
Formal Verification of Safety-Critical
Hybrid Systems?

Carolos Livadas and Nancy A. Lynch

Laboratory for Computer Science
Massachusetts Institute of Technology
{clivadas,lynch}@theory.lcs.mit.edu

Abstract. This paper investigates how formal techniques can be used
for the analysis and verification of hybrid systems [1,5,7,16] — systems
involving both discrete and continuous behavior. The motivation behind
such research lies in the inherent similarity of the hierarchical and decen-
tralized control strategies of hybrid systems and the communication and
operation protocols used for distributed systems in computer science.
This paper focuses on the use of hybrid I/O automata [11,12] to model,
analyze, and verify safety-critical hybrid systems that use emergency
control subsystems to prevent the violation of their safety requirements.
The paper is split into two parts. First, we develop an abstract model of
a protector — an emergency control component that guarantees that the
physical plant at hand adheres to a particular safety requirement. The
abstract protector model specialized to a particular physical plant and a
particular safety requirement constitutes the specification of a protector
that enforces the particular safety property for the particular physical
plant. The correctness proof of the abstract protector model leads to
simple correctness proofs of the implementations of particular protec-
tors. In addition, the composition of independent protectors, and even
dependent protectors under mild conditions, guarantees the conjunction
of the safety properties guaranteed by the individual protectors being
composed. Second, as a case study, we specialize the aforementioned ab-
stract protector model to simplified versions of the personal rapid transit
system (PRT 2000TM) under development at Raytheon Corporation and
verify the correctness of overspeed and collision avoidance protectors.
Such correctness proofs are repeated for track topologies ranging from a
single track to a directed graph of tracks involving Y-shaped merges and
diverges.

? This research was performed at the Theory of Distributed Systems Group of the Lab-
oratory for Computer Science of the Massachusetts Institute of Technology. The re-
search was supported by NSF Grant 9225124-CCR, U.S. Department of Transporta-
tion Contract DTRS95G-0001-YR.8, AFOSR-ONR Contracts F49620-94-1-0199 and
F49620-97-1-0337, and ARPA Contracts N00014-92-J-4033 and F19628-95-C-0118.



1 Introduction

The recent trend of system integration and automation has encouraged the study
of hybrid systems — systems that combine continuous and discrete behavior. Al-
though the individual problems of continuous and discrete behavior have been
extensively analyzed by control theory and formal analysis, respectively, their
combination has recently been aggressively studied. In particular, the automa-
tion in various safety-critical systems, such as automated transportation systems,
has indicated the need for formal approaches to system analysis, design, and veri-
fication. Automated highway systems [2,8], personal rapid transit systems [6,17],
and air traffic control systems [9,15] have served as benchmark problems for the
development of techniques to analyze, design, and verify hybrid systems.

Many of the safety-critical systems in use today abide by the engineering
paradigm of using an emergency control, or protection, subsystem to prevent
the violation of the system’s safety requirements. In this paper we present a
formal framework for the analysis of systems that adhere to this engineering
paradigm. The framework is used to prove the correctness of such protection
subsystems in an effort to provide indisputable system safety guarantees. The
formal approach to the analysis of such systems has several advantages. Formal
analysis yields a precise specification of the system and its safety requirements,
provides insight as to the location of possible design errors, and minimizes the
duplication of verification effort when such errors are corrected. The technique
of system validation through exhaustive testing lacks the insightful feedback and
requires full-fledged regression testing when design errors are detected.

In this paper, we use hybrid I/O automata [11, 12] — an extension of timed
I/O automata [4,14] — to define an abstract model of a protector — a subsystem
that guarantees that the physical plant adheres to a particular safety require-
ment. The abstract protector model is parameterized in terms of the physical
plant, the safety requirement, and several other quantities. The instantiation of
the abstract protector, obtained by specifying the abstract protector’s param-
eters, constitutes the specification of a protector that guarantees a particular
safety property for a particular physical plant model. The proof of correctness
of the abstract protector model minimizes the effort in verifying the correct
operation of a particular protector implementation. In fact, such correctness
proofs get reduced to simple simulations from the protector implementations to
the particular instantiation of the abstract protector model. As a case study,
we apply the formal framework developed towards the verification of overspeed
and collision protection subsystems for simplified models of the personal rapid
transit system (PRT 2000TM) under development at Raytheon Corporation. The
case studies presented in this paper extend the work of Weinberg, Lynch, and
Delisle [17] by introducing a powerful formal framework that allows more com-
plete system models to be used. The actual PRT 2000TM system is comprised
of 4-passenger vehicles that travel on an elevated guideway of tracks involving
Y-shaped merges and diverges and provide point-to-point passenger transporta-
tion. In this treatment, we verify the correct operation of overspeed and collision
avoidance protectors for track topologies ranging from a single track to a directed



graph of tracks involving Y-shaped merges and diverges. A detailed treatment
of the work presented in this paper can be found in Ref. 6.

2 Hybrid I/O Automata

A hybrid I/O automaton A is a (possibly) infinite state model of a system involv-
ing both discrete and continuous behavior. The automaton A = (U,X, Y,Σin,
Σint, Σout, Θ,D,W) consists of three disjoint sets U , X, and Y of variables (in-
put, internal, and output variables, respectively), three disjoint sets Σin, Σint,
and Σout of actions (input, internal, and output actions, respectively), a non-
empty set Θ of initial states, a set D of discrete transitions and a set W of
trajectories over V , where Σ = Σin ∪ Σint ∪ Σout and V = U ∪ X ∪ Y . The
initial states, the discrete transitions, and the trajectories of any HIOA A must
however satisfy several technical conditions which are omitted here. For a de-
tailed presentation of the HIOA model, the reader is referred to Refs. 11 and
12.

Variables in the set V are typed; that is, each variable v ∈ V ranges over
the set of values type(v). A valuation of V , also referred to as a state of A, is
a function that associates to each variable v of V a value in type(v). The set of
all valuations of V , or equivalently the set of all states of A, is denoted by V ,
or equivalently states(A). Letting v ∈ V and Sv ⊆ type(v), we use the notation
v :∈ Sv to denote the assignment of an arbitrary element of the set Sv to the
variable v. Similarly, letting SV ⊆ V , we use the notation V :∈ SV to denote
the assignment of an element of the set type(v) to the variable v, for each v in
V , such that the resulting valuation of V is an arbitrary element of the set SV .
Letting s be a state of A, i.e., s ∈ V , and V ′ ⊆ V , we define the restriction
of s to V ′, denoted by sdV ′, to be the valuation s′ of the variables of V ′ in
s. Letting X ⊆ V , we say that X is V ′-determinable if for all x ∈ X and
s ∈ V , such that xdV ′ = sdV ′, it is the case that s ∈ X. The continuous time
evolution of the valuations of the variables in V is described by a trajectory w
over V ; that is, a function TI → V , where TI is a left-closed interval of R≥0

with left endpoint equal to 0. The limit time of w, denoted by w.ltime, is defined
to be the supremum of the domain of w, dom(w). We define the first state of a
trajectory w, denoted by w.fstate, to be the state w(0). Moreover, if the domain
of a trajectory w is right-closed, then we define the last state of w, denoted by
w.lstate, to be the state w(w.ltime).

