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Abstract

We present an adaptive end-host anomaly detector where
a supervised classifier trained as a traffic predictor is used
to control a time-varying detection threshold. Training
and testing it on real traffic traces collected from a num-
ber of end-hosts, we show our detector dominates an ex-
isting fixed threshold detector. This comparison is robust
to the choice of off-the-shelf classifier employed, and to a
variety of performance criteria: the predictor’s error rate,
the reduction in the “threshold gap” and the ability to
detect the simulated threat of incremental worm traffic
added to the traces.

This detector is intended as a part of a distributed worm
detection system that infers system-wide threats from
end-host detections, thereby avoiding the sensing and
resource limitations of conventional centralized systems.
The distributed system places a constraint on this end-
host detector to appear consistent over time and machine
variability.

1 Introduction

Anomaly detection systems have emerged as the last line
of defense in dealing with self-propagating Internet mal-
ware such as worms, viruses, and so on. They address
threats not covered by the existing arsenal of virus scan-
ners and firewalls that can only deal with known attacks
and vulnerabilities. By detecting abnormal behavior they
offer promise of detecting “day-zero” attacks.

In the abstract, anomaly detection resembles density es-
timation of a “normal” state of operation. The density
is partitioned into denser parts, to represent normal be-
havior, and the less dense parts are considered abnormal,
typically separated from normal by setting a threshold.
In practice, an anomaly detector functions by setting a
threshold on a signal, and flagging instances when the
observed signal exceeds the threshold. In this paper, we
are interested in a specific type of anomaly, i.e., a worm
infection, and we assume that the worm, upon infecting
a host increases the outgoing connection rate of the end-

host. Thus, in our case, the anomaly detector thresholds
network traffic levels, specifically, the rate of outgoing
connections.

Threshold setting works for fast spreading worms like
Code Red.1 However, setting thresholds for slow worms
that have connection rates that are much closer to the
normal traffic levels of a system forces a compromise: A
low threshold causes too many false positives, while a
threshold that is too generous allows more false negatives
(i.e., anomalous activity that is not detected). Even if we
could fix a threshold in some reasonable way, the variabil-
ity in traffic exhibited at end hosts helps a worm: When
the out-going normal traffic is low relative to the thresh-
old, it opens up a “gap”; the worm can send out traffic
and remain undetected.

In this paper, we address this by describing an adaptive
anomaly detector. The algorithm we present computes a
dynamic threshold value that adjusts to track the traffic.
Compared to a fixed threshold approach, the adaptive
approach effectively decrease the worm’s “headroom” by
minimizing the gap it can exploit. Predictions of normal
network behavior can be derived from a range of sensored
values (both system activity and traffic statistics) avail-
able at individual machines. Our algorithm has two com-
ponents: first, the distribution of current outgoing traffic
is predicted based on measurements at previous times;
secondly, this prediction is used to adjust the threshold
and hence reduce the gap. Casting this in terms of den-
sities, the predicted density is conditioned in real time
on past feature time-series. Note that the detector built
on top of this predictor is still an anomaly detector since
there is no training data for the abnormal state.

We present the work in this paper within a specific larger
context: we recently demonstrated Distributed Detection
and Inference [4], where weak anomaly detectors on end-
hosts are allowed to collaborate and exchange informa-
tion. Importantly, we showed that such an aggregate de-
tection system outperforms standalone detectors. The

1 The Code Red worm, after infecting a host, initiates upwards of
2000 new connections every minute; this is an order of magni-
tude larger than what might be considered “normal”.
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individual detectors used the same fixed threshold on
the number of outgoing connections from the end-host.
Given the variability among different end-hosts, the uni-
form fixed threshold is not ideal; the work in this paper
is a means to address this shortcoming, i.e., to design
thresholds that are adapted to individual end-hosts and
vary over time. There are many different ways of optimiz-
ing the detector performance; by placing our work in the
context of the aggregate detection framework, we inherit
a specific constraint—that the detectors be optimized to
bound the false postive (FP) rate. This is because the FP
rate of the local detector is the single operational char-
acteristic affecting the aggregate detector. If its FP rate
drifts upward, the aggregate detector will be mis-led, and
the system FP rate will increase. Therefore it is necessary
the adaptive threshold algorithm FP rate be constrained
by bounding it from above. While the results in the paper
are somewhat tied to a specific framework, we point out
general ideas that are of independent interest and provide
a great deal of insight into designing individual anomaly
detectors.

