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Abstract

In this paper, we demonstrate a high-level approach to modeling, analyzing, and verifying

complex safety-critical systems through a case study on the Traffic Alert and Collision Avoidance

System (TCAS) [1–3]; an avionics system that detects and resolves aircraft collision threats. Due

to the complexity of the TCAS software and the hybrid nature of the closed-loop system, the

traditional testing technique of exhaustive simulation does not constitute a viable verification

approach. Moreover, the detailed specification of the system software employed to date as a

means towards analysis and verification, neither help in intuitively understanding the behavior

of the system, nor enable the analysis of the closed-loop system behavior. We advocate defining

high-level hybrid system models that capture the behavior not only of the software, but also of

the airplanes, sensors, pilots, etc. In particular, we show how the core components of TCAS

can be captured by relatively simple Hybrid I/O Automata (HIOA) [4, 5], which are amenable

to formal analysis. We then outline a methodology for establishing conditions under which

TCAS guarantees sufficient separation in altitude for aircraft involved in collision threats. The

contributions of this paper are the high-level models of the closed-loop TCAS system and the

demonstration of the usefulness of high-level modeling, analysis, and verification techniques.
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1 Introduction

The Traffic Alert and Collision Avoidance System (TCAS) [1–3] is an on-board aircraft conflict

detection and resolution system used by all carrier aircraft in the US of more than 10 passengers.

TCAS’s task is to monitor air traffic in the vicinity of the aircraft, to alert the pilot to nearby

aircraft that may pose a collision threat, and to propose maneuvers so as to resolve these conflicts.

In practice, a safety-critical system such as TCAS is designed and implemented by undergoing

extensive phases of testing through simulation. Unfortunately, this approach in verifying the cor-

rectness of a complex system’s implementation has several shortcomings. First, as systems get

more complex and their behavior is enriched, the number of simulations required to provide a par-

ticular level of confidence increases exponentially. Second, regression testing dictates that when

modifications to the system are performed, the complete set of simulations must be reconducted

so as to make sure that the modifications did not compromise the safety and performance guaran-

tees of the system. Finally, and most importantly, the safety and performance guarantees obtained

through extensive simulations are not absolute; in fact, it is not even possible to provide conditional

performance guarantees, e.g., under certain assumptions, the system is guaranteed to perform as

required.

In an effort to alleviate the shortcomings of trying a posteriori to demonstrate a system’s correctness

through exhaustive testing, there has been considerable effort in applying formal specification and

analysis techniques to evaluate the correctness of such systems. Due to its safety-critical nature and

its great exposure, TCAS has been one of the few commercial systems for which formal modeling

and analysis has been attempted. Based on informally stated high-level specifications salvaged

from the early design stages and the actual software implementation of TCAS, a state-machine

model of the behavior of the TCAS system has recently been compiled [6]. After applying software

refinement techniques [7] to guarantee that the TCAS software is truly implementing its higher-level

specifications, the specifications in turn are subsequently used as a basis for analyzing the behavior

of the TCAS system. Unfortunately, it is our belief that such techniques, carried out either prior

to, or after a system’s design and implementation, begin specifying the system and modeling its

behavior at relatively detailed levels. In so doing, the intuitive understanding of the behavior

of the system is overshadowed by the details and technicalities present in the detailed low-level

specifications. Moreover, such techniques focus their attention only on the software components of
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the system at hand and, therefore, do not model the system as a whole. It is plausible that this

approach neglects to model possibly hazardous aspects of the system’s behavior.

In this paper, we demonstrate a high-level approach for modeling and analyzing complex safety-

critical systems for which a “certain level of confidence” in the system’s performance is insufficient.

We advocate obtaining precise mathematical models of all core components of the closed-loop

system at hand and reasoning about the system’s closed-loop performance at a high level. The

advantages of this approach are numerous. First, modeling all components of the system at hand

provides a complete characterization of the behavior of the system — behavior not limited to the

discrete or software components of the system. Second, modeling the system at a high level of ab-

straction captures the intuitive understanding of the behavior of the system — often, this intuition

is lost when systems are solely specified at extreme detail by the system designers. Thirdly, when

analyzing the behavior of the system model, we can take advantage of formal notions of composition

and model refinement. Composition enables the reasoning about a system’s components in isola-

tion and the subsequent use of the component-wise results when reasoning about the system as a

whole. Model refinement enables the successive refinement of a system’s model while guaranteeing

that the lower-level models are indeed implementations of the higher-level models. In so doing,

properties shown to be true of the behavior of more abstract models extend to more refined models

without any proof obligations. Finally, this approach has several advantages in terms of testing the

correctness or performance of the system at hand. The task of producing the mathematical model

of the system exposes both assumptions made by the system designers and design errors. Moreover,

once a precise system model has been specified, corrections resulting from errors can easily be made

without the high overhead of regression testing. Finally, under explicitly stated assumptions, we

are able to obtain absolute system safety and performance guarantees. The methodology presented

here has already been successfully applied to various safety-critical transportation systems, such

as automated highways [8], personal rapid transit systems [9, 10], train gate controllers [11], and

the Center-TRACON Automation System (CTAS) [12]. Although our current work concentrates

on the verification of systems that have already been designed and implemented, we believe our

approach would be more useful during a system’s design phase.

The overall TCAS system is hybrid, involving both continuous and discrete dynamics; the former

arise from the aircraft, sensors, and pilot reaction and the latter from the thresholds and discrete
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message passing among aircraft. In order to model both the discrete and continuous aspects of

the behavior of TCAS, we use the mathematical formalism of Hybrid I/O Automata (HIOA) [4,5].

The verification techniques we use involve a combination of techniques from control theory and

distributed algorithms.

We proceed by briefly surveying the prior work in the area of applying formal analysis techniques

to air traffic management systems and then present the hybrid I/O automaton model. In Sec-

tion 4.1, we describe the TCAS system in more detail and present a HIOA model of each of the

core components of the TCAS system. In Section 5, we present a conditional safety analysis of

an idealized closed-loop system comprised of a pair of aircraft. The proof involves splitting the

aircraft encounters into categories and defining safety conditions for each such category. Finally, by

combining the per-category safety conditions we obtain overall safety conditions. In Section 6, we

conclude and suggest future research directions. Earlier versions of this work has been presented

in Refs. 13 and 14.

2 Prior Work

The safety-critical nature of air traffic management systems and the inadequacy of current system

and software verification techniques have guided system designers toward formal approaches in

specifying, modeling, and analyzing system behavior. To our knowledge, formal modeling and

analysis techniques have been used to model and verify two systems in the area of air traffic

control and management: the Traffic Alert and Collision Avoidance System (TCAS) — an on-

board aircraft conflict detection and resolution system used by all carrier aircraft in the US of more

than 10 passengers — and the Center-TRACON Automation System (CTAS) — a system used at

several airports to assist air traffic controllers in scheduling the arrival and departure of aircraft in

the vicinity of the airports.