A hybrid execution fragment α of A is a finite or infinite alternating sequence
w0a1w1a2w2 · · · , where wi ∈ W, ai ∈ Σ, and if wi is not the last trajectory of α
then wi is right-closed and the discrete transition (wi.lstate, ai+1, wi+1.fstate) is
in D, or equivalently wi.lstate ai+1−−−−→A

wi+1.fstate. If w0.fstate ∈ Θ then α is a
hybrid execution of A. A hybrid execution α of A is finite if it is a finite sequence
and the domain of its final trajectory is a right-closed interval and admissible
if α.ltime = ∞. If R ⊆ states(A) and s, s′ ∈ R, then s′ is R-reachable from s
provided that there is a hybrid execution fragment of A that starts in s, ends in
s′, and all of whose states are in the set R.



The hybrid trace of a hybrid execution fragment α ofA, denoted by h-trace(α),
is the sequence obtained by projecting α onto the external variables of A and
subsequently removing all inert internal and environment actions. The set of
hybrid traces of A, denoted by h-traces(A), is the set of hybrid traces that arise
from all the finite and admissible hybrid executions of A.

A superdense time in an execution fragment α of A is a pair (i, t), where
t ≤ wi.ltime. We totally order superdense times in the execution fragment α
lexicographically. An occurrence of a state s in an execution fragment α of A
is a triple (i, t, s) such that (i, t) is a superdense time in α and s = wi(t). State
occurrences in α are ordered according to their superdense times. If S is a set
of states of A and α is an execution fragment of A, then past(S, α) is the set of
state occurrences (i, t, s) in α such that either s ∈ S or there is a previous state
occurrence (i′, t′, s′) in α with s′ ∈ S.

Two HIOA A1 and A2 are compatible if Xi∩Vj = Yi∩Yj = Σint
i ∩Σj = Σout

i ∩
Σout
j = ∅, for i, j ∈ {1, 2}, i 6= j. If A1 and A2 are compatible then their compo-

sition A1×A2 is defined to be the tuple A = (U,X, Y,Σin, Σint, Σout, Θ,D,W)
given by U = (U1 ∪ U2) − (Y1 ∪ Y2), X = X1 ∪ X2, Y = Y1 ∪ Y2, Σin =
(Σin

1 ∪Σin
2 )− (Σout

1 ∪Σout
2 ), Σint = Σint

1 ∪Σint
2 , Σout = Σout

1 ∪Σout
2 , Θ = {s ∈

V | sdV1 ∈ Θ1 ∧ sdV2 ∈ Θ2} and sets of discrete transitions D and trajecto-
ries W each of whose elements projects to discrete transitions and trajectories,
respectively, of A1 and A2.

Two HIOA A1 andA2 are comparable if they have the same external interface,
i.e., U1 = U2, Y1 = Y2, Σin

1 = Σin
2 , and Σout

1 = Σout
2 . If A1 and A2 are

comparable, then A1 ≤ A2 is defined to denote that the hybrid traces of A1

are included in those of A2; that is, A1 ≤ A2
∆= h-traces(A1) ⊆ h-traces(A2). If

A1 ≤ A2, then we say that A1 implements A2.

3 Protected Plant Systems

A protected plant system is modeled abstractly as a physical plant interacting
with a protection system. The protection system is modeled as the composition
of a set of protectors each of which is supposed to enforce a particular safety
requirement of the physical plant. Our model is abstract in the sense that it does
not specify any of the details or safety requirements of the physical plant.

The physical plant and each of the protectors are modeled as HIOA. The
physical plant PP is an automaton that is assumed to be interacting with the
protectors through the set J of communication channels, which are referred to
as ports. The input action set Σin

PP, the output action set Σout
PP , and the input

variable set UPP are partitioned into subsets Σin
PPj

, Σout
PPj

, and UPPj , respectively,
one for each port j. We use the letter p to denote a state of PP and P to denote
a set of states of PP. A protector A for the physical plant PP and the port set
K ⊆ J is an automaton that is compatible with PP and whose output actions are
exactly the input actions of PP on ports in K, whose output variables are exactly
the input variables of PP on ports in K, and all of whose input actions and input



variables are outputs of PP. It can easily be shown that the composition of two
distinct protectors is itself a protector.

Letting S, R, and G be particular sets of states of PP, a protector automa-
ton A for PP and ports K guarantees G in PP from S given R provided that
every finite execution of the composition PP × A starting in a state in S that
only involves states in R ends in a state in G regardless of the inputs that ar-
rive at PP on ports other that those in K. Two protectors are dependent, if the
correct operation of one relies on the correct operation of the other, and inde-
pendent, otherwise. The following theorems express the substitutivity condition
— the condition under which the implementation of a protector is correct with
respect to its specification — and the compositional conditions — conditions
under which the composition of independent or dependent protectors guaran-
tees the conjunction of the safety properties guaranteed by the protectors being
composed.

Theorem 1 (Substitutivity). Let A1 and A2 be two protector automata for
the same port set K of a physical plant automaton PP, and suppose that A1 ≤
A2. If A2 guarantees G in PP from S given R, then A1 guarantees G in PP from
S given R.

Theorem 2 (Independent Protector Composition). Suppose that A1, A2,
. . . , Ak are protector automata for a physical plant automaton PP, with respec-
tive port sets K1,K2, . . . ,Kk, where Ki∩Ki′ = ∅, for all i, i′ ∈ {1, . . . , k}, i 6= i′.
Suppose that each of the protectors Ai, for all i ∈ {1, . . . , k}, guarantees Gi from
Si given Ri. If the protectors A1, A2, . . . , Ak are compatible, then their composi-
tion

∏
i ∈ {1,... ,k} Ai is a protector for PP that guarantees

⋂
i ∈ {1,... ,k} Gi from⋂

i ∈ {1,... ,k} Si given
⋂
i ∈ {1,... ,k} Ri.

Theorem 3 (Dependent Protector Composition). Suppose that A1, A2,
. . . , Ak are protector automata for a physical plant automaton PP, with respec-
tive port sets K1,K2, . . . ,Kk, where Ki∩Ki′ = ∅, for all i, i′ ∈ {1, . . . , k}, i 6= i′.
Suppose that each of the protector automata Ai, for all i ∈ {1, . . . , k}, guarantees
Gi from Si given Ri

⋂(⋂
i′ ∈ {1,... ,k},i′ 6=i Gi′

)
.

Assume that α is any finite execution of the system PP ×
∏

i ∈ {1,... ,k} Ai
starting from a state in

⋂
i ∈ {1,... ,k} Si and all of whose states are in the set⋂

i ∈ {1,... ,k} Ri. Then, one of the following holds:

1. Every state in α is in
⋂
i ∈ {1,... ,k} Gi.

2. The finite execution α can be written as α1
_ α2, where

(a) all state occurrences in α1, except possibly the last, are in the set of states⋂
i ∈ {1,... ,k} Gi,

(b) if the last state occurrence in α1 is in Gi, for some i ∈ {1, . . . , k}, then
there exists i′ ∈ {1, . . . , k}, i′ 6= i, such that the last state occurrence in
α1 is in Gi′ , and

(c) all state occurrences in α2, except possibly the first, are in the set of
states

⋂
i ∈ I past(Gi, α), for some I ⊆ {1, . . . , k}, where |I| ≥ 2.



