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Abstract

We present the Caching-Enhanced Scalable Reliable Multi-
cast (CESRM) protocol. CESRM augments the Scalable Re-
liable Multicast (SRM) protocol [4,5] with a caching-based
expedited recovery scheme. CESRM exploits the packet loss
locality occurring in IP multicast transmissions in order to
expeditiously recover from losses in the manner in which re-
cent losses were recovered. Trace-driven simulations show
that CESRM reduces the average recovery latency of SRM
by roughly 50% and, moreover, drastically reduces the over-
head in terms of recovery traffic and control messages.

1. Introduction

Developing scalable reliable multicast protocols is chal-
lenging, due to the requirements to scale to large multi-
cast groups, to cater to dynamic memberships and chang-
ing networks, and to minimize the recovery overhead. A
number of retransmission-based reliable multicast proto-
cols [5, 7–9, 13, 14] have been designed to address these
challenges, beginning with the seminal Scalable Reliable
Multicast (SRM) protocol [4,5]. Such protocols use retrans-
missions in order to recover from losses. In SRM, packet re-
covery is carried out as follows. Upon detecting a loss (e.g.,
by observing a sequence number gap in the stream of pack-
ets received from a given source), a receiver multicasts a
retransmission request for the missing packet. In response,
any member of the reliable multicast group that has the re-
quested packet may retransmit it, using multicast. In order
to minimize the number of requests and replies (i.e., retrans-
missions) that are multicast per loss, SRM employs a sup-
pression mechanism that relies on appropriately delaying
the transmission of requests and replies. This mechanism
causes loss recovery in SRM to be delayed by several net-
work round-trip times.
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All the previously suggested retransmission-based pro-
tocols that we are familiar with (including SRM) treat each
packet loss independently and run the recovery process
anew for each loss. Our work is motivated by the observa-
tion that packet losses in IP multicast transmissions are not
independent [1,6,15–17]. Thus, in the case of SRM, there is
no need to repeat the suppression mechanism for each loss.
Rather, the recovery of later losses can be expedited based
on decisions made in the recovery of earlier ones.

We present the Caching-Enhanced Scalable Reli-
able Multicast (CESRM) protocol, which augments
the functionality of SRM with a caching-based ex-
pedited recovery scheme. CESRM’s expedited recov-
ery scheme operates in parallel with SRM’s recovery
scheme. In this scheme, each receiver caches the re-
questor/replier pairs that carry out the recovery of its recent
losses and uses this information to select an appropri-
ate requestor/replier pair to carry out the expeditious re-
covery of each new loss. We henceforth refer to requestor
and replier of the selected pair as the expeditious re-
questor and expeditious replier, respectively. Thus, upon
detecting a loss, if a receiver considers itself to be the ex-
peditious requestor, then it initiates an expedited recovery
for the given packet by immediately unicasting an expe-
dited request to the expeditious replier. Upon receiving
this request, the expeditious replier immediately multi-
casts the requested packet. Since neither the expedited
request nor the expedited reply is delayed, the packet is re-
covered much faster than with SRM’s recovery scheme.
In some cases, the expedited recovery may fail either due
to packet loss or because the replier to which the expe-
dited request is sent does not have the given packet. In
such cases, CESRM falls back on SRM’s usual recov-
ery scheme.

Like SRM, the basic CESRM protocol is an end-to-end
protocol that does not assume any intelligent network sup-
port beyond IP multicast. Therefore, as with SRM, every
retransmission is multicast to the entire group (multicast
tree), even if only a subset of the receivers lose the packet.
Router-assisted protocols [8,12,13] eliminate this drawback
by modifying the underlying IP multicast protocol to allow
routers to forward requests to designated repliers, and also
to subcast packets, i.e., to send packets only to receivers that



reside on certain subtrees of the IP multicast tree. Adopting
this approach, we also present a router-assisted version of
CESRM that exploits such router capabilities (if present) in
order to achieve localized recovery. The router-assisted ver-
sion of CESRM is more “light-weight” than other router-
assisted protocols in that it requires less functionality in the
underlying routers.

We use trace-driven simulations to evaluate CESRM’s
performance and compare it to that of SRM. In these sim-
ulations, we consider CESRM in its simplest form, where
router-assistance is unavailable. Our results show that
CESRM reduces the average recovery time of SRM by
roughly 50%. Furthermore, CESRM sends fewer packet re-
transmissions: it sends between 30% and 80% the num-
ber of retransmissions sent by SRM. Finally, CESRM sends
roughly as many control packets as SRM, but a large per-
centage of these are unicast whereas all of SRM’s con-
trol packets are multicast. So all in all, CESRM’s overhead
is significantly smaller than that of SRM.

This paper is organized as follows. Section 2 describes
SRM, Section 3 describes CESRM, and Section 4 evalu-
ates CESRM’s performance through trace-driven simula-
tions. Finally, Section 5 concludes the paper.

2. Scalable Reliable Multicast

We now give a brief overview of the Scalable Reli-
able Multicast protocol of Floyd et al. [4, 5]. SRM is an
application-layer protocol implemented atop the IP multi-
cast best-effort communication primitive. SRM consists of
two functional components: i) session message exchange,
and ii) packet loss recovery.