2 Background

Recently, there’s been an increasing amount of interest in
using statistical and machine learning techniques to clas-
sify network traffic [2, 5, 8, 10–12] and to detect network
traffic anomalies [3, 6, 9].

Roughan et al. [12] use traffic classification to identify
the class of service (CoS) of traffic streams and, thus, en-
able the on-the-fly provision of distinct levels of quality
of service (QoS). The authors attempt to classify traffic
streams into four major traffic classes: interactive, bulk
data transfer, streaming, and transactional. Moreover,
a multitude of traffic statistics can be used to classify
flows and these statistics may pertain to either packets,
flows, connections, intra-flow, intra-connection, or multi-
flow characteristics. Roughan et al. investigate the effec-
tiveness of using average packet size, RMS packet size,
and average flow duration to discriminate among flows.
Given these characteristics, simple classification schemes
produced very accurate traffic flow classification. In a
similar approach, Moore and Zuev [11] apply variants of
the näıve Bayes classification scheme to classify flows into
10 distinct application groups. They also search through
the various traffic characteristics to identify those that are
most effective at discriminating among the various traffic
flow classes.

In the realm of anomaly detection, Hellerstein et al. [6]
attempt to model the behavior of a production web server
and to predict threshold violations that are indicative
of abnormal behavior. Lakhina et al. [9] use princi-
pal component analysis to model origin-destination traf-

fic data and split it into normal and abnormal compo-
nents. They subsequently detected traffic anomalies by
identifying periods during which the magnitude of the ab-
normal traffic component exceeded particular magnitude
measures. More recently, Burgess [3] has developed an
anomaly detection scheme that combines two techniques;
first, the use of time-series modeling and analysis to evalu-
ate the statistical significance of anomalies and, secondly,
the qualitative identification of noteworthy events. Co-
stimulation is subsequently used to look into anomalies
that are both statistically significant and noteworthy.

In comparison, we use a classifier to predict the number of
connections initiated within fixed-length intervals. Such
predictions are subsequently used to compute thresholds
for issuing alerts. We are not aware of any work in the
literature that has taken this approach.

3 Data Collection, Training and
Thresholding

We instrumented a number of end-hosts (both laptops
and desktops) to log both network traffic and machine
level activity information. While the network traffic log-
ging was instrumented using the Windump utility [14],
the machine level logging used a homegrown application.
The applications run in the background without any user
interaction. We do not expect the instrumentation to
change the host’s behavior in anyway.

The pair of log files were periodically uploaded to a cen-
tral server. During this process, the logging was turned
off. At the central server, the traffic traces were post-
processed using the open source bro tool to obtain con-
nection records. These are a succinct summary of the
“sessions” that involved the particular end host. In the
case of a TCP connection, a connection record has well
defined semantics; that is, it is a high level description
of a TCP session between two end hosts. In the case
of a UDP connection, where the protocol does not have
rigid semantics, the connection record simply summarizes
a “train of packets” between the two end points. Finally,
the resulting connection records were synchronized with
the much more terse machine activity records and then
inserted into a database for easy lookup. The results in
this paper are based on the connection and machine ac-
tivity record traces collected from 9 different hosts (in-
strumented as a pilot prior to a larger data collection
effort).

3.1 Classifier Training

The connection and machine activity records of each host
were further post-processed to obtain combined records of
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the behavior for each host in successive 50-sec intervals
(the specific window size was not found to be important;
we merely inherit the value from an existing fixed thresh-
old detector that we compare against [1]). Table 1 lists
the features comprising these 50-sec records.