In loose terms, Theorem 3 states that the composition of dependent protectors
guarantees the conjunction of the safety properties guaranteed by the protectors
being composed provided a single action or trajectory of the composed system
can cause the violation of at most one of the safety properties guaranteed by the
protectors being composed.

4 An Abstract Protector

The abstract protector automaton is parameterized in terms of the automaton
PP, the subsets R, G, and S of the states of PP, the port index j, and the positive
real-valued sampling period d. The PP automaton represents the physical plant
being modeled. The set R, also referred to as the set of reliance, is the set of states
to which we restrict the states of the PP automaton while considering a particular
protector. This set is usually comprised of states satisfying a particular property
of the physical plant that is required by the protector under consideration. The
set G, also referred to as the set of guarantee, is the set of states to which the
protector is designed to constrain the PP automaton. The set S is a set of states
from which the protector under consideration is said to guarantee G given R;
that is, given that the states of the PP automaton are restricted to the set R,
the protector guarantees that every finite execution starting from an initial state
in S ends in a state in G. The port index j and the sampling period d denote the
port and the sampling period with which the abstract protector interacts with
the PP automaton. Thus, an instantiation of the abstract protector automaton
Abs(PP, S, R,G, j, d) is obtained by specifying the parameters PP, etc.

To begin, we define several functions and sets that are useful in the definition
of the abstract protector Abs(PP, S, R,G, j, d). Although, formal definitions of
these functions and sets are presented in Table 1, their informal interpretations
follow. First, we define a function, futurePP,R,j , that yields the set of states of
PP that are R-reachable from the given subset of R within an amount of time
in the given subset of R≥0, under the constraint that no input actions arrive on
port j of the PP automaton. We define a function, no-opPP,R,j , which yields, for
a given state in R, the set of input actions on port j of the PP automaton that
do not affect the state of the PP automaton, provided they are executed prior to
either time-passage, or other input actions on port j. For any state p in R, the
input actions in the set no-opPP,R,j(p) are referred to as no-op input actions on
port j of PP for the state p. We define a set, very-safePP,R,G,j , which is comprised
of the states of PP that satisfy R and from which all R-reachable states of PP
with no input actions on port j are in G. The set very-safePP,R,G,j may be
interpreted as the set consisting of the states from which the PP automaton is
bound to remain within the set G provided that it remains within the set R and
the protector on port j does not retract or issue additional protective actions.
We define a set, safePP,R,G,j , which is comprised of the states of PP that satisfy
R and from which the protector on port j has a “winning protective strategy”;
that is, for any state p in safePP,R,G,j there exists an input action on port j
of the PP automaton whose immediate execution — its execution prior to any



Table 1 Terminology for the abstract protector Abs(PP, S, R,G, j, d).
futurePP,R,j : P(R)× P(R≥0)→ P(R), defined by:

p ∈ futurePP,R,j(P, T ), where P ⊆ R and T ⊆ R≥0, if and only if p is R-reachable
from some p′ ∈ P via a finite execution fragment α of PP with no input actions
on port j and with α.ltime ∈ T .

no-opPP,R,j : R→ P(Σin
PPj

), defined by:
π ∈ no-opPP,R,j(p) if and only if π is an input action on port j of PP such that for

all p′, p′′ ∈ R satisfying p′ ∈ futurePP,R,j(p, 0) and p′ π−→PP p
′′, it is the case that

p′′ = p′.
very-safePP,R,G,j ⊆ R, defined by:

p ∈ very-safePP,R,G,j if and only if futurePP,R,j(p,R
≥0) ⊆ G.

safePP,R,G,j ⊆ R, defined by:
p ∈ safePP,R,G,j if and only if both of the following hold:
1. futurePP,R,j(p, 0) ⊆ G.
2. There exists an input action π on port j, such that for every p′, p′′ ∈ R

satisfying p′ ∈ futurePP,R,j(p, 0) and p′ π−→PP p
′′, it is the case that p′′ ∈

very-safePP,R,G,j .

safePP,R,G,j : Σin
PPj
→ P(R), defined by:

p ∈ safePP,R,G,j(π) if and only if both of the following hold:
1. futurePP,R,j(p, 0) ⊆ G.

2. For every p′, p′′ ∈ R such that p′ ∈ futurePP,R,j(p, 0) and p′ π−→PP p
′′, it is the

case that p′′ ∈ very-safePP,R,G,j .

delay-safePP,R,G,j : R≥0 → P(R), defined by:
p ∈ delay-safePP,R,G,j(t) if and only if both of the following hold:
1. futurePP,R,j(p, [0, t]) ⊆ G.
2. futurePP,R,j(p, t) ⊆ safePP,R,G,j .

time-passage with the possibility that its execution follows an arbitrary number
of discrete actions other than input actions on port j — guarantees that all
subsequent R-reachable states of PP with no input actions on port j are in G;
that is, the state following the execution of the particular input action of PP
on port j is in the set very-safePP,R,G,j . We overload the notation safePP,R,G,j

by defining a function, safePP,R,G,j , which yields the states of PP that satisfy R
and for which the immediate execution of the given input action on port j — its
execution prior to any time-passage with the possibility that its execution follows
an arbitrary number of discrete actions other than input actions on port j —
guarantees that all subsequent R-reachable states of PP with no input actions
on port j are in G; that is, the state following the execution of the given input
action on port j is in the set very-safePP,R,G,j . Finally, we define a function,
delay-safePP,R,G,j , which yields the set of states of PP that satisfy R and for
which all states R-reachable within the given amount of time and with no input
actions on port j are in G, and all states R-reachable in exactly the given amount
of time and with no input actions on port j are in safePP,R,G,j .

We proceed by stating the various assumptions made about the physical
plant PP and the abstract protector Abs(PP, S, R,G, j, d). We assume that the



Fig. 1 Sensor(PP, S, R,G, j, d) automaton definition.
Actions: Input: e, the environment action

Output: snapshot(y)j , for each valuation y of YPP

Variables: Input: u ∈ type(u), for all u ∈ YPP,
initially u ∈ type(u), for each u ∈ YPP