The hosts that are members of the multicast group ex-
change session messages so as to estimate their distance to
each other — inter-host distances are quantified by the one-
way transmission latency from one host to another. More-
over, by include information about which packets have been
received from each transmission source, session messages
also assist in detecting packet loss. Since this aspect of SRM
is not central to this paper, we skip its detailed description
(for further details see [4, 5, 10, 11]).

SRM’s packet loss recovery scheme is receiver-based. A
receiver detects the loss of a packet in one of two ways: (1)
by noticing a gap in the sequence numbers in the stream of
packets it receives from a given source; or (2) by learning
from a session message that another receiver has received
the missing packet. Upon detecting the loss of a packet, the
receiver engages in the loss recovery process. The recov-
ery process is logically divided into asynchronous rounds.
A round involves the transmission of a repair request (re-
questing the packet’s retransmission) by a receiver that lost
the packet, and the transmission of a repair reply (the re-
transmission of the packet) by either the source or another

receiver that has received the packet. Since a recovery round
may fail to recover the packet due to additional losses, sev-
eral recovery rounds may be required in order to recover a
given packet.

All requests and replies are sent using IP multicast. SRM
uses a suppression mechanism in order to minimize the
number of requests and replies transmitted during the re-
covery of a given loss. This mechanism is based on delay-
ing the transmission of repair requests and replies, and sup-
pressing their transmission if the same requests or replies
are received from other hosts. The delay period is randomly
chosen within a time interval that depends on that host’s
distance from the source of the lost packet (for requests) or
from the requestor (for replies). We proceed by describing
these mechanisms in more detail.

2.1. Scheduling repair requests

SRM uses two suppression techniques: deterministic and
probabilistic suppression. Deterministic suppression dic-
tates that the transmission time of a request be sched-
uled proportionately to the distance of the requestor to the
source. Thus, hosts that are closer to the source have a bet-
ter chance of suppressing their descendants in the under-
lying IP multicast tree. Probabilistic suppression dictates
that the transmission time of a request be scheduled ran-
domly within a particular time interval. Thus, hosts that
are equidistant from the source probabilistically suppress
each other. SRM’s request scheduling parameters C1, C2 ∈
R

≥0 control how aggressively deterministic and probabilis-
tic suppression, respectively, are used.

Upon detecting the loss of a packet p, a host h sched-
ules a request by setting a request timeout timer to a value
uniformly chosen within the interval [C1d̂hs, (C1+C2)d̂hs],
where d̂hs is h’s distance estimate to the source s of p. Upon
the expiration of the request timeout timer for p, h multi-
casts a repair request for p, and also schedules a new re-
quest for p for the next recovery round. The new request
timeout timer is now set to a uniformly chosen value in the
interval 2k[C1d̂hs, (C1 + C2)d̂hs], where k is the number
of times that a request for p has already been scheduled. If
h receives a request for packet p while h has a scheduled
request for p, then the scheduled request for p is resched-
uled to the next recovery round, by resetting the request
timeout timer to a uniformly chosen value in the interval
2k[C1d̂hs, (C1 + C2)d̂hs]. Note that whenever the request
is rescheduled, the interval is doubled (since k increases).

Requests should only be backed off once per recovery
round, even when multiple requests are sent in the same re-
covery round. To this end, SRM designates a back-off ab-
stinence period, which is a time interval during which the
request’s timeout is not backed off again. Once h resched-
ules a request for p, following either the transmission or the



reception of another request for p, it also sets a back-off ab-
stinence timeout to the value 2kC3d̂hs, where k is the back-
off used to schedule the request, and C3 ∈ R

≥0 is a param-
eter. Requests for p received prior to the expiration of the
back-off abstinence timeout for p are discarded; they are
considered to pertain to the prior recovery round. Thus, the
back-off abstinence period prevents the request from being
backed-off multiple times during the same recovery round.

As an aside, we note that our designation of the absti-
nence period departs slightly from the original description
of SRM [4, 5], which sets the back-off abstinence timeout
to half the time to the next request.1 We have replaced the
half with a parameter, in order to allow more tuning free-
dom.

2.2. Scheduling repair replies

In scheduling replies, deterministic and probabilis-
tic suppression operate in a similar fashion. First, replies
are scheduled proportionately to the reply scheduling pa-
rameter D1 ∈ R

≥0 and the distance of the replier to
the requestor. Secondly, replies are scheduled within re-
ply intervals whose width is proportional to the reply
scheduling parameter D2 ∈ R

≥0 and the distance be-
tween the replier and the requestor.

Let h be a host that has either sent or received the
packet p and receives a repair request for p from a host
h′. Upon receiving this repair request for p, h schedules
the transmission of a repair reply for p, by setting a reply
timeout timer to a uniformly chosen value in the interval
[D1d̂hh′ , (D1 + D2)d̂hh′ ], where d̂hh′ is h’s distance esti-
mate to h′. Upon the expiration of this reply timeout for p,
h multicasts a repair reply for p. If a reply for the packet p
is received while a scheduled reply for p is awaiting trans-
mission, then the scheduled reply for p is canceled.