In an attempt to design a formal specification language for complex software systems and while

focusing on TCAS as their primary case study, Leveson et al. have developed the Requirements State

Machine Language (RSML) [6], a formal modeling language designed for requirements specification

of process control systems. This language was designed based on prior formalisms for modeling

complex systems, such as StateCharts [15] etc., and focuses primarily on providing simple system
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specifications that capture the essence of the systems at hand and are readable, understandable,

and primarily usable by the designers and users of the system alike. The RSML specifications

of TCAS produced by Leveson et al. [6] have actually become the official TCAS specifications.

Recently, Leveson et al. [16] have been developing a process of producing system specifications that

focus on capturing the high-level system goals and requirements as well as the design decisions

and assumptions made during a system’s design phase. The resulting specifications, which are

coined Intent Specifications to indicate that they capture the intents of the system designers, are

geared towards capturing the intuitive understanding of the system being specified while noting the

assumptions and rationale behind design decisions. Moreover, their multi-level structure provides

an easy description of the system through which high-level reasoning about the behavior of the

system is possible. Leveson et al. argue that intent specifications are the preferred specification

format that can be used to study, maintain, and revise the design of a complex system. In fact, they

are designed so as to be easily readable and understandable by all the people involved in the design

and use of such systems — in the case of TCAS, this would involve the designers of TCAS, air

traffic controllers, aircraft pilots, as well as newcomers who may be asked to update and augment

the system.

There have been several efforts in studying the CTAS system. From a formal modeling and analysis

perspective, Lygeros et al. [12] produced a high-level HIOA-based model of the CTAS system. The

correctness analysis of the system was however deferred to future research. In the area of software

analysis, Jackson, Chapin et al. [17], studied the structure of the software involved in the CTAS

system and discovered that, due to fear of software redesign and to the continuous addition of new

functionality, the CTAS’s software has become complicated and inefficient. After redesigning a core

component of CTAS’s software, they concluded that basic software engineering techniques and new

technology can make the system much simpler, easier to reason about, maintain, and augment.

3 Hybrid System Modeling Formalism

The modeling formalism used in this paper is the hybrid I/O automaton (HIOA) model [4,5]. This

model is an extension of the timed I/O automaton (TIOA) model [18, 19] and allows the explicit

treatment of continuous behavior. In this section, we introduce the HIOA model and describe how

this model can be used to model, analyze, and verify hybrid systems. For a detailed presentation
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of the HIOA model, the reader is referred to Refs. 4 and 5.

In the HIOA modeling formalism, a system is modeled as a collection of hybrid I/O automata each

of which specifies the discrete and continuous behavior of a particular component of the system.

Each of these hybrid I/O automata is a (possibly) infinite state machine whose states are the

valuations of a set of variables. The discrete behavior of a system is modeled by “jumps” in the

state of its HIOA model, whereby the valuation of the system’s state variables changes. These

discrete jumps are specified as labeled transitions whose labels are the actions that carry out the

transition from the initial to the final state of the jump. All possible jumps in a HIOA’s state as

a result of the execution of an action comprise the set of discrete transitions of the HIOA. The

continuous behavior of a system is modeled by the continuous evolution of the valuation of the

variables of the system model as time advances; that is, the continuous behavior of an HIOA model

is specified by the set of trajectories of the state variables of the automaton. The external interface

of an HIOA with its environment is dictated by the partition of its variables and its actions into

three categories: input, internal, and output. Input variables and actions model the variables and

actions of the environment that are exposed to the HIOA and over which the HIOA has no control.

Internal variables and actions specify the internal functionality of the HIOA and are not exposed

to the environment. In addition to modeling the behavior of the system, internal variables and

actions are often used for bookkeeping purposes. Output variables and actions comprise the state

and the discrete behavior of the system model that is exposed to the environment and over which

the HIOA has control. Thus, the HIOA comprising the system model “communicate” through their

shared input and output variables and actions.

In the following sections, we present a more detailed definition of hybrid I/O automata and give a

brief comparison of HIOA and other hybrid system modeling formalisms.

3.1 Hybrid I/O Automata

A hybrid I/O automaton A = (U,X, Y,Σin,Σint,Σout,Θ,D,W) consists of three disjoint sets U , X,

and Y of variables (input, internal, and output variables, respectively), three disjoint sets Σin, Σint,

and Σout of actions (input, internal, and output actions, respectively), a non-empty set Θ of initial

states, a set D of discrete transitions, and a setW of trajectories over V , where Σ = Σin∪Σint∪Σout

and V = U ∪ X ∪ Y . The initial states, the discrete transitions, and the trajectories of a HIOA
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must satisfy several technical conditions which are omitted here.

The set of all valuations of V , or equivalently the set of all states of A, is denoted by V , or

equivalently states(A). The initial states of A denote the states from which the evolution of the

system is restricted to begin. When analyzing a HIOA A, it is often useful to define derived

variables for A. Such variables are functionally dependent on the variables of the automaton A

and, although useful in the analysis of A, are not essential in its definition.

Input variables and actions model the variables and actions of the environment that are exposed

to the HIOA and over which the HIOA has no control. Thus, the input actions of A are always

enabled; that is, an action a in Σin can be scheduled at any point in time. In order to model the

scheduling of an action outside the HIOA A that is unobservable by A except possibly through

discrete changes in the valuation of its input variables, the set of input actions Σin always contains

the environment action, e. When this action is scheduled the valuation of the input variables of the

automaton A may arbitrarily change, in effect modeling the environment’s control over the input

variables. In the special case when the valuation of the input variables does not change upon the

scheduling of an environment action, the environment action is referred to as stuttering.

The set of discrete transitions D is comprised of all triples (s, a, s′) (or equivalently s
a→ s′), each of

which denote the discrete transition of the HIOAA from a state s to a state s′ through the scheduling

of the action a ∈ Σ. By convention, the set of discrete transitions of A is specified by collectively

describing all discrete transitions involving each action a in Σ in precondition-effect format. This

format is comprised of a label, a precondition, and an effect clause. The label corresponds to the

label of the action a. The precondition is a predicate over the variables of A and specifies the

conditions under which the action a is enabled; that is, the precondition defines the set of states

in which the action a may be scheduled. However, the scheduling of an action a in Σ is not

required whenever it is enabled. The valuation of the precondition of an action a in a state s

is denoted by s.Pre(a). The effect clause specifies the pseudo-code that must be applied to the

pre-state of a discrete transition involving the action a so as to yield the post-state of the discrete

transition. It follows that, in order for (s, a, s′) to be a discrete transition of A, the precondition in

the specification of the action a must be satisfied by the pre-state s, i.e., s.Pre(a) must evaluate to

True. Moreover, the application of the pseudo-code in the effect clause of the specification of the

action a to the pre-state s must yield the post-state s′. Note that since input actions are always
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enabled, they have no preconditions, i.e., for any a in Σin, it is the case that Pre(a) ≡ True.

The set of trajectories W is a set of functions from intervals of time to valuations of the variables

of A. For a trajectory w of A, w ∈ W, and an instant in time t in the domain of w, t ∈ dom(w),

w(t) represents the valuation of the variables of the HIOA t time units into the trajectory w. The

limit time of a trajectory w ∈ W, denoted by w.ltime, is defined to be the supremum of the domain

of w, dom(w). We define the first state of w, denoted by w.fstate, to be the state w(0). Moreover,

if the domain of w is right-closed, then we define the last state of w, denoted by w.lstate, to be the

state w(w.ltime). The set of trajectories W of A is specified by pseudo-code which describes the

properties that any trajectory w involving the variables of A must satisfy in order to be a trajectory

of A. By convention, the trajectory pseudo-code consists of a collection of predicates all of which

must be satisfied throughout any trajectory w of A.