Internal: nowj ∈ R≥0, initially 0

next-snapj ∈ R≥0, initially 0
Discrete Transitions:
e

Eff: YPP :∈ YPP

snapshot(y)j
Pre: next-snapj = nowj

y is current valuation of YPP

Eff: YPP :∈ YPP

next-snapj := nowj + d

Trajectories:
for all u ∈ YPP

u assumes arbitrary values in type(u) throughout w
next-snapj is constant throughout w
for all t ∈ TI

w(t).nowj = w(0).nowj + t
w(t).nowj ≤ w(t).next-snapj

PP automaton has no input variables on port j, for all j ∈ J ; that is, the
protectors control the state of the physical plant only through input actions.
A consequence of this assumption is that the environment action of the PP
automaton is stuttering. Moreover, we assume that the PP automaton has no
output actions on port j, for all j ∈ J . The physical plant is modeled as a passive
system in the sense that the protectors observe the state of the plant only through
output variables. We assume that there exist no-op input actions on port j for
every state of the PP automaton in the set R. We assume that membership of a
state of the PP automaton in the set safePP,R,G,j is determinable from the output
variables of the PP automaton, i.e., the set safePP,R,G,j is YPP-determinable.
Moreover, we assume that for any state in the set safePP,R,G,j , an appropriate
action to guarantee safety can be determined from the output variables of the
PP automaton, i.e., the variables in YPP. For any valuation y of the output
variables YPP of the PP automaton, we use the notation y ∈ safePP,R,G,j to
denote the existence of a state p ∈ safePP,R,G,j such that pdYPP = y. We assume
that the state information provided by the output variables of the PP automaton
is sufficient to determine membership of any state of the PP automaton in the
sets R and G, i.e., the sets R and G are YPP-determinable. Moreover, we assume
that the set of start states S is a subset of the set safePP,R,G,j .

The protector is defined as the composition of a sensor automaton (Figure 1)
and a discrete controller automaton (Figure 2). Both the sensor and the discrete
controller are described abstractly in terms of PP, S, R, G, j, and d and are
respectively denoted Sensor(PP, S, R,G, j, d) and DC(PP, S, R,G, j, d). At in-
tervals of d time units, the sensor automaton samples the output variables of
the PP automaton. The discrete controller automaton is rather nondeterminis-



Fig. 2 DC(PP, S, R,G, j, d) automaton definition.
Actions: Input: e, the environment action (stuttering)

snapshot(y)j , for each valuation y of YPP

Output: π, for all π ∈ Σin
PPj

Variables: Internal: sendj ∈ Σin
PPj
∪ {null}, initially null

Discrete Transitions:
e

Eff: None

π
Pre: sendj = π
Eff: sendj := null

snapshot(y)j
Eff: if y ∈ safePP,R,G,j then

sendj :∈ {φ ∈ Σin
PPj
|

∀ p, p′, p′′ ∈ R such that
pdYPP = y, p′ ∈ futurePP,R,j(p, 0),

and p′ φ−→PP p
′′,

it is the case that
p′′ ∈ delay-safePP,R,G,j(d)}

else
sendj :∈ Σin

PPj

Trajectories:
w.sendj ≡ null

tic. Based on the output state information of the PP automaton sampled by the
sensor automaton, the discrete controller automaton issues protective actions so
as to guarantee that (i) the PP automaton remains within the set G up to the
next sampling point, and (ii) the state of the PP automaton at the next sam-
pling point is in the set safePP,R,G,j . The nondeterminism in the description of
the DC(PP, S, R,G, j, d) automaton allows the freedom to choose any response
that satisfies the given conditions — however, in a discrete controller automaton
implementation, a response that least restricts the future states of the physical
plant automaton PP would be preferred because it would represent a weaker
protective action.

Theorem 4. Abs(PP, S, R,G, j, d) guarantees G in PP from S given R.

The correctness proof of a particular protector implementation involves defin-
ing the particular protector’s specification as the instantiation of the abstract
protector for particular definitions of PP, etc. and showing that the particular
protector implementation is correct with respect to the particular instantiation
of the abstract protector. The first step simply involves specifying the parame-
ters PP, etc. The second step is simplified by choosing the protector implemen-
tation to be the composition of the sensor automaton Sensor(PP, S, R,G, j, d)
and a discrete automaton that is chosen so as to guarantee the effect clause of
the snapshot(y)j action in DC(PP, S, R,G, j, d). Thus, the correctness proof of
the implementation is reduced to a simulation from the implementation of the
discrete controller automaton to its specification.



5 Modeling the PRT 2000TM

In this section, we present a model for a simplified version of the PRT 2000TM

whose track topology involves a single track. The model, vehicles, which is
presented in Figure 3, is a HIOA that conforms to the restrictions and assump-
tions made about the PP automaton in Sections 3 and 4. It involves n vehicles
of identical dimensions and acceleration/deceleration capabilities traveling on
a single track. Its state variables include the position xi, the velocity ẋi, and
the acceleration ẍi of each vehicle i in the set of vehicles I and several other
variables that record whether each vehicle has collided into each other vehicle
(collided(i, i′), for i′ ∈ I, i′ 6= i), whether each vehicle is braking (brake(i), for
i ∈ I), and whether each protector j in the set of protectors J is requesting
each particular vehicle to brake (brake-req(i, j), for i ∈ I and j ∈ J). Several
properties of the physical plant are enforced by restricting the states of the ve-

hicles automaton to the set VALID (Appendix A). In particular, we assume
that the vehicles occupy non-overlapping sections of the track, the vehicles are
only allowed to move forward on the track, the non-malfunctioning vehicle accel-
eration/deceleration capabilities to be within the interval [c̈min, c̈max], and the
non-malfunctioning braking deceleration to be given by c̈brake, if the vehicle is
moving forward, and 0, otherwise.

The formal definitions of the derived variables and sets of the vehicles au-
tomaton are shown in Appendix A. For brevity, we only give informal definitions
of the key derived variables. Each of the variables Ei, for i ∈ I, denotes the ex-
tent of the vehicle i; that is, the section of the track occupied by the vehicle i.
It is defined as the section of track ranging from the position of the rear of the
vehicle i to the point on the track that is a distance of clen downstream of the
rear of the vehicle i — a distance that specifies the minimum allowable separa-
tion between vehicles, i.e., Ei = [xi, xi + clen ], for i ∈ I. Each of the variables
Oi, for i ∈ I, denotes the section of the track that the vehicle i owns; that is, the
range extending from the current position of the rear of the vehicle i to the point
on the track that the vehicle can reach even if it is braked immediately. Each
of the variables Ci(t), for i ∈ I and t ∈ R≥0, denotes the section of the track
that the vehicle i claims within t time units; that is, the range extending from
the current position of the rear of the vehicle i to the point on the track that
the vehicle i can reach if it is braked after t time units and assuming worst-case
vehicle behavior up to the point in time when it is braked. Moreover, each of the
variables collided(∗, i, ∗), for i ∈ I, denotes whether the vehicle i has ever been
involved in a collision. Some auxiliary sets for the vehicles automaton that will
be used in the following sections are defined in Appendix B.

The input actions of the vehicles automaton are the environment action e
and the actions brake(i)j and unbrake(i)j , for i ∈ I and j ∈ J . Since the vehi-

cles automaton has no input variables, the environment action e is stuttering.
Each of the actions brake(i)j and unbrake(i)j , for i ∈ I and j ∈ J , correspond
to actions performed by the protector j instructing the vehicle i to apply or re-
lease its “emergency” brake, respectively. Each brick-wall(i) action, for i ∈ I,
models the instantaneous stopping of the vehicle i — as if it hit a brick wall.