Once h either receives or sends a repair reply for p, it ob-
serves a reply abstinence period. During this period, h con-
siders a reply for p to be pending and, thus, refrains from
scheduling additional replies for p; requests for p that are
received during this period are simply discarded. The ex-
tent of the reply abstinence period for p is dictated by a re-
ply abstinence timeout. Upon either receiving or sending a
repair reply for p, h sets the reply abstinence timeout for
p to the value D3d̂hh′ , where D3 ∈ R

≥0 is SRM’s reply
abstinence parameter. Reply abstinence periods prevent du-
plicate requests pertaining to a given recovery round for p
from generating duplicate replies.

The use of these suppression techniques introduces a
performance trade-off. While choosing large values for the

1 SRM [4, 5] also suggests an alternative approach for setting the absti-
nence period using message annotations, which we do not consider in
this paper.

scheduling parameters C1, C2, D1, and D2 affords more ef-
fective suppression, it also prolongs the packet recovery and
results in larger recovery latencies.

3. Caching-Enhanced Scalable Reliable Mul-
ticast (CESRM)

In addition to SRM’s recovery scheme, CESRM imple-
ments a caching-based expedited recovery scheme. In this
scheme, members of the reliable multicast group attempt
to expeditiously recover losses based on how recent losses
were recovered. Hosts cache the requestor/replier pairs in-
volved in the recovery of recent losses from each source.
Upon detecting a loss, an expedited requestor/replier pair
for this loss is chosen according to the cached information
pertaining to the lost message’s source. The expeditious re-
questor unicasts a request to the expeditious replier, which
in turn, multicasts the packet. Expedited recoveries are not
delayed for the purpose of suppression. Thus, when suc-
cessfully recovering a packet, they result in minimal recov-
ery latency, and suppress the requests and replies scheduled
by SRM’s usual recovery scheme. However, expedited re-
coveries may fail either due to further packet losses or be-
cause the replier to which the expedited request is sent has
shared the loss and is thus incapable of retransmitting the
packet. In such cases, CESRM falls back on SRM’s usual
recovery scheme.

We now proceed to describe in detail how CESRM
works. Section 3.1 explains how the cache is managed. In
Section 3.2, we explain how the cached information is used
for expedited recovery. Section 3.3 presents an improve-
ment to CESRM that exploits intelligent router capabili-
ties (if present). Finally, in Section 3.4, we provide a simple
analysis of CESRM’s expedited and non-expedited recov-
ery delays.

3.1. Caching Requestor/Replier Pairs: Basic Ap-
proach

Each host maintains a collection of per-source re-
questor/replier caches, one for each source from which
it receives packets. For simplicity of the exposition, we
present the protocol for a single source IP multicast trans-
mission, where each receiver h maintains a single cache
for the source s. The cache contains the requestor/replier
pairs that carried out the recovery of the most recent pack-
ets from s that were lost by h. More precisely, the cache
consists of tuples of the form 〈i, q, d̂qs, r, d̂rq〉, where i is
a packet sequence number, q is a requestor, d̂qs is q’s dis-
tance estimate to s, r is a replier, and d̂rq is r’s distance
estimate to q.

When a packet is requested and/or retransmitted multiple
times, multiple plausible requestor/replier pairs may arise.



In such a case, h caches only the optimal requestor/replier
pair for the given packet. We consider a requestor/replier
pair to be optimal when it affords the minimum recovery
delay; in our work, we define a packet’s recovery delay to
be the sum of the distance estimate from the requestor to
the source and the round-trip distance from the requestor
to the replier, i.e., d̂qs + 2d̂rq . This definition gives prefer-
ence to requestors that are closer to the source and to repli-
ers that can provide the smallest recovery latency.

Optimal requestor/replier pairs are ascertained by simply
annotating request and reply packets with the appropriate
information. In particular, each request packet is annotated
by the requestor and its distance to the source of the packet
being requested, e.g., 〈q, d̂qs〉. Each reply packet is anno-
tated with the requestor that instigated the reply, this re-
questor’s distance to the source, the replier, and this replier’s
distance to the requestor, e.g., 〈q, d̂qs, r, d̂rq〉.

Host h updates the contents of its cache upon receiv-
ing replies. When h receives a reply for a packet i, then
if h did not suffer the loss of packet i, the reply is dis-
carded. The reply is also discarded if the cache is full and
packet i is less recent than all the packets for which re-
questor/replier pairs are already cached. Otherwise, h pro-
cesses the reply and updates the cache contents as follows:
If no requestor/replier tuple pertaining to packet i is al-
ready cached, then the recovery tuple annotating the reply
is cached; if the cache is full, it replaces the tuple pertain-
ing to the least recent packet. If a requestor/replier tuple for
packet i is already cached, then the cached tuple is updated
to reflect the optimal requestor/replier pair.