The evolution of the system as time advances is described by hybrid executions — finite or infinite

alternating sequences of trajectories and actions. More formally, a hybrid execution fragment α of A

is a finite or infinite alternating sequence w0a1w1a2w2 · · · , where wi ∈ W, ai ∈ Σ, and if wi is not the

last trajectory of α then wi is right-closed and the discrete transition (wi.lstate, ai+1, wi+1.fstate)

is in D (or equivalently wi.lstate
ai+1−→A wi+1.fstate). The set of all execution fragments of A is

denoted by execs(A). If the first state of α is an initial state, i.e., w0.fstate ∈ Θ, then α is a hybrid

execution of A. A hybrid execution α of A is finite if it is a finite sequence and the domain of its

final trajectory is a right-closed interval. A hybrid execution α of A is admissible if α.ltime =∞.

The hybrid trace of a hybrid execution fragment is defined as the evolution of the input and output

variables of the HIOA; that is, the externally visible part of the hybrid execution. More formally,

the hybrid trace of a hybrid execution fragment α of A, denoted by h-trace(α), is the sequence

obtained by projecting α onto the external variables of A and subsequently removing all inert

internal and environment actions. The set of hybrid traces of A, denoted by h-traces(A), is the set

of hybrid traces that arise from all the finite and admissible hybrid executions of A.

Since the valuation of the variables of an automaton A can change instantaneously, the variables

of A can have multiple valuations at the same instant in time. However, it is possible to specify

particular occurrences of states by designating the trajectory within which the state occurs and the

time elapsed from the beginning of the trajectory to the point in time of the particular occurrence

of the state within the given trajectory. Thus, we introduce the notion of superdense time in an
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execution fragment α of A as a pair (i, t), where t ≤ wi.ltime. We totally order superdense times

in α lexicographically; that is, superdense times, e.g., (i, t) and (i′, t′), are ordered first by the

index of the trajectory, e.g., i and i′, and then by their trajectory times, e.g., t and t′. Finally, an

occurrence of a state s in α is specified by a triple (i, t, s) such that (i, t) is a superdense time in

α and s = wi(t). State occurrences in α are ordered according to their superdense times.

Two HIOA A1 and A2 are said to be comparable if they have the same external interface, i.e.,

U1 = U2, Y1 = Y2, Σ
in
1 = Σin

2 , and Σout
1 = Σout

2 . In the HIOAmodel, the notion of an implementation

relation is given by inclusion of the sets of hybrid traces; that is, provided that the A1 and A2 are

comparable, A1 implements A2 if every external behavior of A1 is allowed by A2, i.e., h-traces(A1) ⊆

h-traces(A2). In this setting, A1 and A2 are referred to as the implementation and the specification,

respectively. We often use the notation A1 ≤ A2 to denote that the hybrid traces of A1 are included

in those of A2; that is, A1 ≤ A2
∆
= h-traces(A1) ⊆ h-traces(A2) and, thus, A1 ≤ A2 implies that A1

implements A2.

The composition of two HIOA is defined as their synchronization on shared input/output variables

and input/output actions. Two HIOA A1 and A2 can only be composed if they are compatible; that

is, if Xi∩Vj = Yi∩Yj = Σint
i ∩Σj = Σout

i ∩Σout
j = ∅, for i, j ∈ {1, 2}, i 6= j. If A1 and A2 are compat-

ible then their composition A1×A2 is defined to be the tuple A = (U,X, Y,Σin,Σint,Σout,Θ,D,W)

given by U = (U1 ∪U2)− (Y1 ∪ Y2), X = X1 ∪X2, Y = Y1 ∪ Y2, Σ
in = (Σin

1 ∪Σin
2 )− (Σout

1 ∪Σout
2 ),

Σint = Σint
1 ∪ Σint

2 , Σout = Σout
1 ∪ Σout

2 , Θ = {s ∈ V | sdV1 ∈ Θ1 ∧ sdV2 ∈ Θ2}, and sets of

discrete transitions D and trajectories W each of whose elements projects to discrete transitions

and trajectories, respectively, of A1 and A2. It is important to note that the composition of two

HIOA results in a HIOA. Moreover, composition respects the implementation relation, i.e., sup-

posing B is a HIOA, if the HIOA A1 implements the HIOA A2, then the composition of A1 with

B implements the composition of A2 with B.

Most of the proofs in the HIOA framework use invariant assertions and simulations. In the case of

invariant assertions, the proofs are by induction on the length of a hybrid execution of the HIOA.

Such proofs show that a particular predicate on the state of the HIOA is satisfied in every state

of the execution. A simulation is a mapping between the states of two HIOA and is used to prove

that one HIOA implements another. The fact that the mapping is indeed a simulation is again

done by induction on the length of a hybrid execution of the implementation. This induction
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matches up individual steps in the implementation with either single steps, or sequences of steps,

in the specification; in effect, it is shown that each step of the implementation is allowed by the

specification. Simulations are very useful because they promote reasoning about systems at a high

level of abstraction. Suppose that we have shown that an abstract HIOA model of a system exhibits

a particular property and that we want to show that the same property holds for a more refined

HIOA model of the system. One approach is to start from scratch and try to generate a new proof

of the property for the refined model. An alternative approach is to show, through a simulation,

that the refined model of the system actually implements the abstract model. In so doing, all the

properties that have been shown to hold for the abstract model extend to the refined model without

any proof obligations. The latter approach can greatly reduce the amount of work needed to extend

results from more abstract to more refined models. This technique often results in multiple models

of the system spanning several levels of abstraction.

To date, the proofs in all our case studies of hybrid systems have been conducted by hand. However,

it is our belief that software support can be employed to assist in the various proof obligations.

Moreover, we believe that given a sufficiently detailed HIOA model of a system, the software for

the discrete parts of the actual system could be generated automatically such that, by construction,

the software is a truthful implementation of its more abstract specifications.

3.2 Related Modeling Formalisms

The recent interest in the formal verification of real-time and hybrid systems has resulted in a

number of techniques to model and analyze their behavior. In particular, models that are analogous

to the timed I/O automaton model [18,19] are the models of Alur and Dill [20], Lamport [21], and

Henzinger, Manna, and Pnueli [22]. As is the case with the timed I/O automaton model, these

models have also been extended to the hybrid setting; for instance, the timed transition model [22]

has been extended to the phase transition model [23,24]. Hybrid I/O automata are also analogous to

phase transition models [23–26], from which they were actually inspired — the discrete transitions

and the trajectories of hybrid I/O automata correspond to the transitions and the activities of

phase transition systems. The hybrid system model [25,26] is similar to the phase transition model

with the distinction that, as in the hybrid I/O automaton model, discrete transitions are labeled,

thus allowing the appropriate synchronization of composed automata. The distinction between the
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hybrid system model [25,26] and the hybrid I/O automaton model lies in the latter’s classification

of the variables and discrete transitions into input, internal, and output.