Fig. 3 The vehicles automaton.
Actions: Variables

Input: Internal:
e, the environment action (stuttering)
brake(i)j , for all i ∈ I, j ∈ J
unbrake(i)j , for all i ∈ I, j ∈ J

ẍi ∈ R, for all i ∈ I, initially ẍi ∈ R
brake(i) ∈ Bool,

for all i ∈ I, initially False

brake-req(i, j) ∈ Bool,
for all i ∈ I, j ∈ J ,
initially False

Internal: Output:
colliding-pair(i, i′),

for all i, i′ ∈ I, i′ 6= i
collision-effects(i), for all i ∈ I
brick-wall(i), for all i ∈ I

xi ∈ R, for all i ∈ I, initially xi ∈ R
ẋi ∈ R, for all i ∈ I, initially ẋi ∈ R
collided(i, i′) ∈ Bool,

for all i, i′ ∈ I, i′ 6= i,
initially False

subject to VALID
Discrete Transitions:
e

Eff: None

brake(i)j
Eff: brake-req(i, j) := True

if ¬brake(i) then
brake(i) := True

if ẋi = 0 then ẍi := 0
else ẍi := c̈brake

unbrake(i)j
Eff: brake-req(i, j) := False

if brake(i)
∧(¬ ∨k ∈ J brake-req(i, k))

then
brake(i) := False

ẍi :∈ [c̈min, c̈max]

colliding-pair(i, i′)
Pre: ¬collided(i, i′)

∧(Ei ∩ Ei′ 6= ∅)
∧(xi < min(Ei ∩ Ei′))

Eff: collided(i, i′) := True

collision-effects(i)
Pre: collided(∗, i, ∗)
Eff: ẋi :∈ R≥0

ẍi :∈ R

brick-wall(i)
Pre: True

Eff: ẋi := 0
if brake(i) then
ẍi := 0

else
ẍi :∈ [0, c̈max]

Trajectories:
for all i, i′ ∈ I, i 6= i′, collided(i, i′) is constant throughout w
for all i ∈ I and j ∈ J , brake(i) and brake-req(i, j) are constant throughout w
for all i, i′ ∈ I, i 6= i′

the function w.ẍi is integrable
for all t ∈ TI

w(t).ẋi = w(0).ẋi +
∫ t

0
w(s).ẍi ds

w(t).xi = w(0).xi +
∫ t

0
w(s).ẋi ds

if ¬w.collided(i, i′)
∧(w(t).Ei ∩ w(t).Ei′ 6= ∅)
∧(w(t).xi < min(w(t).Ei ∩ w(t).Ei′))

then
t = w.ltime

subject to VALID



Thereafter however, the vehicle i is allowed to reinitiate forward motion. Each
colliding-pair(i, i′) action, for i, i′ ∈ I, i 6= i′, records the fact that the vehi-
cle i has collided into the vehicle i′. Since the trailing vehicle is the only vehicle
that can prevent the collision through braking, a collision is recorded only by
the trailing vehicle as if the trailing vehicle were the only vehicle liable for the
particular collision. Each collision-effects(i) action, for i ∈ I, models the
adverse effects of a collision involving the vehicle i and may be executed, even
repeatedly, at any instant of time following the first collision involving the vehi-
cle i. Thus, the malfunctioning apparatus of any vehicle i, for i ∈ I, is modeled
by succeeding each of the discrete actions with a collision-effects(i) action
for the malfunctioning vehicle.

The trajectories of the vehicles automaton model the continuous evolution
of the state of the vehicles automaton. If during a trajectory a vehicle i collides
into a vehicle i′ for the first time, the trajectory is stopped so that the collision
can be recorded.

6 Example Overspeed and Collision Avoidance Protectors

6.1 Example 1: Overspeed Protection System

In this section, we present a protector, called os-prot, that prevents the ve-
hicles of the vehicles automaton from exceeding a prespecified global speed
limit ċmax, provided that they do not collide among themselves. The protec-
tor os-prot is defined to be the composition of n separate copies of another
protector called os-prot-soloi, one copy for each vehicle i ∈ I. Each of the
os-prot-soloi protectors, for i ∈ I, guarantees that the vehicle i, does not ex-
ceed the speed limit ċmax, provided that no collisions among any of the vehicles
occur. The braking strategy of the os-prot-soloi protector is to instruct the
vehicle i to brake if it is capable of exceeding the speed limit ċmax within the
time until the next sampling point.

Let PPi be the vehicles automaton of Figure 3, the port ji and the sam-
pling period di be the port and sampling period with which the protector
os-prot-soloi communicates with the vehicles automaton, the set Ri be the
set of states in which none of the vehicles have ever collided, i.e.,Ri = Pnot-collided

(Appendix B), the set Gi be the set of states in which the vehicle i is at or below
the speed limit, i.e., Gi = VALID−Poverspeed(i) (Appendix B), and the set Si be
the set safePPi,Ri,Gi,ji . We define the os-prot-soloi automaton to be the com-
position of Sensor(PPi, Si, Ri, Gi, ji, di) and the discrete controller automaton
of Figure 4.

Lemma 1. The protector os-prot-soloi guarantees Gi in vehicles starting
from Si given Ri.

Corollary 1. The protector os-prot =
∏
i ∈ I os-prot-soloi for the vehi-

cles automaton guarantees
⋂
i ∈ I Gi in the vehicles automaton starting from⋂

i ∈ I Si given Pnot-collided.

Corollary 1 follows directly from Lemma 1 and Theorem 2.



Fig. 4 Discrete controller automaton for the protector os-prot-soloi.

Actions: Input: e, the environment action (stuttering)
snapshot(y)j , for each valuation y of Yvehicles

Output: brake(i)j
unbrake(i)j

Variables: Internal: sendj ∈ {brake, unbrake,null}, initially null

Discrete Transitions:

e
Eff: None

snapshot(y)j
Eff: if (y.ẋi ≤ ċmax − dc̈max) then

sendj := unbrake

else
sendj := brake

brake(i)j
Pre: sendj = brake

Eff: sendj := null

unbrake(i)j
Pre: sendj = unbrake

Eff: sendj := null

Trajectories:
w.sendj ≡ null

6.2 Example 2: Collision Avoidance on a Single Track

In this section, we present a protector, called cl-prot, that prevents the vehicles
of the vehicles automaton from colliding among themselves, provided that they
are all abiding by the speed limit ċmax. The protector cl-prot is defined to be
the composition of n separate copies of another protector called cl-prot-soloi,
one copy for each vehicle i ∈ I. Each of the os-prot-soloi protectors, for i ∈ I,
guarantees that the vehicle i does not collide into any of the vehicles it trails,
provided that all the vehicles in the vehicles automaton are abiding by the
speed limit and that all other vehicles i′ ∈ I, i′ 6= i, do not collide into any of
the vehicles they respectively trail. The braking strategy of the cl-prot-soloi

protector is to instruct the vehicle i to brake if it has a di time unit claim overlap
with any of the vehicles it trails. The rationale behind this braking strategy is
that a collision between two vehicles in the vehicles automaton can only be
prevented by instructing the trailing vehicle to brake.