3.2. Expedited Recoveries

Upon detecting the loss of packet i, a host h schedules a
request for packet i using the usual SRM recovery mecha-
nism. In addition, h consults the optimal requestor/replier
cache for the source s in order to determine whether it
should also act as the expeditious requestor.

The host h examines the optimal requestor/replier pairs it
has cached and determines which such pair is the most ap-
propriate to carry out an expedited recovery for packet i.
Several policies may be used for selecting this expeditious
requestor/replier pair. The most recent loss policy is to se-
lect the optimal requestor/replier pair that carried out the re-
covery of the most recent packet that h lost and has since re-
covered. The most frequent loss policy is the one in which
the expeditious requestor/replier pair is chosen to be the pair
that appears most frequently in the optimal requestor/replier
pair cache. Other more sophisticated policies for selecting
the expeditious requestor/replier pair may indeed be more
effective than either of these policies.

Suppose that 〈q, r〉 is the expeditious recovery pair dic-
tated by the expedition requestor/replier policy used by h.

If h is the requestor of the expedited recovery pair 〈q, r〉,
i.e., h = q, then h schedules the transmission of an expe-
dited request for the packet i for REORDER-DELAY time
units in the future, where REORDER-DELAY is a CESRM
parameter. This delay serves to prevent the transmission of
extraneous expedited requests when packets are temporar-
ily presumed missing due to packet reordering. If packet i is
received prior to the transmission time of the expedited re-
quest, then h cancels its expedited request for packet i. Oth-
erwise, h unicasts the expedited request to the expeditious
replier r.

Upon receiving this expedited request for packet i, the
expeditious replier r immediately multicasts an expedited
reply for packet i, provided that it has previously either sent
or received packet i and a reply for packet i is neither sched-
uled nor pending.

3.3. Router-Assisted Local Recovery

Up to this point, our presentation of CESRM has as-
sumed no network support beyond a best-effort multicast
service like IP multicast. While this approach makes the
protocol more readily deployable, it has a disadvantage
in terms of performance: the retransmission of every lost
packet is multicast to the entire multicast group. This draw-
back is even more significant in SRM, where packet re-
quests are also multicast to the entire group.

In order to remedy this shortcoming (of SRM), several
router-assisted reliable multicast protocols have recently
been proposed [8, 12, 13]. Such protocols assume that the
underlying IP multicast routers have enhanced functional-
ities that allow them to forward packet requests to desig-
nated repliers and to subcast packet retransmissions to a
subtree of the IP multicast tree. Such protocols, e.g., the
Light-weight Multicast Services (LMS) protocol [13], ap-
point designated hosts (called repliers) to reply to requests
originating within particular subtrees of the underlying IP
multicast tree. In the case of LMS, for example, each router
in the multicast tree maintains a replier link onto which it
forwards requests that originate within the subtree rooted at
that router. Thus, every request originating in a certain sub-
tree is forwarded by the router at the root of that subtree to
that subtree’s designated replier. Subsequently, the replies
to such requests are unicast to the aforementioned routers,
which in turn subcast the replies downstream.

In effect, router-assisted reliable multicast protocols use
the enhanced IP multicast router functionality to introduce
a recovery hierarchy. This hierarchy is very effective in
achieving localized recovery and, thus, reducing recovery
exposure. However, it may not fare well in highly dynamic
environments where reliable multicast group members may
either leave or crash unexpectedly. In such cases, the replier
state maintained by the IP multicast routers becomes stale



and must be updated. Such updates may prolong and even
inhibit packet loss recovery.

CESRM’s caching-based expedited recovery scheme, as
presented above, effectively establishes a similar hierarchy
of repliers. However, instead of pre-designating repliers and
making them known to the routers, CESRM determines the
appropriate repliers on-the-fly according to the cached in-
formation. Thus, CESRM’s choice of repliers evolves to
match changes in the group membership resulting from
member joins, leaves, and crashes. Although this evolution
may take time, packets continue to be recovered in the in-
terim, because when expedited recoveries fail, losses are
still recovered by SRM’s recovery scheme. It is important
to note that the expeditious requestor/replier selection pol-
icy affects how fast CESRM’s expedited recovery scheme
adapts to membership and topology changes.

Using minimal additional IP multicast router functional-
ity, CESRM’s expedited recovery scheme can also achieve
localized recovery. In particular, routers need only be aug-
mented to: i) annotate reply packets with their turning point
routers, i.e., the routers at which reply packets are received
from and forwarded on downstream links with respect to the
source of the original packet, and ii) subcast expedited re-
ply packets downstream. This functionality is nearly iden-
tical to that of LMS [12, 13], with the exception that LMS
requires routers to maintain replier state.

CESRM may exploit such extra router functionality as
follows: Recovery tuples may be augmented to include the
turning point router involved in the recoveries of the re-
spective packets. By annotating each expedited request with
the pertinent recovery tuple and the pertinent turning point
router, the resulting expedited reply may be unicast to the
particular turning point router, which may subsequently
subcast the reply downstream. Since IP multicast routers
need not maintain replier state, our scheme offers lighter-
weight local recovery than LMS. Moreover, by employing
SRM as a fall-back recovery scheme, CESRM remains ro-
bust in highly dynamic and faulty environments, whereas
LMS does not.