4 The TCAS System

A common paradigm in managing and controlling safety-critical systems has been to separate the

system control into operation and protection. The operation aspect of the control is geared towards

the normal operation of the system at hand and is optimized for functionality and performance. For

large and complex systems, this translates into large and complex control systems whose reliability

is questionable. The protection aspect of the control is responsible for the control of the system in

case of emergency; that is, it is responsible for preventing hazards. By keeping the complexity of

the protection subsystem low, system designers hope to increase the reliability of the closed-loop

system. In the case of air traffic management and control, the operation of the system is handled by

the air traffic controllers who instruct the aircraft pilots to follow specific flight paths. However, due

to the complexity of the system it was deemed appropriate to design a protection system that alerts

pilots to nearby aircraft posing mid-air collision threats and proposes threat resolution maneuvers.

This protection system is denoted the Traffic Alert and Collision Avoidance System (TCAS).

TCAS has evolved through a series of versions. The first version, TCAS I [1] (originally named the

Beacon-Based Collision Avoidance System (BCAS)), issues a proximity warning or Traffic Advisory

(TA) to alert a pilot to nearby aircraft that pose a mid-air collision threat. Airline regulations

dictate that pilots should not undertake maneuvers in response to TAs, unless the aircraft posing

the mid-air collision threat has been visually acquired. TCAS I has already been deployed and is

mandatory for all carrier aircraft of 10 to 30 passengers operating within the US airspace.

The second version of TCAS, TCAS II [1–3], extends the functionality of its predecessor by propos-

ing maneuvers that resolve the mid-air collision threats posed by nearby aircraft. In particular,

TCAS II enters one of two levels of alertness. In the lower level, the system issues a Traffic Ad-

visory (TA), to inform the pilot of a potential threat, without providing any suggestions on how

to resolve the situation. If, however, the danger of collision increases TCAS II issues a Resolution

Advisory (RA); that is, it proposes to the pilot a flight maneuver that is supposed to resolve the

mid-air collision threat. Airline regulations dictate that pilots should abide by the RAs proposed

11



by the TCAS system, unless after visually acquiring the aircraft posing the mid-air collision threat

a better resolution strategy is available. The RAs issued by TCAS II are restricted to the vertical

plane. In particular, resolution maneuvers instruct the pilots to refrain from climbing or descending

faster than a given ascent or descent rate, respectively. When all aircraft involved in the mid-air

collision threat are TCAS equipped, TCAS II uses a symmetry-breaking communication protocol

so as to determine consistent resolution maneuvers for each aircraft. For example, in the case of

two aircraft, one of the two aircraft should be instructed not to climb faster than a given ascent

rate and the other not to descend faster than a given descent rate. Following the determination

of a consistent set of maneuvers, the maneuvers are continuously presented to the pilots until the

mid-air collision threat has been resolved; that is, until TCAS II deems that the aircraft no longer

pose a mid-air collision threat to each other.

Following extensive field testing and feedback from pilots and air traffic controllers, TCAS II evolved

through a series of minor revisions from its initial version to TCAS II-6.04A [2]; the version of TCAS

that is currently standard for all carrier aircraft of more than 30 passengers operating within the

US airspace. Many of the minor revisions were conducted due to oversensitivity of the system,

which would frustrate air-traffic controllers and make pilots reluctant to using the TCAS system.

The functionality of TCAS II-6.04A was further extended to allow RA reversals. This version of

TCAS, TCAS II-7 [3, 27], continuously monitors and reevaluates the effectiveness of its previously

issued RA. If at any point in time TCAS II determines that, while the RA currently being issued

fails to resolve the conflict, the reversed RA resolves the conflict, it is capable of reversing the

sense of the previously issued RA. In order to avoid situations in which TCAS induces successive

reversals, TCAS II-7 is only allowed to reverse once. After recently being tested through extensive

simulation [28], TCAS II-7 has been adopted by the International Civil Aviation Organization

(ICAO) as the international standard and is mandatory for all new carrier aircraft.

Future versions of TCAS are already at the conceptual and development stage. TCAS III was

intended to augment the functionality of TCAS II-7 by allowing RAs both in the horizontal and

vertical planes. However, the complexity of augmenting the already complex TCAS II-7 system

and the then inaccurate sensing hardware resulted in the abandonment of TCAS III early in its

conceptual stage. The recent advancement in sensor technology and the potential use of the Global

Positioning System (GPS) for accurate position measurement, has revived the plans of horizontal
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RAs in the latest version of TCAS, TCAS IV.

It should be stressed that TCAS is a commercial product, intended for use on passenger aircraft.

Therefore human factors issues, such as the comfort of the pilot, the passengers, and the air

traffic controllers, also need to be considered. Studies indicate that pilots get uncomfortable when

presented with advisories of very short duration or with a sequence of conflicting advisories. The

passenger comfort requirement imposes a limit on the accelerations that can be employed in a

maneuver. Finally, air traffic controllers dislike maneuvers that result in large and abrupt changes

of altitude, as they conflict with their standard way of arranging air traffic. Indeed, in all version of

the TCAS system, a substantial fraction of the TCAS functionality is devoted to such objectives.

4.1 Modeling TCAS Using HIOA

In this paper, we focus our attention on TCAS II-7; the version of TCAS II that is capable of

RA reversals. Our model of the TCAS system is based on the low-level specifications of TCAS II-

7 [3,27]. Following the functional breakdown in TCAS’s specifications, our model of the closed-loop

TCAS system is comprised of the components shown in Figure 1. While generating the component

models, the input and output variables and actions of each of the component HIOA are chosen

so as to correspond to the actual interfaces of the closed-loop system components. Since we want

to evaluate the resolution aspects of TCAS, we model all aspects of the TCAS system relating

to RAs and ignore those relating to TAs. Moreover, in order to keep the analysis tractable, we

remove the functionality of TCAS that is devoted to human factors concerns. Finally, even though

TCAS II-7 is capable of issuing TAs and RAs for conflicts involving multiple aircraft, our model

is restricted to conflicts involving only two aircraft. In the following subsections, we describe the

abstract models of each of the components of the closed-loop system shown in Figure 1. Once again,

we stress that the models presented in this section are abstract models of the system components

and are intended for reasoning about the behavior of the closed-loop system at a high level of

abstraction. As greater familiarity is gained with the system and more specific questions need to

be answered, the component models may be refined so as to model the behavior of the system in

more detail. Throughout the following subsections, we propose various such refinements for the

component models of the closed-loop TCAS system. The formal models of all components are

presented in Appendixes A–F. Earlier versions of these models appeared in Refs. 13 and 14.
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Modeling the closed-loop TCAS system using HIOA has several advantages. First, in contrast with

prior modeling approaches, which focus on modeling and verifying only the software components of

the closed-loop system, HIOA can be used to model all aspects of the closed-loop system; that is,

in addition to the various components comprising the TCAS system, we model the behavior of the

pilots, the dynamics of the aircraft, and the communication channels. Second, by modeling each of

the functional components of the system as a separate HIOA, we obtain a model that captures the

inherent modularity in the system and promotes the understanding of both the system behavior and

the component interaction. Moreover, by taking advantage of the formal notion of composition in

the HIOA model, results obtained by analyzing the behavior of the component models in isolation,

extend directly to the closed-loop system. Finally, using the HIOA model we can take full advantage

of model refinement; that is, properties shown to be true of more abstract models can be extended

to more refined models by showing that the more refined models are indeed implementations of

their more abstract counterparts. This can greatly reduce the amount of work needed to extend

safety results from more abstract to more refined models. Moreover, since each of the components

of the closed-loop system is modeled by a HIOA, we can selectively refine only the models of the

components whose detailed behavior is essential in the safety and performance analysis. Essentially,

by having a modular HIOA based model of the closed-loop system, we can focus our attention on

the components whose behavior is more important.
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The following sections make use of the nomenclature, constants, data types, and parameters sum-

marized in Table 1.
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Table 1: Nomenclature, Constants, Data Types, and Parameters.