Table 1: Classification Features to predict ct, the current
connection count

Features Name Description

Number of ct−k Total for 1 ≤ k ≤ 10
Network ctcp TCPt−1

Connections cudp UDPt−1

cicmp ICMPt−1

Host

DOW Day of the week
Weekday? Weekday or weekend?

TOD Hour of the day (0..23)
H(dstIP) IP destination Entropy

H(dstPort) Destination port Entropy
Loadmin Minimum CPU load
Loadmax Maximum CPU load
Loadavg Average CPU load
App1 Most used application

App2 2nd most used app.
Apptotal # of applications used

Using the data sets of these features, we trained classifiers
to predict the number of connections, ct, initiated by a
host during 50-sec intervals. This was done as follows.
First, we split the data sets for each host into training
and testing sets of equal size. Secondly, we used the fea-
tures in Table 1 to train näıve Bayes, Bayes network and
decision tree (J48) classifiers to classify each record in the
training set into classes representing the number of con-
nections initiated by the respective host in the current
interval—the predicted class distribution. We used 6 dif-
ferent connection count classes, corresponding to bins of
either 0, 1, 2, 3–5, 6–10, or > 10 connections. Finally,
we tested the accuracy of the resulting classifiers (either
näıve Bayes, Bayes network, or J48) against the testing
set—we define classifier accuracy as the frequency with
which the true connection count ct falls in the predicted
connection count bin. The size of the training set and
the accuracy, expressed as the error rate of each classifier
type for each of the hosts are shown in Table 2.

By using the connection counts in the previous k = 10
time intervals as part of our feature set, we introduce
a time-series flavor to classification-based prediction. In
effect, our classifiers predict the number of connections
initiated, taking into account the connection count his-
tory. All the training and testing of the classifiers was
done using the Weka [13] machine learning toolbox.

3.2 Classification-Based Thresholding

Our adaptive thresholding scheme uses the class proba-
bility distributions obtained using our classifiers as fol-
lows. Figure 2 depicts an idealized continuous probabil-
ity distribution of the predicted number of connections.
The idea behind our thresholding scheme is to set the
threshold such that the cumulative probability distrib-
ution above the threshold amounts to the desired FP
rate. Our approach has two advantages. First, setting
the threshold to achieve the same FP rate, we ensure
that all end-host detectors appear homogeneous to the
aggregate detectors they report to. Secondly, it results
in a threshold that is tied to the predicted number of
connections—the threshold is larger than the most likely
predicted number of connections, separated from it by the
so-called “gap”, as shown in Figure 1. This gap bounds
from below the time-averaged probability of not detecting
incremental anomalous traffic; to be precise:

gap(Ĉt) =
1
T

E

[∫ T

0

P (ct ≤ Ĉt ≤ Ĥt) dt

]
,

where Ĉt is the predicted class distribution, ct is the true
value, Ĥt is the predicted threshold, and T is the duration
of the test or train data. The probability term is set to
zero at times when ct ≥ Ĥt.

Figure 1: An adaptive threshold follows the traffic level trend,

improving accuracy. Since it is not a perfect predictor, gap still

appears as a “shadow” in which worm traffic can hide.

A predictor should minimize this gap in addition to min-
imizing its error rate. A tighter prediction distribution
will result in a threshold that tracks normal traffic closely,
reducing the gap. A predictor that minimizes the chance
of normal traffic falling in the gap maximizes the average
true positive (TP) rate of the detector.

Our classifier output, however, is an assignment of prob-
abilities over classes corresponding to discrete connection
count bins. Thus, our adaptive thresholding scheme com-
putes the desired threshold by interpolating within the
bin that spans the desired threshold.
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Table 2: Predictor and Detector Accuracy compared to Training Set Size
Host 6 7 8 9 10 11 12 13 14

Training Set Size 2779 5414 12175 2390 1831 2374 4378 282 5596

Näıve Bayes
TestSet Accuracy (%) * 34.44 82.63 74.42 28.22 52.45 30.71 67.37 42.15 84.52
(Adaptive Gap)- (Fixed Gap) ** 0.04 -0.63 -0.51 0.04 -0.07 0.03 -0.09 0.13 -0.77
∆ AUC Value * 0.0325 0.2898 0.2554 0.0010 0.1226 0.0222 0.1135 -0.0620 0.2788