3.4. Expedited vs. Non-Expedited Recoveries

We now compare the recovery latency of CESRM’s ex-
pedited and non-expedited recovery schemes. In this sec-
tion, we let d and RTT = 2d be upper bounds on the one-
way and round-trip distance (delay) between any two mem-
bers of the reliable multicast group.

We first consider successful first-round non-expedited
recoveries. Since requests and replies are scheduled uni-
formly within the request and reply intervals, a rough up-
per bound on the average latency of a successful first-round
non-expedited recovery is given by:

(C1 + 1/2C2)d + d + (D1 + 1/2D2)d + d. (1)

This delay is exhibited by the scenario in which both the re-
quest and reply are scheduled for transmission at the mid-
point of the request and reply scheduling intervals, respec-
tively. This is a rough upper bound for two reasons. First,
d is an upper bound on the inter-host transmission laten-
cies, and some of the latencies may be smaller. Second,
since multiple requests may be scheduled per loss, the re-
quest that instigates a packet’s recovery is either sent or re-
ceived with higher probability in the first half of the request
interval. This is similarly true for replies.

In contrast, an upper bound on the recovery latency of a
successful expedited recovery of CESRM is given by:

REORDER-DELAY+2d = REORDER-DELAY+RTT (2)

Given the typical SRM scheduling parameter values used
by Floyd et al. [4, 5] of C1 = C2 = 2 and D1 =
D2 = 1, the rough upper bound on the average recov-
ery latency of a successful first-round non-expedited recov-
ery of CESRM is 6.5 d, or 3.25 RTT . Assuming that the
delay REORDER-DELAY is negligible compared to the la-
tency, i.e., REORDER-DELAY ¿ RTT , CESRM’s recov-
ery latency for packets recovered by expedited rather than
first-round non-expedited recoveries is reduced by roughly
2.25 RTT .

In the next section, we study the average recovery la-
tencies afforded by both SRM and CESRM in simulations
based on real IP multicast transmissions. We show that the
average recovery time of first-round recoveries in SRM in-
deed varies between 1.5 RTT and 3.25 RTT; this corre-
sponds to the average recovery latency of CESRM’s non-
expedited first-round recoveries. Moreover, the average dif-
ference in latency between expedited and non-expedited
first-round recoveries in CESRM varies between 1 RTT and
2.5 RTT .

4. Evaluation Through Trace-Driven Simula-
tions

We evaluate the performance of SRM and CESRM us-
ing trace-driven simulations in NS2 [3]. Our simulations
reenact the 14 IP multicast traces of Yajnik et al. [15] and,
thus, capture the packet loss locality exhibited in the actual
IP multicast transmissions. We contrast the performance of
CESRM against that of SRM. We consider CESRM in its
simplest form, where router-assistance is unavailable.

We begin this section by describing the 14 IP multicast
transmission traces of Yajnik et al. [15] and the manner
in which we estimate the links on which each loss occurs.
Next, we describe the simulation setup. Finally, we present
our simulation results.



Table 1 IP Multicast traces of Yajnik et al. [15].
Source # of Tree Period Duration # of # of
& Date Rcvrs Depth (msec) (hr:min:sec) Pkts Losses

1 RFV960419 12 6 80 1:00:00 45001 24086
2 RFV960508 10 5 40 1:39:19 148970 55987
3 UCB960424 15 7 40 1:02:29 93734 33506
4 WRN950919 8 4 80 0:23:31 17637 10276
5 WRN951030 10 4 80 1:16:02 57030 15879
6 WRN951101 9 5 80 0:55:40 41751 18911
7 WRN951113 12 5 80 1:01:55 46443 29686
8 WRN951114 10 4 80 0:51:23 38539 11803
9 WRN951128 9 4 80 0:59:56 44956 33040

10 WRN951204 11 5 80 1:00:32 45404 16814
11 WRN951211 11 4 80 1:36:42 72519 44649
12 WRN951214 7 4 80 0:51:38 38724 20872
13 WRN951216 8 3 80 1:06:56 50202 37833
14 WRN951218 8 3 80 1:33:20 69994 43578

4.1. IP Multicast Traces

We use 14 IP multicast transmission traces of Ya-
jnik et al. [15]. These traces involve single-source IP
multicast transmissions in which packets are transmit-
ted from the source at a constant rate. These packets
are transmitted using IP multicast to a subset of 17 re-
search community hosts spread out across the US and
Europe.

The data collected from each of the IP multicast trans-
missions involves per-receiver sequences, each of which
indicates which packets were received and the order in
which they were received by the respective receiver. These
per-receiver sequences do not include the packet reception
times. Yajnik et al. also provide the IP multicast tree topol-
ogy for each of the IP multicast transmissions. This topol-
ogy is presumed to be static (fixed) throughout the duration
of the IP multicast transmission. Table 1 lists the source,
number of receivers, IP multicast tree depth, packet trans-
mission period, transmission duration, the number of pack-
ets transmitted, and the number of losses suffered for each
of the 14 traces. For more information regarding the traces,
see [15].

