θ(n) bins, implying that also Θ(n) bins must be

coordinated by balls that are responsible for Ω(l) bins.

ut

Permitting communication exceeding n messages by

more than a constant factor, all but a small fraction of

the balls can find a bin coordinated by a ball responsi-

ble for Ω(l) bins. Most of these balls can be distributed

to the bins such that the maximum load remains con-

stantly bounded; subsequently, AlgorithmAsym finishes

the job.

Algorithm Asym(l): Symmetric algorithm using

ω(n) messages; l0 and C are suitable values, see

Theorem 5.4.
1 Run Algorithm Aω(l). Coordinators inform their bins

about the number of bins they supervise.

2 Each ball contacts l u.i.r. bins. The bins respond with
the number of bins their coordinator supervises (0 if
they have no coordinator).

3 If a ball receives a maximal value of at least l0 ∈ Ω(l),
it responds to a randomly chosen bin sending a value
of at least l0. This message contains a random string
of O(logn) bits to identify the ball.

4 The bins forward the received bit strings to their
coordinators, who assign up to C ∈ O(1) of them to
each of their supervised bins. This information is
forwarded back to the respective balls, which then
commit to the assigned bins.

5 The remaining balls (and the bins) proceed as if
executing the symmetric Algorithm Asym starting in
round 2, however, with k(2) initialized to 4 · 2bαlc for
an appropriately chosen constant α > 0.

Theorem 5.4 For l ∈ O(log n) and suitable choices

l0 ∈ Θ(l), C ∈ Θ(1), Asym(l) sends O(ln) messages

w.h.p. and solves Problem 4.3 with a maximum bin

load of O(1) within log∗ n− log∗ l+O(1) rounds w.h.p.

Balls send and receive O(l) messages in expectation and

O(log n) messages w.h.p.

Proof W.h.p., Algorithm Aω(l) assigns coordinators to

a constant fraction of the bins such that these coordina-

tors control l0 ∈ Ω(l) bins. Thus, the probability that a

ball contacts only bins coordinated by balls supervising

fewer than l0 is smaller than 2−Ω(l); Chernoff’s bound

therefore states that w.h.p. (1− 2−Ω(l))n balls contact

a bin b with `(b) ≥ l0.

Next, these balls contact a bin b from which they

received a value `(b) ≥ l0, where they choose uniformly

at random among all such bins. Note that (for suffi-

ciently large constants) all random bit strings chosen

by the balls are distinct w.h.p., so the coordinators can

identify all balls contacting bins they supervise. The

coordinators assign (at most) constantly many of the

respective balls to each of their bins. Similarly to the

proof of Theorem 5.2, we can see that (if the constant

C was sufficiently large) all but 2−Ω(l)n balls commit

to a bin. Afterwards, we again proceed as in Algorithm

Asym, with k initialized to 4 · 2bαlc for an appropriate

constant α > 0; analogously to Theorem 5.2, we obtain

the claimed running bound. The bounds on message

complexity can be deduced from Chernoff’s bound as

usual.

Again, choosing l = log(r) n for any r ∈ N, Prob-

lem 4.3 can be solved within r + O(1) rounds using

O(n log(r) n) messages w.h.p.

6 Conclusions

We presented tight bounds for the asymptotic perfor-

mance of adaptive balls-into-bins algorithms. Our re-

sults demonstrate that adaptivity enables substantial

improvements on previous parallel balls-into-bins algo-

rithms in terms of the trade-offs between time, maximal

load, and communication.

Given that in a totally anonymous setting it is pos-

sible to achieve a bin load of 2 within log∗ n + O(1)

rounds, we hope that the proposed techniques may

serve to improve future load balancing primitives for

decentralized systems. We therefore believe that it is

of practical interest to determine the optimal choices

of k(i) in Algorithm Asym and quantify the resulting

performance. Another open question is whether asym-

metry and adaptivity can be combined in a simple man-

ner, yielding algorithms that perform well for realistic

values of n.
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