Nomenclature:

⊥ — the undefined element or variable valuation
Constants:

RMAX = 12 nmi
RDTHR = 10 ft/s
NomStr = 1500 ft/min
IncStr = 2500 ft/min
2NomStr = 3000 ft/min

Data Types:

Dir = {Climb,Descend}
Dir⊥ = Dir ∪ {⊥}
Strengths = {−2000,−1000,−500, 0, 1500, 2500}(ft/min)
Aircraft = {1, 2}
Othersi = Aircraft \ {i}, for all i ∈ Aircraft

Parameters:

ALIM — Minimum Allowable Vertical Separation (ft)
DMOD — Threat Minimum Range Threshold (nmi)
H1 — Threat Minimum Divergence Threshold (nmi2/s)
TRTHR — Threat Modified Tau Threshold (s)
ZT — Threat Altitude Threshold (ft)
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4.1.1 Aircraft Model

The model of the aircraft is intended to capture the flight of the aircraft and the interface of the

aircraft with the sensor automata used to measure each aircraft’s state. In so doing, we must

adopt flight dynamics for the aircraft, describe the avionics equipment the aircraft, and specify

the interface of the aircraft automaton with the sensor automata. In view of simplicity, we adopt

very simple aircraft dynamics and assume that the aircraft output their exact state to the sensor

automata. We thus defer the introduction of sensor uncertainty to the sensor automata.

Each aircraft, i ∈ {1, 2}, is modeled by the HIOA Ai = (UAi
, XAi

, YAi
, Σin

Ai
, Σint

Ai
, Σout

Ai
, ΘAi

,

DAi
, WAi

) (Appendix A). At this stage we assume there are no output or internal actions and no

input action (other than the environment action), that is Σin
Ai

= {e}, Σint
Ai

= Σout
Ai

= ∅. At a later

stage appropriate actions can be added to model discrete changes in the physical system, such as

malfunctions.

The avionics hardware with which each aircraft is equipped, is specified by the output variable

Equipmenti ∈ {None, Report, TCAS}; an aircraft could have either no avionics hardware, or an

altitude reporting transponder, or, finally, an altitude reporting transponder and TCAS. When

an aircraft is equipped with an altitude reporting transponder, the aircraft can be identified by its

unique transponder identifier, which is specified by the output variableMode Si ∈ N. All the aircraft

considered in our analysis are assumed to be equipped with an altitude reporting transponder; that

is, a Mode S variable is defined for all aircraft, and Mode Si 6= Mode Sj , for all i, j ∈ {1, 2}, j 6= i.

The unique Mode S identifier is used by TCAS for the purposes of symmetry braking; the smaller

an aircraft’s Mode S identifier the higher the aircraft’s priority. At this stage the variables Mode Si

and Equipmenti are assumed to have trivial dynamics: they simply maintain their initial value. At

a later stage more complicated dynamics may be added to model malfunctions that may change

the status of the aircraft.

The physical movement of the airplane i is summarized by the trajectories of its position and

velocity. Let pi = (xi, yi, zi) ∈ R3, vi = (vxi, vyi, vzi) ∈ R3 and ai = (axi, ayi, azi) ∈ R3 be the

position, velocity, and acceleration of the aircraft i with respect to some fixed reference frame on

the ground. We assume that all trajectories in WAi
satisfy the differential equations ṗi(t) = vi(t)

and v̇i(t) = ai(t). We assume that the aircraft acceleration is under the direct control of the pilot
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and set YAi
= {Mode Si, Equipmenti, pi, vi}, UAi

= {ai}, and XAi
= ∅. The aircraft dynamics

we use are very simple and ignore important aircraft characteristics such as the details of the

aerodynamic forces, high frequency modes (due for example to flexion of the wings), the effect of

structural controls (such as the flaps), and input constraints (such as those imposed by the aircraft

engine). As the maneuvers required by TCAS are unlikely to excite high order dynamics, induce

input saturation, etc., these simple aircraft dynamics are deemed sufficient for our analysis.

4.1.2 Sensors

Each aircraft is equipped with sensors that return information about its state and the state of

neighboring aircraft. In particular, a number of hardware and software components contribute

information to TCAS, e.g., the aircraft’s radio and pressure altimeters (which measure the air-

craft’s altitude), the aircraft’s radar (which measures the range of neighboring aircraft), and the

Mode S transponders of other aircraft (which advertise the altitude of their respective aircraft).

The information that the sensors receive is quantized spatially and sampled temporally. In fact,

the data provided from the measuring devices (altimeters, radar, and transponders) can sometimes

be quantized roughly; for example, although the transponders of nearby aircraft quantize the al-

titudes they report at either 25ft or 100ft increments, the altitude and range measured by each

aircraft is typically quantized finer. In order to “smooth” the received data and produce estimates

of the range and altitude rates of all aircraft, the data provided by the measuring devices is filtered.

These filters are effectively simplified versions of the Kalman filter and are known as the “α-β-γ

tracker” for the range data, and the “α-β tracker” for the altitude data. If the quantization of the

altitude data is coarse (100ft) a nonlinear filter known as the “level-occupancy-time algorithm” is

used instead. In our model model of the aircraft sensors, we ignore the operation of these filters

and the rules for switching between them.

The sensors of aircraft i are modeled by the HIOA Si = (USi
, XSi

, YSi
, Σin

Si
, Σint

Si
, Σout

Si
, ΘSi

,

DSi
, WSi

) (Appendix B). The input variables of Si are the positions and velocities of all aircraft,

USi
= {pj , vj}j∈{1,2}. The output variables of Si are estimates of the altitude, hij ∈ R, and vertical

rate, ḣij ∈ R, for all aircraft and the distance (range), Rij ∈ R+, and its rate, Ṙij ∈ R, between

aircraft i and the neighboring aircraft, j. In other words, YSi
= {hij , ḣij}j∈{1,2} ∪ {Rij , Ṙij}j 6=i. At

this stage the sensor automaton is assumed to have no input or internal actions (Σin
Si

= Σint
Si

= ∅).
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We assume that the output variables of the sensor automaton fall within an interval centered at the

“correct” values dictated by the actual state of the system. Let nAi, nARi, nRi, and nRRi denote

the width of the error intervals for hij , ḣij , Rij , and Ṙij respectively, and [a± b], for b ≥ 0, denote

the interval [a− b, a+ b]. The output variables of the sensors are updated every TSi
seconds, upon

the occurrence of an output action Samplei. We set Σout
Si

= {Samplei}. An internal variable tSi
∈ R

keeps track of the time that has elapsed since the last sample. Upon occurrence of Samplei the

value of hij is reset to a new value in the interval [zj ±nAi] (and similarly for the remaining output

variables of the sensor).