Consider an IP multicast transmission trace. Let k ∈ N

be the finite number of packets transmitted during the trace
and R be the finite set of receivers of the IP multicast
transmission. For I = {1, . . . , k} and i ∈ I , we refer to
the i-th packet transmitted during the IP multicast trans-
mission as packet i. As is traditionally done in the lit-
erature [1, 6, 15, 16], we represent the trace data by per-
receiver binary sequences of length k. We define a map-
ping loss : R → (I → {0, 1}), such that, for i ∈ I and
r ∈ R, loss(r)(i) = 1, if receiver r suffered the loss of
packet i, and loss(r)(i) = 0, otherwise.

We represent the IP multicast tree, along which the k
packets of the IP multicast transmission are disseminated,
as a tuple T = 〈N, s, L〉 consisting of a set of nodes N , a
root node s ∈ N , and a set of directed edges L ⊆ N × N .
The elements N , s, and L of T are further constrained to
form a directed tree rooted at s in which all edges in L are
directed away from s, there is a unique simple path from

s to each other node in N , and the elements of R are ex-
actly the leaf nodes of the tree (and, consequently, R ⊆ N ).
The root node s corresponds to the source of the IP multi-
cast transmission, the internal nodes of T correspond to the
IP multicast capable routers of the network that are used to
disseminate the packets transmitted by s, and the leaf nodes
of T correspond to the receivers of the IP multicast trans-
mission. The edges of T correspond to the communication
links that connect the source, routers, and receivers of the
IP multicast transmission. We henceforth also refer to the
edges of T as links.

4.2. Estimating the Links Responsible for the IP
Multicast Transmission Losses

We estimate the links responsible for each loss suffered
during the IP multicast transmission based on the IP mul-
ticast tree topology and the loss pattern observed in the IP
multicast transmission trace for the respective packet. Each
loss pattern observed in a trace may be the result of losses
on either a single or a combination of IP multicast tree links.
For example, the loss pattern involving all receivers may re-
sult from either a single loss on the link leaving the source,
losses on each of the links leading to the receivers, or from a
number of other combinations. We select a particular com-
bination of links to represent each instance of a loss pattern
based on the probability that a packet is dropped on exactly
the links in each combination. We estimate this probability
by first estimating the probability that a packet is dropped
on each link of the IP multicast tree, i.e., the link loss rates.

Letting lnn′ ∈ L be the link that connects the nodes n
and n′, where n is the parent of n′, we define p(lnn′) to
be the probability that a packet is dropped along lnn′ given
that the packet is received by n. The probabilities p(lnn′),
for lnn′ ∈ L, can be estimated either by the method of Ya-
jnik et al. [15] or the maximum-likelihood estimator method
of Cáceres et al. [2]. For the traces used in this paper, we
found that both methods yield very similar link loss proba-
bility estimates. The simulations below are based on the es-
timates obtained using the former method.

Given the IP multicast tree, it is straightforward to de-
duce the set of link combinations that result in any loss pat-
tern observed in the trace. We assume that the probability
of a packet being dropped on a link is independent of it be-
ing dropped on any other link. We compute the probability
of occurrence of a particular link combination as the prod-
uct of the probabilities of a packet being dropped on the
links in the combination and successfully forwarded on the
links leading to the links in the combination.

More precisely, consider an observed loss pattern x. Let
Cx be the set of all possible link combinations resulting in
x, Lc be the set of links in a combination c ∈ Cx, and
Uc be the set of links that are neither in Lc nor down-



stream of any of the links in Lc. Presuming that the prob-
abilities of loss along the different links of the IP multi-
cast tree are mutually independent, the probability of oc-
currence of the link combination c is estimated by p(c) =∏

l∈Lc

p(l) ·
∏

l′∈Uc

(1 − p(l′)). Thus, the probability that
the observed loss pattern x results from the link combina-
tion c as opposed to the other combinations in Cx is given
by pCx

(c) = p(c)/
∑

c′∈Cx

p(c′).
We select the link loss combination to represent an in-

stance of the loss pattern x in the trace based on the prob-
abilities of occurrence of all link loss combinations result-
ing in x. For 13 of the 14 traces we consider, more than 90%
of the link combinations selected to represent the losses oc-
cur with probabilities exceeding 95%, often very close to
100%. For the remaining trace, 85% of the link combina-
tions selected to represent the losses occur with probabili-
ties that exceed 98%. Thus, our estimates of the links re-
sponsible for the losses suffered in each trace are predomi-
nantly accurate.

Based on the link loss combinations selected to represent
each loss suffered in the trace, we define the link trace rep-
resentation to be the mapping link : R → (I → L ∪ ⊥),
such that, for r ∈ R and i ∈ I , link(r)(i) is an estimate of
the link responsible for the loss of packet i by receiver r, if
receiver r suffered the loss of packet i, and link(r)(i) =⊥,
if receiver r did not suffer the loss of packet i.