Bayes Network
Test Set Accuracy (%) * 54.81 86.15 74.96 53.76 56.54 51.94 73.21 58.74 82.77
∆ AUC Value ** 0.0738 0.2968 0.2601 0.0761 0.1401 0.0594 0.1619 0.0157 0.2873

J48
Test Set Accuracy (%) ** 62.15 87.66 80.39 58.01 57.18 61.37 80.57 61.88 87.97
∆ AUC Value ** 0.1041 0.3071 0.2830 0.0842 0.1413 0.0776 0.1548 0.0228 0.2932

(Spearman rank correlation with Training Set Size: * significant at 5% level, ** at 1% level)

Figure 2: Various aspects of the predicted distribution of the net-

work traffic. To reduce the network resources available to the worm,

the gap between the true normal traffic level and the threshold based

on a average false positive (FP) rate must be reduced.

4 Results

We evaluated the performance of our adaptive thresh-
olding scheme using three metrics: the accuracy of the
classifier used in our adaptive thresholding scheme, the
reduction in the gap due to the adaptive threshold, and
the improvement in detecting simulated worm traffic com-
pared to a fixed thresholding scheme. Since we do not
have a precise characterization of day-zero threats, none
of these ways is definitive, however the consistency among
them suggests that the algorithm is robust.

Classifier Accuracy The performance of our adaptive
thresholding scheme is tied to the probability that the
worm traffic falls beneath the threshold. As Figure 2
shows, the “gap” between the traffic and the thresh-
old also depends on the width of the class distribution.
Clearly a predictor that correctly places all its predicted
mass in the correct bin would also minimize this variance.
However, just minimizing the accuracy of the classifier
may not be sufficient to improve detection performance.
Nevertheless, we observe that a threshold controlled by

a classifier that optimizes accuracy significantly outper-
forms a fixed threshold detector. The accuracy of the
classifiers used in our adaptive thresholding experiments
for each of the hosts are shown in Table 2.

Worm Detection Performance We compare the de-
tection performance of our adaptive thresholding scheme
against that of a fixed thresholding scheme using a worm
model that adds a constant but incremental amount of
traffic in each time period. Our metric for comparison are
the ROC curves obtained for each thresholding scheme;
that is, plots of the FP against the TP rate of detec-
tion. Figure 3 presents prototypical examples of such
performance comparisons. Note the difference in hori-
zontal scales; only the left-most portion of the graph is
shown for the better curves.

We speculate that best ROC curve performance occurs
when the adaptive threshold can take advantage of lulls
in the traffic to lower the threshold and intersect the worm
traffic, as shown in the first ROC plot. However, as shown
in the second plot, there are cases when the worm traffic
is quite predictable, and a fixed threshold (here, equal to
4) set below the worm traffic level picks up all the worm
traffic. The worst performance occurs when the class pre-
dictions are poor, causing the threshold to wander. This
explains the times when the fixed threshold out-performs
the adaptive.

Reducing the “Gap” We summarize our comparison
of the fixed and our adaptive thresholding ROC curves
by considering the Area Under the ROC Curve (AUC) [7]
values for the 27 runs (3 worm traffic rates by 9 hosts)
of each classifier. The AUC is a performance measure
that considers both the prediction probability and the
classifier accuracy to strictly order ROC curves. Table 2
shows the difference in AUC values averaged over the 3
worm traffic rates by which each host traffic trace was
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Figure 3: The three ROC plots shown here are selected from the 27 näıve Bayes cases. As illustrated by the left-most plot, adaptive threshold

detectors typically show better performance. The exceptions are hosts with limited training data, as the other plots show. The middle plot shows

a characteristic “knee” in the fixed threshold detector curve when the threshold equals 4 connections per time interval. The solid lines are the

adaptive threshold curves; the dashed lines, fixed.

tested. Figure 4 presents the median, 50th percentile,
and extrema of the AUC values for the 27 runs using
each of the three classifier types. In all but a few runs,
our adaptive thresholding scheme outperforms the fixed
thresholding scheme.