We assume nAi, nARi, nRi, and nRRi are constant; in a more refined model of the sensors, these

quantities may constitute internal variables so as to model, for example, the effect of switching

between filtering algorithms. In the current TCAS implementation data can be sampled at either

a high (TSi
= 1 second) or a low (TSi

= 5 seconds) rate. In our analysis, we assume that TSi
= 1

throughout. If changes in the sampling rate need to be modeled at a later stage, TSi
can be

considered as an internal variable whose value changes whenever the sampling rate does.

If in future analyses of the TCAS system a more refined model of the aircraft sensors is required, one

may define and subsequently prove that the composition of more detailed automata representing

the various sensory components implement the abstract sensor automaton Si presented in this

section.

4.1.3 Conflict Detection

The conflict detection automaton models the component of TCAS that is responsible for detecting

whether neighboring aircraft pose a mid-air collision threat and whether previously declared threats

have been resolved. The conflict detection automaton monitors the state of the aircraft provided

by the sensor automaton and schedules actions that are used to declare and undeclare threats.

The conflict detection module is modeled by the HIOA Di = (UDi
, XDi

, YDi
, Σin

Di
, Σint

Di
, Σout

Di
,

ΘDi
, DDi

, WDi
) (Appendix C). The input variables of Di are the output variables of Si, as

well as boolean variables Threatij which indicate whether the conflict resolution module is already

aware of the threat. Overall, UDi
= YSi

∪ {Threatij}j 6=i. At this stage Di is assumed to have no

input or internal actions (Σin
Di

= Σint
Di

= ∅) and no internal or output variables (XDi
= YDi

= ∅).
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Aircraft j is declared a threat by aircraft i upon the occurrence of an output action Declareij

and ceases to be regarded as a threat upon the occurrence of an output action Undeclareij , i.e.,

Σout
Di

= {Declareij ,Undeclareij}j 6=i.

Two derived boolean variables, Range Testij and Altitude Testij , are used to determine the precon-

ditions of the Declareij and Undeclareij output actions. The Range Testij encodes the conditions

that the range and range rate of aircraft j with respect to aircraft i need to satisfy for aircraft j to

be declared a threat by aircraft i.

Range Testij =((Ṙij > RDTHR) ∧ R̂1)

∨ ((Ṙij ≤ RDTHR) ∧ R̂2)

with

R̂1 = (Rij ≤ DMOD) ∧ (RijṘij ≤ H1) , and

R̂2 = (Rij ≤ RMAX) ∧





Rij − DMOD2

Rij

min{Ṙij ,−RDTHR}
< TRTHR





RMAX is a system constant equal to 12nmi. RDTHR is a system constant equal to 10ft/s. DMOD (or

Threat Minimum Range Threshold, units of nmi), H1 (or Threat Minimum Divergence Threshold,

units of nmi2/s), and TRTHR (or Threat Modified Tau Threshold, units of s) are system parameters

whose values are determined by the pilot-selected sensitivity and the ground-station-commanded

sensitivity of TCAS.

The Altitude Testij estimates the vertical separation between the aircraft i and j at the “time of

closest approach”; that is, the vertical separation of the aircraft i and j at the time when their

spatial separation is minimum. TCAS’s estimate of the time to closest approach, τij , is given by:

τij = −
Rij

min{Ṙij ,−10}

21



Thus, the altitude test Altitude Testij is satisfied if the projected vertical separation of the aircraft i

and j is below the system parameter ZT (or Threat Altitude Threshold, units of ft). The parameter

ZT depends on the aircraft altitude.

Altitude Testij =
(∣

∣

∣
(hii − hij)− (ḣii − ḣij)τij

∣

∣

∣
≤ ZT

)

We assume that an intruding aircraft is declared a threat by TCAS as soon as it satisfies (or

“passes”) both the range and the altitude tests. In practice, a number of exceptions to this rule are

introduced in the TCAS specifications, in order to reduce the number of false alarms and to improve

the speed of detection in cases where additional information is available through communicated

intents in conflicts involving TCAS equipped aircraft. In our analysis, we ignore all these exceptions.

Once the aircraft j is declared a threat by the aircraft i, the aircraft j remains a threat until it fails

the range test. At this point in time, the Undeclareij output action is scheduled.

4.1.4 Conflict Resolution

The conflict resolution automaton models the component of TCAS that is responsible for issuing

resolution advisories. The conflict resolution automaton gets initially alerted to a threat through

either the conflict detection automaton, or the intent messages sent by the neighboring aircraft.

Following the threat detection and periodically thereafter, the conflict resolution automaton eval-

uates its resolution advisory options and issues updated resolution sense and strength advisories.

Whenever there is a change in the sense of a RA, the conflict resolution automaton sends a message

to the other aircraft involved in the threat communicating its RA intentions. In order to avoid

successive RA reversals, the conflict resolution automaton can only change the sense of a RA once.

The conflict resolution module is modeled by the HIOA Ri = (URi
, XRi

, YRi
, Σin

Ri
, Σint

Ri
, Σout

Ri
,

ΘRi
, DRi

, WRi
) (Appendix D). The input variables of Ri are the output variables of the sensor

automaton and the Mode S and equipment information from the aircraft automata, i.e., URi
=

YSi
∪ {Mode Sj ,Equipmentj}j∈{1,2}. The output variables of Ri are the boolean Threatij vari-

ables, indicating that aircraft i considers aircraft j as a threat, and a resolution advisory for

the pilot, consisting of a Sensei ∈ {Climb,Descend,⊥} and a Strengthi ∈ Strengths (units of
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ft/min); negative strengths are referred to as Vertical Speed Limits (VSL), 1500 is referred to as

the nominal strength (NomStr), and 2500 as the increased strength (IncStr). The Sensei indi-

cates whether aircraft i should try to pass above (Sensei = Climb) or below (Sensei = Descend)

the intruding aircraft. The Strengthi determines whether this goal is to be achieved by asking

the pilot to avoid “bad” maneuvers (take no action that will force the vertical speed to exceed

a particular VSL) or by asking the pilot to actively pursue “good” maneuvers (increase the ver-

tical speed to 1500 or 2500 ft/min). Sensei = ⊥ indicates that no action is needed. In sum-

mary, the output variables of Ri are YRi
= {Sensei,Strengthi} ∪ {Threatij}j∈{1,2}. Ri maintains

three internal variables, the boolean Reversedi that keeps track of whether the sense selection

has already been reversed during the current encounter, the boolean Crossingi which keeps track

of whether the current RA implies that the aircraft would cross in altitude if they were to fol-

low the RA, and Intent Sentij ∈ {Climb,Descend,⊥}, which keeps track of the last intent mes-

sage sent by aircraft i to aircraft j. The intent messages can be thought of as “commands”

to aircraft j as to which RA it should issue1. In summary, the internal variables of Ri are

XRi
= {Reversedi,Crossingi} ∪ {Intent Sentij}j 6=i.