4.3. Simulation Setup

In our simulations, we use the most recent loss expe-
dited requestor/replier selection policy. According to this
policy, the expedited requestor/replier pair is the optimal
requestor/replier pair of the most recent loss that has al-
ready been recovered. In [10], we analyzed the traces of
Yajnik et al. [15] and found that the most recent loss pol-
icy outperforms the most frequent loss policy. This is be-
cause, more often than not, the location of a loss is corre-
lated to a higher degree with the location of the most recent
loss than with the locations of less recent losses. An addi-
tional advantage of the most recent loss policy is the sim-
plicity of its implementation; receivers need only cache a
single optimal requestor/replier pair.

For a given trace, our simulation involves setting up the
IP multicast tree T and disseminating k packets from the
root of the tree to the tree’s leaf nodes. Recall that the IP
multicast tree is presumed to remain fixed throughout the
duration of the IP multicast transmission.

Since the IP multicast trace information of Ya-
jnik et al. [15] contains no link delay or bandwidth infor-
mation, we had to synthetically choose values for these pa-
rameters. We chose the bandwidth of each link in T to
be 1.5 Mbps. We assume that payload carrying pack-
ets, i.e., original packets and retransmissions, are 1 KB in

size, and control packets (i.e., packet retransmission re-
quests and session messages) are 0 KB. Since the IP multi-
cast transmission period of any of the IP multicast transmis-
sion traces of Yajnik et al. [15] is either 40 ms or 80 ms, the
bandwidth required for the IP multicast transmissions is ei-
ther 200 Kbps or 400 Kbps. Thus, our choice of 1.5 Mbps
for the link bandwidth is sufficient to carry the IP multi-
cast transmission data.

We ran our simulations with three different link delays:
10 ms, 20 ms, and 30 ms, where in each simulation all the
links had the same delay. The results with the three dif-
ferent choices were very similar. We therefore include here
only the results obtained with a link delay of 20 ms. Since
the depth of the IP multicast tree involved in each of the IP
multicast traces of Yajnik et al. [15] ranges from 3 to 7, the
RTTs between the source and receivers in each trace ranges
from 60 ms to 420 ms. The range of these inter-host RTT
values is reasonable for hosts spread out across the US and
Europe.

The simulation of SRM is carried out with the schedul-
ing parameter settings C1, C2 = 2, C3 = 1.5, D1, D2 = 1,
and D3 = 1.5. These correspond to the typical SRM param-
eter settings used by Floyd et al. [4,5]. Since packets are not
reordered in our simulations, we use a REORDER-DELAY
of 0 sec.

Session packets are transmitted with a period of 1 sec. In
order to focus our attention on the performance of CESRM
packet loss recovery scheme, rather than that of the inter-
host distance estimation scheme through session packet ex-
change, we presume that the session packet exchange is
lossless. Since none of the session packets are dropped
throughout our simulation, the inter-host distances are accu-
rately and promptly calculated. Moreover, the IP multicast
transmission is delayed sufficiently so that, prior to its be-
ginning, receivers have a chance to exchange session mes-
sages and, thus, estimate their distances to each other.

We inject losses into the simulated IP multicast transmis-
sion according to the link trace representation link, which
identifies estimates of the links responsible for the losses
suffered by each receiver during the actual IP multicast
transmission. By injecting losses in this fashion, we repro-
duce the packet loss pattern present in the actual IP multi-
cast transmission.

In our simulations, we assume that packet loss recov-
ery is lossless; that is, none of the recovery packets (control
packets and retransmissions) are dropped. We chose to sim-
ulate lossless recovery because when message loss is con-
sidered, there is a larger variability in the results. In [10],
we also simulated the protocols with control packets and
retransmissions being dropped based on the link loss prob-
ability estimates computed in Section 4.2. As expected, the
recovery latencies of both SRM and CESRM were slightly
larger, and CESRM exhibited similar performance improve-



Figure 1 Per-receiver average normalized recovery times.
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ments over SRM to those presented herein. Due to space
limitations, we do not include these results here.

4.4. Simulation Results

Figures 1–4 present per-receiver results obtained with 6
typical traces of the 14 studied traces. The results obtained
with the remaining traces were very similar. Due to space
limitations, we depict only the results obtained for these 6.

Figure 1 presents the per-receiver average normalized re-
covery times achieved by SRM and CESRM. The recov-
ery time of each receiver is normalized by that receiver’s
RTT estimate to the source, and is therefore given in units
of RTT. From Figure 1, we can see that the caching-based
expedited recovery scheme employed by CESRM substan-
tially reduces the average normalized recovery time. For
most of the receivers, CESRM’s average recovery times are
40% to 70% (50% on average) smaller than SRM’s.

Figure 2 depicts the difference in the average normalized
recovery times between expedited and non-expedited recov-
eries of CESRM. Equations (1) and (2) presented in Sec-
tion 3.4 predicted that, for the scheduling parameters used
in our simulations, the difference between the average re-
covery times of expedited and non-expedited recoveries
would be roughly bounded by 2.25 RTT . Figure 2 indeed
reveals that, in our simulations, the difference in the av-

Figure 2 Difference in average normalized recovery
times between expedited and non-expedited recoveries of
CESRM.
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erage normalized recovery latency between expedited and
non-expedited successful recoveries ranges from 1 RTT to
2.5 RTT .