Let PPi be the vehicles automaton of Figure 3, the port ji and the sam-
pling period di be the port and sampling period with which the protector
cl-prot-soloi communicates with the vehicles automaton, and the set Gi
be the set of states in which the vehicle i has not collided into any of the other
vehicles, i.e., G = VALID − Pcollided(i) (Appendix B). Moreover, let the set Ri
be the set of states in which all of the vehicles are abiding by the speed limit
and in which each of the other vehicles has never collided into any other vehicle,
i.e., Ri = Pnot-overspeed

⋂(⋂
i′ ∈ I,i′ 6=iGi′

)
(Appendix B), and the set Si be the

set safePPi,Ri,Gi,ji . We define the cl-prot-soloi automaton to be the compo-
sition of Sensor(PPi, Si, Ri, Gi, ji, di) and the discrete controller automaton of
Figure 5.



Fig. 5 Discrete controller automaton for the protector cl-prot-soloi.

Actions: Input: e, the environment action (stuttering)
snapshot(y)j , for each valuation y of Yvehicles

Output: brake(i)j
unbrake(i)j

Variables: Internal: sendj ∈ {brake, unbrake,null}, initially null

Discrete Transitions:

e
Eff: None

snapshot(y)j
Eff: if ∃ i′ ∈ I, i′ 6= i such that

y 6∈ disjoint-claimed-tracks(i, i′, d)
∧(y.xi < y.xi′)

then
sendj := brake

else
sendj := unbrake

brake(i)j
Pre: sendj = brake

Eff: sendj := null

unbrake(i)j
Pre: sendj = unbrake

Eff: sendj := null

Trajectories:
w.sendj ≡ null

Lemma 2. The protector cl-prot-soloi guarantees Gi in vehicles starting
from Si given Ri.

Lemma 3. The protector cl-prot =
∏
i ∈ I cl-prot-soloi for the vehicles

automaton guarantees
⋂
i ∈ I Gi in the vehicles automaton starting from⋂

i∈I Si given Pnot-overspeed.

Lemma 3 is shown by combining Lemma 2 and Theorem 3 and realizing that
the second condition of Theorem 3 does not hold.

6.3 Example 3: Collision Avoidance on Merging Tracks

In this section, we present a protector, called merge-prot, that guarantees
that none of the n vehicles that are traveling on a track involving a Y-shaped
merge collide, provided that they are all abiding by the speed limit ċmax. The
merge-prot protector is defined as the composition of n(n−1)/2 separate copies
of another protector called merge-prot-pair{i,i′}, one copy for each unordered
pair of vehicles {i, i′}, where i, i′ ∈ I, i 6= i′. Each of these merge-prot-pair{i,i′}
protectors, for i, i′ ∈ I, i 6= i′, guarantees that the vehicles i and i′ do not collide
into each other, provided that all the vehicles are abiding by the speed limit and
the vehicles of all other vehicle pairs do not collide between themselves.

We augment the vehicles automaton to involve a track topology consisting
of a Y-shaped merge. This is done by replacing the position component of a ve-
hicle’s state with a location component — a component that specifies the track



on which the vehicle is traveling and the vehicle’s position with respect to the
merge point — and update the definitions of the discrete steps and the trajecto-
ries of the vehicles automaton to handle the location variables. Furthermore,
we replace the brake and unbrake input actions of the vehicles automaton
with protect input actions which allow single protectors to instruct sets of ve-
hicles to apply their “emergency” brakes. Finally, we augment the definitions
of the discrete actions pertaining to vehicle collisions such that the blame for a
particular collision is assigned to either only the trailing vehicle, if one vehicle
collides into the other vehicle from behind, or both vehicles, if the vehicles collide
sideways while merging. The resulting physical plant automaton is henceforth
referred to as merge-vehicles.

Let PP{i,i′} be the merge-vehicles automaton. Let the port j{i,i′} and
the sampling period d{i,i′} be the port and sampling period with which the
protector merge-prot-pair{i,i′} communicates with the merge-vehicles au-
tomaton. Let G{i,i′} be the set of states in which the vehicles i and i′ have not
collided into each other, i.e., G{i,i′} = VALID−Pcollided(i,i′)−Pcollided(i′,i) (Ap-
pendix B). Let R{i,i′} be the set of states of the merge-vehicles automaton
in which all the vehicles are abiding by the speed limit and in which the vehi-
cles of all other vehicle pairs have not collided into each other, i.e., R{i,i′} =

Pnot-overspeed

⋂(⋂
i′′,i′′′ ∈ I,i′′ 6=i′′′,{i′′,i′′′}6={i,i′}G{i′′,i′′′}

)
(Appendix B). Finally,

let S{i,i′} be the set safePP{i,i′},R{i,i′},G{i,i′},j{i,i′}
.

We define the protector merge-prot-pair{i,i′} to be the composition of
Sensor(PP{i,i′}, S{i,i′}, R{i,i′}, G{i,i′}, j{i,i′}, d{i,i′}) and a discrete controller au-
tomaton whose braking strategy is as follows. The discrete controller automaton
is allowed to brake the vehicles i and i′ only if the sections of the track they
claim in time d{i,i′} overlap. Given that the vehicles i and i′ are indeed involved
in such a claim overlap, there are two possible scenarios depending on whether
the locations of the vehicles i and i′ are comparable, or not. If their locations
are comparable, then the vehicle i is instructed to brake if it trails the vehicle i′;
otherwise, the vehicle i′ is instructed to brake. On the other hand, if the vehicle
locations are not comparable, the vehicle i is instructed to brake either if only
the vehicle i′ owns the merge point, or if both or neither vehicles own the merge
point and the vehicle i is traveling on the left branch of the merge; otherwise,
the vehicle i′ is instructed to brake. In the latter case, we choose to brake the ve-
hicle traveling on the left branch for no particular reason. In fact, it is plausible
to brake either or both of the vehicles involved in the claim overlap.

Lemma 4. The protector merge-prot-pair{i,i′} guarantees that the merge-

vehicles automaton remains within G{i,i′} starting from S{i,i′} given R{i,i′}.

Lemma 5. The protector merge-prot =
∏
i,i′ ∈ I,i 6=i′ merge-prot-pair{i,i′}

for the merge-vehicles automaton guarantees
⋂
i,i′ ∈ I,i 6=i′ G{i,i′} in merge-

vehicles starting from
⋂
i,i′ ∈ I,i 6=i′ S{i,i′} given Pnot-overspeed.

Lemma 5 is shown by combining Lemma 4 and Theorem 3 and realizing that
the second condition of Theorem 3 does not hold.



6.4 Example 4: Collision Avoidance on a General Graph of Tracks

In this section, we present a protector, called graph-prot, that guarantees
that none of the n vehicles traveling on a directed graph of tracks comprised
of Y-shaped merges and diverges collide, provided that they are all abiding by
the speed limit ċmax. As in Section 6.3, the graph-prot protector is defined
as the composition of n(n − 1)/2 separate copies of another protector called
graph-prot-pair{i,i′}, one copy for each unordered pair of vehicles {i, i′},
where i, i′ ∈ I, i 6= i′. Each of the graph-prot-pair{i,i′} protectors, for i, i′ ∈
I, i 6= i′, guarantees that the vehicles i and i′ do not collide into each other,
provided that all the vehicles are abiding by the speed limit and the vehicles of
all other vehicle pairs do not collide between themselves.