Ri has no internal actions. Sense selection can happen when aircraft j is first declared a threat

(upon the occurrence of the input action Declareij), whenever an intent message is received from

another TCAS-equipped aircraft (upon the occurrence of and input action Receiveij(dir), with

dir ∈ {Climb,Descend} being the intent of aircraft j), and whenever the system state is sampled

by the sensors (upon the occurrence of input action Samplei). The advisory is retracted whenever

the intruding aircraft ceases to be considered a threat (upon the occurrence of the input action

Undeclareij). In summary, the input actions of Ri are Σ
in
Ri

= {Samplei}∪{Declareij ,Receiveij(dir),

Undeclareij}j 6=i. Aircraft i sends its intentions to aircraft j through an output action, Sendij(dir),

where dir ∈ {Climb,Descend} is the intent of aircraft i.

To predict the vertical separation at the estimated time to closest approach, τij , TCAS assumes

that the intruding aircraft, j, will maintain its current course, i.e., aj ≡ [0 0 0]T . It also assumes

that the pilot of aircraft i will respond to the advisory after a delay of exactly d (which depends

on whether the advisory is new or a modification to an existing advisory), by applying a constant

acceleration, a, in the vertical direction until the desired vertical rate (given by Strengthi) is reached.

1In the TCAS code, a Climb intent is referred to as a “Do not Descend” and a Descend as a “Do not Climb”.
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If the current vertical speed meets the Strengthi requirement or if τij is less than the pilot delay,

TCAS assumes that aircraft i will also maintain its current course.

More formally consider the derived variable, σi, which denotes the sense of the aircraft i, i.e., σi = 1

if Sensei = Climb, σi = 0 if Sensei = ⊥, and σi = −1 if Sensei = Descend. For σi ∈ {−1, 1} and

Strength ∈ Strengths, consider the derived variable:

SEPij(σi,Strength) =























































σi

[

(hii − hij) + (ḣii − ḣij)τij

]

if (τij ≤ d) ∨ (σiḣii ≥ Strength)

σi

[

(hii − hij) + (ḣii − ḣij)d

+(σiStrength− ḣij)(τij − d)
]

otherwise

The TCAS conflict resolution algorithm assumes that a Climb advisory will produce adequate

separation at closest approach if SEPij(1, 1500) ≥ ALIM, where ALIM is a system parameter that

depends on the current altitude. Similarly, a Descend advisory is assumed to produce adequate

separation if SEPij(−1, 1500) ≥ ALIM. Note that in both cases the nominal strength is used.

Throughout the following sections, we let NomStr = 1500 ft/min and 2NomStr = 3000 ft/min.

Aircraft i issues an advisory against aircraft j for the first time either when the conflict detection

module declares j a threat or when aircraft i receives an intent message from aircraft j, indicating

that aircraft j has already issued a RA against aircraft i. In the former case, aircraft i (the first

of the two to detect the conflict) chooses an advisory sense independently of aircraft j. If neither

a climb nor a descent resolution provides adequate separation, the one that produces the largest

separation is chosen2. If one of the two resolutions produces adequate separation but the other one

does not, the one that does is chosen. If both produce adequate separation preference is given to

the non-crossing advisory; that is, the advisory that would result in the aircraft not crossing each

other in altitude. For example, if aircraft i is already higher that aircraft j, then aircraft i should

prefer a Climb resolution advisory. If aircraft j has already issued an advisory, the complementary

2We conjecture that conflict detection will take place early enough so that this case will never have to be exercised.

We include it here mainly for completeness.
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sense (encoded by the received intent) is typically chosen. The only exception is if aircraft i has a

lower Mode S number, the received intent corresponds to a crossing maneuver and aircraft i deems

that a non-crossing maneuver resolves the mid-air collision conflict.

The sense may be reversed later on if, for example, one (or both) of the pilots thwarts the advisory.

If aircraft j is not TCAS equipped, or if it is but has a lower priority (i.e., higher Mode S number)

and the current advisory is crossing, aircraft i reverses its advisory whenever it is predicted that

the current advisory will not lead to adequate altitude separation, while the reversed advisory will.

However, aircraft i can only reverse once; the internal variable Reversedi is used to enforce this

requirement. The new intent is communicated to aircraft j which, due to its lower priority (i.e.,

higher Mode S number), is forced to change its advisory accordingly.

The advisory strength is updated every time the state is sampled by Sensori; that is, upon the

scheduling of each Samplei action. The choice of Strengthi again depends on the predicted altitude

separation of the aircraft at the estimated time to closest approach τij . The new strength is chosen

to make the derived boolean variable Strength Choiceij true. If Sensei = ⊥, then it is the case that

Strength Choiceij = True, otherwise Strength Choiceij is given by:

Strength Choiceij =

(SEPij(σi,−2000) ≥ ALIM

⇒ Strengthi = −2000)

∧(SEPij(σi,−1000) ≥ ALIM > SEPij(σi,−2000)

⇒ Strengthi = −1000)

∧(SEPij(σi,−500) ≥ ALIM > SEPij(σi,−1000)

⇒ Strengthi = −500)

∧(SEPij(σi, 0) ≥ ALIM > SEPij(σi,−500)

⇒ Strengthi = 0)

∧(SEPij(σi, 1500) ≥ ALIM > SEPij(σi, 0)

⇒ Strengthi = 1500)

∧(ALIM > SEPij(σi, 1500)

⇒ Strengthi = 2500)
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Note that in all cases the weakest (and hopefully least disruptive) strength that guarantees adequate

separation is chosen.

4.1.5 Pilot

The pilot automaton models the behavior of the pilot of the aircraft. Upon getting alerted to

a threat, the pilot either implements the resolution advisory within a predefined implementation

delay, or ignores the resolution advisory. For reasons of simplicity, pilots are assumed to have

direct control over the aircraft’s acceleration. Moreover, pilots are assumed to implement the

resolution advisories by exerting a constant vertical acceleration until the vertical rate proposed by

the resolution advisory is reached.

The pilot is modeled by the HIOA Pi = (UPi
, XPi

, YPi
, Σin

Pi
, Σint

Pi
, Σout

Pi
, ΘPi

, DPi
, WPi

) (Ap-

pendix F). The input variables are the sense and strength of the RA issued by TCAS and the

vertical rate of aircraft i, i.e., UPi
= {Sensei, Strengthi, ḣii}. The output variable is the acceler-

ation of the aircraft, i.e., YPi
= {ai}. New advisories issued by TCAS are stored in an internal

queue, Adv Qi. Each element of the queue contains the sense and strength of the corresponding

advisory, as well as upper and lower bounds on the time that may elapse before the pilot imple-

ments the respective advisory. The internal variables Last Sensei and Last Strengthi store the last

advisory issued by TCAS. The internal variables Current Sensei and Current Strengthi store the

last advisory implemented by the pilot; all “in-between” advisories are stored in Adv Qi.

The pilot automaton has no input or output actions. An internal action New Advisoryi takes place

whenever a new advisory is issued by TCAS. The effect of the action is to add the advisory to the

tail of Adv Qi. The internal action Implement Advisoryi takes place whenever an advisory from

Adv Qi (not necessarily the one at the head) is implemented by the pilot. All earlier advisories are

flushed from the queue and the pilot chooses non-deterministically whether to follow the advisory

according to the value of the internal variable Followi. The implementation time for each advisory

is guaranteed to be within an interval [di, di] from the time it gets issued by TCAS, unless it is

“superseded” by the implementation of a later advisory.