Figure 3 depicts the number of request packets sent by
each of the receivers with SRM and CESRM. The bars cor-
responding to CESRM are split into two components. The
white component corresponds to requests unicast by the ex-
peditious requestor as part of CESRM’s expedited recovery
process; the gray component corresponds to requests that
are multicast when CESRM falls back on SRM’s recovery
scheme. The source of the IP multicast transmission corre-
sponds to receiver 0.

Figure 3 reveals that, for most receivers in each of the
simulations, the number of requests sent by CESRM is less
than the number sent by SRM. For some of the receivers the
number of requests sent by CESRM exceeds that sent by
SRM. Notably, however, a large portion of the requests sent
by CESRM are unicast from particular requestors to partic-
ular repliers, rather than multicast to the entire group. Since
unicast transmissions are substantially less costly than mul-
ticast transmissions, the overhead associated with sending
requests in CESRM is substantially smaller than that in-
curred in SRM.

Figure 4 depicts the number of reply packets sent by
each of the receivers with SRM and CESRM. The bars



Figure 3 Number of request packets for SRM and CESRM.
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corresponding to CESRM are again split into two com-
ponents. The white component corresponds to expedited
replies multicast in response to expedited requests as part of
CESRM’s expedited recovery process; the gray component
corresponds to replies that are multicast in response to non-
expedited requests when CESRM falls back on SRM’s re-
covery scheme. Again, the source of the IP multicast trans-
mission corresponds to receiver 0.

As Figure 4 shows, for most receivers in each of the
simulations, CESRM sends substantially fewer packet re-
transmissions (replies) than SRM. This is to be expected
since successful expedited recoveries usually involve a sin-
gle expedited reply, whereas SRM’s suppression scheme
may often result in duplicate replies per recovery. The re-
duction in the number of packet retransmission offers a sig-
nificant improvement over SRM, since packet retransmis-
sions carry payload, and are therefore generally larger than
control messages.

The first plot in Figure 5 depicts the percentage of suc-
cessful expedited recoveries achieved by CESRM for each
of the traces. An expedited recovery is successful when the
expedited request induces the transmission of an expedited
reply. The percentage of successful expedited recoveries is
given by the ratio of the number of expedited requests to the
number of expedited replies transmitted during the simula-
tion. We observe that more than 70% of the expedited re-
coveries are successful for all traces and as many as 80%

Figure 4 Number of reply packets for SRM and CESRM.
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are successful in all but two of the traces.
The second plot of Figure 5 depicts the transmission

overhead of CESRM, as a percentage of the transmission
overhead of SRM for each of the traces. This number
amounts to 100% in traces where SRM and CESRM in-
cur the same transmission overhead. We divide the trans-
mission overhead into two parts; that incurred by retrans-
missions and that incurred by control packets. We also dis-
tinguish between unicast and multicast control packets. The
transmission overhead of either CESRM or SRM is calcu-
lated by assigning a cost of 1 unit for transmitting a packet
across any single link of the IP multicast tree and measur-
ing the total number of such transmissions for each trace.

Figure 5 reveals that the transmission overhead incurred
by CESRM retransmissions is substantially smaller than
that incurred by SRM retransmissions. For all the traces, the
retransmission overhead of CESRM is less than 80% of that
of SRM. In 10 of the 14 traces, it is even less than 60% of
that of SRM. In the case of control packets, CESRM’s over-
head is less than 52% of that of SRM for all but one of the
traces. This demonstrates our claim that CESRM greatly re-
duces SRM’s overall recovery overhead.

5. Conclusions

In this paper, we have presented CESRM, a scalable re-
liable multicast protocol, which augments SRM with a



Figure 5 CESRM performance.
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caching-based expedited recovery scheme. CESRM ex-
ploits packet loss locality in order to reduce the overhead
and improve the recovery time of SRM. Trace-driven sim-
ulations revealed that, indeed, CESRM reduces the aver-
age recovery time of SRM by an average of roughly 50%.
We further observed that these performance gains do not in-
troduce additional packet overhead. On the contrary, in
all of our simulations, CESRM reduced the total num-
ber of packet retransmissions sent. Moreover, the overhead
associated with sending control packets in CESRM was sig-
nificantly smaller than that of SRM.

CESRM’s expedited requests and replies resemble those
occurring in router-assisted protocols [8, 12, 13], where re-
quests are intelligently forwarded to designated repliers.
Unlike these protocols, however, CESRM can be deployed
over IP multicast without any special router support. We
have also presented a router-assisted version of CESRM
that makes use of intelligent router capabilities (if present)
in order to limit the exposure of packet retransmissions.
This protocol is more “light-weight” than router-assisted
protocols like LMS [13], since it assumes fewer router ca-
pabilities. Moreover, unlike LMS, CESRM can continue to
recover packets even while the multicast group is reconfig-
uring and the previously chosen repliers leave the group.
This results from the fact that CESRM’s recovery mecha-
nism falls back on that of SRM.
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