Figure 4: Barplots depicting the median, 50th percentile, and ex-

trema of the differences between the adaptive and fixed AUC values

when using each of the näıve Bayes, Bayes network, and J48 classifiers

to set the alert thresholds. In almost all cases the difference between

adaptive and fixed AUC values show that the adaptive threshold is

strongly favored.

There is a strong relationship between the ∆-AUC values
and classifier accuracy. This is supported by the Spear-

man’s rank correlation coefficient p-values of 0.002, 0.005
and 0.016 for the näıve Bayes, Bayes network, and J48
classifiers, respectively, and the ∆-AUC values for the re-
spective classifiers.

One may ask, since we have both positive and negative
worm-traffic training examples by which we’ve evaluated
performance, why not just frame the adaptive detector
design as a supervised learning problem? The answer is
that our goal is to design a robust anomaly detector, not
to optimize it against a conjectured worm threat (and not
a very clever one at that). Hence, we consider a more
general evaluation measure, the expected gap between
normal traffic and the threshold. Since FP rates are by
design held constant, a comparison of the expected fixed
threshold gap and the expected adaptive threshold gap
offers a measure of comparison between thresholds based
on fewer assumptions. We’ve made a crude estimate of
this value by numerically integrating the empirical mar-
ginal distribution of the traffic between the threshold and
the observed traffic levels when the traffic level is below
threshold. Table 2 presents this difference in the case of
the näıve Bayes classifier, and shows strong agreement
with the other measures.

5 Conclusions

This paper has shown that, compared to a fixed thresh-
old detector, an adaptive-threshold worm traffic anomaly
detector can reduce the worm’s opportunity to generate
outgoing traffic and yet remain undetected. Various per-
formance measures of the improvement indicate that the
result is robust to the choice (and to some extent the qual-
ity) of an off-the-shelf classifier and to the exact scoring
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method applied.

We recognize that this work is preliminary. This adaptive
detector still leaves some gaps that a worm can exploit.
There are several directions for improvement we are pur-
suing, to both better define a threat model that gives
better semantics for abnormal behavior, and, based on
this, to optimize the threshold algorithm. Here are three
vulnerabilities of the current approach:

1. Worm traffic that exploits the prediction “shadow”: A
worm that is aware of the predictor’s behavior can exploit
its errors. A time-series based predictor will tend to lag
the actual traffic, and take a few time-steps to respond to
the change in traffic level, as shown in Figure 1. Thus a
resourceful worm could transmit, albeit to a more limited
degree, in the “shadows” that follow bursts of normal
traffic.
2. Performance variation with training set size: The re-
sults in Table 2 show a significant relation between longer
training set traces and classifier performance. This ap-
parent learning curve effect might actually be due to a
reduction of the adaptive threshold close to zero during
traffic lulls. We speculate that the longer length traces
are largely due to the stretches of idle time they include.
If further study shows this to be the case it may help to
“share” training data among hosts.
3. Manipulation of the prediction by adversary: If the
worm can game the inputs to the prediction function,
the worm can nudge up the threshold and create a larger
gap for itself. Observed network traffic would then be, in
part, the result of the worm influencing the predictor. We
have addressed this by including several variables in the
predictor function that are derived from the host internal
state, such as user activity, that are not as subject to
worm manipulation. Conceivably the predictor could be
composed of two classifiers that vote on the traffic level,
one driven by network traffic levels, the other by machine
state features.

If this detector were to be used as a component in a dis-
tributed detection system, it is not obvious that the adap-
tive end-host detectors performance gains would make
for proportional improvements in system-wide detection.
Static thresholds may not be as bad as they sound: The
lulls in traffic at one host would not be cöıncident with
those at other hosts, so a worm would always be facing
some tight-gapped detectors. Averaging over detectors
presumably removes some of the worm’s advantage. We
plan to incorporate the adaptive detection in system-level
simulations to explore this question.
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