We augment the merge-vehicles automaton to involve a general track
topology consisting of a directed graph G of Y-shaped merges and diverges.
All the edges of the graph G are assumed to be of sufficient length to rule out
collisions among vehicles that are neither on identical, nor on contiguous edges
and all cycles of the graph G are assumed to have at least three edges. Moreover,
in order to brake the topological symmetry in merge situations, we associate with
each edge of the track topology a unique and totally ordered priority index. The
resulting physical plant automaton is henceforth referred to as graph-vehicles.

Letting PP{i,i′}, S{i,i′}, R{i,i′}, G{i,i′}, j{i,i′}, and d{i,i′} be as defined in Sec-
tion 6.3, we define the graph-prot-pair{i,i′} automaton to be the composition
of Sensor(PP{i,i′}, S{i,i′}, R{i,i′}, G{i,i′}, j{i,i′}, d{i,i′}) and a discrete controller
automaton whose braking strategy is as follows. The discrete controller automa-
ton is allowed to brake the vehicles i and i′ only if the sections of the track they
claim in d{i,i′} time units overlap. Given that the vehicles i and i′ are indeed
involved in such a claim overlap, there are two possible scenarios depending on
whether the vehicles i and i′ are traveling in succession, or on adjacent tracks. If
the vehicles are traveling in succession, then the vehicle i is instructed to brake
if it trails the vehicle i′; otherwise, the vehicle i′ is instructed to brake. On the
other hand, if the vehicles i and i′ are traveling on adjacent edges, the vehicle i
is instructed to brake either if only the vehicle i′ owns the merge point, or if
both or neither vehicles own the merge point and the vehicle i′ is traveling on
the edge of greater priority; otherwise, the vehicle i′ is instructed to brake.

Lemma 6. The protector graph-prot-pair{i,i′} guarantees that the graph-

vehicles automaton remains within G{i,i′} starting from S{i,i′} given R{i,i′}.

Lemma 7. The protector graph-prot =
∏
i,i′ ∈ I,i 6=i′ graph-prot-pair{i,i′}

for the graph-vehicles automaton guarantees
⋂
i,i′ ∈ I,i 6=i′ G{i,i′} in graph-

vehicles starting from
⋂
i,i′ ∈ I,i 6=i′ S{i,i′} given Pnot-overspeed.

Lemma 7 is shown by combining Lemma 6 and Theorem 3 and realizing that
the second condition of Theorem 3 does not hold.

6.5 Composing the Overspeed and Collision Protectors

In the previous sections, we presented example protectors whose correct oper-
ation required that the physical plant automaton at hand satisfied particular



properties. For example, in the case of the vehicles automaton of Section 5,
the overspeed protector os-prot of Section 6.1 assumes that none of the vehicles
collide among themselves and the collision protector cl-prot of Section 6.2 as-
sumes that none of the vehicles exceed the speed limit. Using Theorem 3 it can be
shown that the composition os-prot×cl-prot is a protector for the vehicles

automaton that guarantees that the vehicles in the vehicles automaton nei-
ther exceed the speed limit, nor collide among themselves. In fact, realizing that
the os-prot protector extends, virtually unchanged, to the merge-vehicles

and graph-vehicles automata, such composition results extend to the merge-

vehicles and graph-vehicles automata by composing the os-prot protector
with the merge-prot and graph-prot protectors, respectively.

7 Conclusions

In this paper, we demonstrate how formal analysis techniques using the hybrid
I/O automaton model can be applied to the specification and verification of hy-
brid systems whose structure adheres to the protection subsystem paradigm. We
propose a parameterized abstract protector model which allows simple specifi-
cation of an abstract protector for any hybrid system of this form. Such spec-
ification is obtained by defining the physical system, the start states, the sets
of guarantee and reliance, and the port and sampling period with which the
protector communicates with the physical plant. The proof of correctness of the
abstract model leads to simple correctness proofs of the protector implemen-
tations for particular instantiations of the abstract model. Finally, the compo-
sition of independent, and even dependent protectors under mild conditions,
guarantees the conjunction of the safety properties guaranteed by the individual
protectors. The examples presented in this paper show that the proposed for-
mal framework provides a precise and succinct protector specification, involves
simple and straight forward proof methodology, and scales to complex hybrid
systems through abstraction and modular decomposition.

Acknowledgments

We would hereby like to thank Dr. Steven L. Spielman of Raytheon Corporation
and Norman M. Delisle formerly of Raytheon Corporation for helpful discussions
regarding the PRT 2000TM. We are grateful for having the opportunity to develop
our formal modeling framework on the basis of a real application. We would
also like to thank the submission’s reviewers for their helpful suggestions and
constructive comments.

References

1. Michael S. Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control.
Doctor of Science Thesis, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts, June 1995.



2. Ekaterina Dolginova and Nancy A. Lynch. Safety Verification for Automated Pla-
toon Maneuvers: A Case Study. In Oded Maler, editor, Proc. International Work-
shop on Hybrid and Real-Time Systems (HART’97), volume 1201 of Lecture Notes
in Computer Science, pages 154–170. Springer-Verlag, 1997. The International
Workshop on Hybrid and Real-Time Systems took place in Grenoble, France, in
March 1997.

3. Rainer Gawlick, Roberto Segala, Jørgen Søgaard-Andersen, and Nancy A. Lynch.
Liveness in Timed and Untimed Systems. Technical Report MIT/LCS/TR-587,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, December 1993.

4. Rainer Gawlick, Roberto Segala, Jørgen Søgaard-Andersen, and Nancy A. Lynch.
Liveness in Timed and Untimed Systems. In Serge Abiteboul and Eli Shamir,
editors, Proc. 21st International Colloquium on Automata, Languages and Pro-
gramming (ICALP’94), volume 820 of Lecture Notes in Computer Science, pages
166–177. Springer-Verlag, 1994. The 21st International Colloquium on Automata,
Languages and Programming (ICALP’94) took place in Jerusalem, Israel, in July
1994. Full version appeared as Ref. 3.

5. Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel, editors. Hy-
brid Systems, volume 736 of Lecture Notes in Computer Science. Springer-Verlag,
1993. This volume of LNCS was inspired by a workshop on the Theory of Hybrid
Systems, held on Oct. 19–21, 1992 at the Technical University, Lyngby, Denmark,
and by a prior Hybrid Systems Workshop, held on June 10–12, 1991 at the Math-
ematical Sciences Institute, Cornell University.

6. Carolos Livadas. Formal Verification of Safety-Critical Hybrid Systems. Master of
Engineering Thesis, Dept. of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, September 1997.

7. John Lygeros. Hierarchical, Hybrid Control of Large Scale Systems. Doctor of Phi-
losophy Thesis, Dept. of Electrical Engineering and Computer Sciences, University
of California, Berkeley, May 1996.

