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. Fault-tolerant Self-Stabilizing Clock Generation+Distribution )
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Self-Stabilization masks transient Byzantine faults Byzantine fault-tolerance
End Goal: Node 1 _| | | | | Node 1 | | | | Node 1 | | | |
highly Node 2 | | | | Node 2 | | | | Node 2 | | | |
depenable Node3 _| | || | | > Node 3 | | | | < Node 3 | | | |
architecture Node 4 || [ | | Node 4 | | | ]| | | | Node 4 | | | [ ]| | |
Fallure Stabilization Stable Stable Failure Stabilization Stable Nodes 1-3 are stable, Node 4 Is faulty
+ - - - - -
FATAL ": Clock Generation HEX: Clock Distribution
 [FAmac
wait for 7" local time ready FATAL* \ | Pulse forwarding algorithm for HEX-nodes.
wipe memory e :Q"' once received trigger messages from
canreset /e [P /- 4 | (left and lower left) or (lower left and lower right)
dallaal - - - e pulse or until memorized - EATAL + U A N L LS N/ or (lower right and right) neighbors do
L > f +1propose signals | FATAL” | core () D} | broadcast trigger message; // local clock pulse
A . N\ | N A W A O A sleep for some time within [T'—,T7];
wait until memor!zed FATAL + ' : : :
> n — f propose signals Propose forget previously received trigger messages
FA'I:ALJr /
| |
The quick cycle of the FATAL™ protocol, for n nodes and up {FamaL SO | | |
to f < n/3 Byzantine faults. Nodes continuously broadcast  communication topology local structure of the HEX grid * can tolerate one Byzantine faultin each neighborhood:
whether they are in state propose or not. To estimate the of EATAL* core layer index = distance from core * triggers pulse once both neighbors on previous layer have
progress of time, nodes are equipped with ring oscillators. e | * If one of them failed, neighbors on same layer can fill in
HEX clock distribution grid » self-stabilizing: directed pulse propagation "flushs out"

e quick cycle by itself not self-stabilizing
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» solution: stabilize by (infrequent) forced reset DngStt[o ' " T
« FATAL generates a reset signal Fy P . )
o after stabilization: ] MainAlgState[2] 0 0
 feedback brings reset signal into phase Hiisinalgstatel?) 0 0
=> clock generation is not compromised ST AAVAAAVAAAVAAMAVAAVVAAAAAAMAAMARAAMAAAAVAAVAANWAAA
» FATAL uses randomization for stabilization E:tit:f
-] FATAL+CLK[2]
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"slow pulses” of the stabilization logic (top)
and high-frequency clock pulses of the quick cycle (bottom)
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stabilization time (unit depends on technology)

Proven properties of an n-node FATAL™ system:

e recovery from arbitrarily corrupted system states

e can sustain f < n/3 (persistent) Byzantine faults

e stabilization logic succeeds inO(n)time w.p. 1 — 27"

—>recovery time O(n)in the worst case

e recovery in constant time in typical cases:
o If state of stabilization logic Is only partially inconsistent
e if n — f or more correct nodes are still synchronized

Future Work

e develop novel hardware building blocks to:
* Increase operational frequency
e have cheap self-stabilizing low-level building blocks
e bottom-to-top formal verification of FATAL+HEX compound system
e provide fault-tolerant communication and application logic
 build and test fully functional ASIC prototype

false residual states from transient faults
* local oscillators drive high-frequency "fast clocks"
e resynchronized with every pulse flooded through the grid
e can be leveraged for fast and efficient communication
within a small number of clock cycles
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Modelsim simulation of the stabilization process
of the HEX pulse forwarding mechanism

Proven properties of an L-layer HEX grid:
e assuming link delays in[d—, d "]
and fast clocks of nominal rate r L

» neighbors' clocks differ by O(r(d™ — d=)*L/d™*)ticks 2: ............ ............ ,:,::é:;I\

» each fault increases this by O(rd™) ticks

» stabilization within O(L) HEX pulses — 15
Simulations: colurmn 0 ° layer
» excellent average-case performance: | | | |
» average clock differences much better than worst case pulse propagation wave in a simulated HEX grid
« tolerance of multiple randomly distributed faults with multiple faults (take trigger time 0)
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