8. John Lygeros, Datta N. Godbole, and Shankar Sastry. A Verified Hybrid Con-
troller for Automated Vehicles. In 35th IEEE Conference on Decision and Control
(CDC’96), pages 2289–2294, Kobe, Japan, December 1996.

9. John Lygeros and Nancy Lynch. On the Formal Verification of the TCAS Con-
flict Resolution Algorithm. In 36th IEEE Conference on Decision and Control
(CDC’97), San Diego, CA, December 1997. To appear.

10. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O
Automata. Technical Memo MIT/LCS/TM-544, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts, December 1995.

11. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid
I/O Automata. In R. Alur, T. Henzinger, and E. Sontag, editors, Proc. DI-
MACS/SYCON Workshop on Verification and Control of Hybrid Systems, Hybrid
Systems III: Verification and Control, volume 1066 of Lecture Notes in Computer
Science, pages 496–510. Springer-Verlag, 1996. The DIMACS/SYCON Workshop
on Verification and Control of Hybrid Systems took place in New Brunswick, New
Jersey, in October 1995.

12. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O
Automata. Preprint/Work in Progress. Preliminary versions appeared as Refs. 10
and 11, June 1997.

13. Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations —
Part II: Timing-Based Systems. Technical Memo MIT/LCS/TM-487.c, Labora-



tory for Computer Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts, April 1995.

14. Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations — Part II:
Timing-Based Systems. Information and Computation, 128(1):1–25, July 1996.
Preliminary version appeared as Ref. 13.

15. George J. Pappas, Claire Tomlin, and Shankar Sastry. Conflict Resolution in
Multi-Agent Hybrid Systems. In 35th IEEE Conference on Decision and Control
(CDC’96), Kobe, Japan, December 1996.

16. Amir Pnueli and Joseph Sifakis, editors. Special Issue on Hybrid Systems, volume
138, part 1 of Theoretical Computer Science. Elsevier Science Publishers, February
1995.

17. H. B. Weinberg, Nancy Lynch, and Norman Delisle. Verification of Automated
Vehicle Protection Systems. In R. Alur, T. Henzinger, and E. Sontag, editors,
Hybrid Systems III: Verification and Control, volume 1066 of Lecture Notes in
Computer Science, pages 101–113. Springer-Verlag, 1996.

A Derived Variables and Sets of the vehicles Automaton

Ei ∈ P(R), defined by Ei = [xi, xi + clen ].

collided(i, ∗) ∈ Bool, for i ∈ I, defined by collided(i, ∗) =
∨
i′ ∈ I,i′ 6=i collided(i, i′).

collided(∗, i) ∈ Bool, for i ∈ I, defined by collided(∗, i) =
∨
i′ ∈ I,i′ 6=i collided(i′, i).

collided(∗, i, ∗) ∈ Bool, for i ∈ I, defined by collided(∗, i, ∗) =collided(∗, i)∨collided(i, ∗).

VALID ⊆ states(vehicles), defined by

VALID ={p ∈ states(vehicles) |
1. @ i, i′ ∈ I, i 6= i′ such that the set p.Ei∩p.Ei′ is a positive length

closed interval of R.
2. p.ẋi ≥ 0, for all i ∈ I.
3. If ¬p.collided(∗, i, ∗) then p.ẍi ∈ [c̈min, c̈max], for all i ∈ I.
4. If ¬p.collided(∗, i, ∗) ∧ p.brake(i) then if p.ẋi = 0 then p.ẍi = 0

else p.ẍi = c̈brake, for all i ∈ I. }

stop-disti ∈ R≥0, for all i ∈ I, defined by

stop-disti = − ẋ2
i

2c̈brake

max-rangei(t) ∈ R≥0, for all i ∈ I and t ∈ R≥0, defined by

max-rangei(t) =


ẋi∆t+ 1

2
c̈max∆t

2 + ċmax(t−∆t),
where ∆t = min

(
t, ċmax−ẋi

c̈max

) if ẋi ≤ ċmax, and

ẋi∆t+ 1
2
c̈brake∆t

2 + ċmax(t−∆t),
where ∆t = min

(
t, ċmax−ẋi

c̈brake

) otherwise.

max-veli(t) ∈ R≥0, for all i ∈ I and t ∈ R≥0, defined by

max-veli(t) =

{
min(ċmax, ẋi + tc̈max) if ẋi ≤ ċmax, and

max(ċmax, ẋi + tc̈brake) otherwise.



Oi ⊆ R, for all i ∈ I, defined by

Oi = [xi, xi + stop-disti + clen ]

Ci(t) ⊆ R, for all i ∈ I and t ∈ R≥0, defined by

Ci(t) =
[
xi, xi + max-rangei(t)−max-veli(t)

2/(2c̈brake) + clen
]

B Auxiliary Sets for the vehicles Automaton

Poverspeed(i) ⊆ VALID, for i ∈ I, defined by

Poverspeed(i) = {p ∈ VALID | p.ẋi > ċmax}

Poverspeed ⊆ VALID, defined by Poverspeed =
⋃
i ∈ I Poverspeed(i).

Pnot-overspeed ⊆ VALID, defined by Pnot-overspeed = VALID− Poverspeed.

Pcollided(i,i′) ⊆ VALID, for i, i′ ∈ I, i 6= i′, defined by

Pcollided(i,i′) = {p ∈ VALID | p.collided(i, i′) = True}

Pcollided(i) ⊆ VALID, defined by Pcollided(i) =
⋃
i′ ∈ I,i′ 6=i Pcollided(i,i′).

Pcollided ⊆ VALID, defined by Pcollided =
⋃
i ∈ I Pcollided(i) =

⋃
i,i′ ∈ I,i6=i′ Pcollided(i,i′).

Pnot-collided ⊆ VALID, defined by Pnot-collided = VALID− Pcollided.

disjoint-extents(i, i′) ⊆ VALID, for i, i′ ∈ I, i 6= i′, defined by

disjoint-extents(i, i′) = {p ∈ VALID | p.Ei ∩ p.Ei′ = ∅}

PE ⊆ VALID, defined by

PE =
⋂

i,i′ ∈ I,i6=i′
disjoint-extents(i, i′)

disjoint-owned-tracks(i, i′) ⊆ VALID, for i, i′ ∈ I, i 6= i′, defined by

disjoint-owned-tracks(i, i′) = {p ∈ VALID | p.Oi ∩ p.Oi′ = ∅}

PO ⊆ VALID, defined by

PO =
⋂

i,i′ ∈ I,i6=i′
disjoint-owned-tracks(i, i′)

disjoint-claimed-tracks(i, i′, t) ⊆ VALID, for i, i′ ∈ I, i 6= i′, and t ∈ R≥0, defined by

disjoint-claimed-tracks(i, i′, t) = {p ∈ VALID | p.Ci(t) ∩ p.Ci′(t) = ∅}

PC(t) ⊆ VALID, for t ∈ R≥0, defined by

PC(t) =
⋂

i,i′ ∈ I,i6=i′
disjoint-claimed-tracks(i, i′, t)

PBij ⊆ VALID, defined by

PBij = {p ∈ VALID | p.brake-req(i, j) = True}