We assume that the pilot can exert a range of accelerations in each of the three directions: axi(t) ∈

[axi, axi], ayi(t) ∈ [ayi, ayi], and azi(t) ∈ [azi, azi]. We denote this compactly by ai ∈ [ai, ai]. We
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also assume that the pilot tries to maintain the vertical velocity within a certain range, [vzi, vzi].

The width of these ranges reflects considerations such as passenger comfort, standard pilot practice,

and the capabilities of the aircraft.

If the pilot chooses to follow an advisory, he/she is assumed to respond by applying a constant

vertical acceleration |azi| = a until the desired vertical rate is reached. A pilot is assumed to do

nothing (set azi = 0) if he/she decides to follow the advisory and the current vertical rate meets

the advisory strength. We assume that when no advisory is present or when the pilot chooses not

to follow it, he/she arbitrarily sets the vertical acceleration in the interval [ai, ai], in a way that

will not cause the desired limits on vertical speed to be violated. To ensure that all advisories can

be followed, we impose the following assumption:

Assumption 1 azi ≤ −a < 0 < a ≤ azi, [−2500, 2500] ⊆ [vzi, vzi] and at the states vzi ∈ [vzi, vzi].

4.1.6 Communication Channel

The communication channel automaton models the medium through which an aircraft can send

messages to neighboring aircraft. We abstract away the details of the communication medium by

assuming that messages are queues within the communication channel and are delivered to their

destination within given propagation delay bounds.

Communication of intents is achieved through the communication channel HIOA Cij (Appendix E).

The automaton has an input action Sendij(dir), for dir ∈ Dir, whose effect is to store the intent dir

together with time stamps providing lower and upper bounds on the delivery time in an internal

queue. The message is delivered (and removed from the queue) upon occurrence of the output

action Receiveji(dir), for dir ∈ Dir. The delivery time for each message is guaranteed to be within

interval [dij , dij ] from the time the message was sent.

4.1.7 TCAS and the Closed-Loop System

We define the HIOA TCASi as the composition of Si, Di, and Ri with all variables in YSi
∪

{Threatij}j 6=i and all actions in Σout
Si
∪ Σout

Di
hidden. The interface of the TCASi with the outside

world is through the input variables UTCASi
= USi

∪{Mode Sj ,Equipmentj}j 6=i, the output variables
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YTCASi
= {Sensei,Strengthi}, the input actions Receiveij(dir), for dir ∈ Dir, and the output actions

Sendij(dir). It is important to note that if the aircraft is not TCAS-equipped no advisories are

produced and no messages are sent.

Definition 1 The closed-loop system of two aircraft, denoted by PS, is modeled as the composition

of Ai, TCASi, Pi, and Cij, for i, j ∈ {1, 2}, i 6= j, i.e., PS =
∏

i,j∈{1,2},i 6=j Ai × TCASi × Pi × Cij.

5 Safety of a Pair of Well-Behaved and TCAS-Equipped Aircraft

In this section, we present various safety conditions for a simplified version of a closed-loop system

involving two aircraft. We begin by defining our system: a pair of well-behaved and TCAS-equipped

aircraft. We then determine the maximum time required for the TCAS system to issue consistent

RAs and for the pilots to implement these advisories. We proceed by categorizing the executions of

this system and by providing safety conditions for each of the execution categories. We conclude by

combining the per-category safety conditions into safety conditions for any execution of our system.

Throughout this section, while formally modeling and analyzing the behavior of the closed-loop

TCAS system, we make several assumptions some of which are quite restrictive. Indeed, many of

these assumptions may merely be simplifying assumptions; that is, assumptions that were made

in order to keep the analysis task tractable. However, some of these assumptions may be intrinsic

assumptions; that is, assumptions that correspond to either undocumented assumptions made

during the design phase of the TCAS system, or actual limits of the TCAS system. We argue that

the generation of these assumptions is a very important byproduct of the formal analysis using

HIOA. These assumptions expose various issues regarding the closed-loop TCAS system that need

to be addressed in future research. On one hand, the simplifying assumptions need to be relaxed

and, on the other hand, the intrinsic assumptions need to be examined and validated prior to

claiming any safety and performance guarantees. An assumption that can neither be relaxed nor

validated would indicate that the TCAS system is flawed and, thus, in need of redesign.

In proving the various properties of the closed-loop TCAS system, it was convenient to reason

about the discrete and continuous behavior in isolation. For example, we determine the worst-

case time bound in obtaining consistent resolution advisories and implementing them by only
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reasoning about the discrete behavior of the system. Conversely, we determine the projected

vertical separation obtained by the various RAs by only reasoning about the continuous behavior

of the system. An additional advantage of using the HIOA modeling formalism is that the various

discrete and continuous properties are stated in formal statements which can be combined so as to

state properties of the hybrid system behavior.

5.1 A Pair of Well-Behaved and TCAS-Equipped Aircraft

In this section, we define a simple and idealized closed-loop TCAS system, WBS . The aircraft

are assumed to be TCAS-equipped, their sensors are assumed to be exact, pilots are assumed to

always abide by the RAs issued by the TCAS system, and the aircraft are assumed to follow flight

paths that have constant horizontal velocities. Moreover, in an effort to simplify the analysis of

the TCAS system, we assume that the pilot can apply infinite acceleration in the vertical direction,

i.e., a =∞, so as to attain the resolution strength suggested by the TCAS system. Although this

assumption is not representative of reality, in effect it corresponds to analyzing a system where the

pilot requires some additional delay in responding to a resolution advisory.

Definition 2 A well-behaved pair system, WBS, is a TCAS system of 2 aircraft which Equipmenti =

TCAS, nAi = 0, nARi = 0, nRi = 0, nRRi = 0, Followi = True, axi = ayi = 0, for i ∈ {1, 2}, and

a =∞.

For a pair of well-behaved and TCAS-equipped aircraft,WBS, the system state is denoted by s, the

maximum and minimum pilot delays in implementing RAs are denoted by dp = max{d1, d2} and

dp = min{d1, d2}, respectively, the maximum and minimum communication delays are denoted by

dc = max{d12, d21} and dc = min{d12, d21}, respectively, and the difference in the aircraft position

and velocity components are denoted by ∆x = x1−x2, ∆y = y1−y2, ∆z = z1−z2, ∆vx = vx1−vx2,

∆vy = vy1 − vy2, and ∆vz = vz1 − vz2. Since the sensors of the aircraft in WBS are assumed to

be exact, it is the case that for i, j ∈ {1, 2}, hij = zj , ḣij = vzj , Rij =
√

∆x2 +∆y2 +∆z2 and

Ṙij = dRij/dt at the times when the action Samplei is scheduled (similarly for j). As the “views”

of the world available to the aircraft are exact, we use zi instead of hii and hji, R (Ṙ) instead

of Rij and Rji (Ṙij and Ṙji) throughout the remaining sections. To simplify the notation, we

also assume that the maximum ascent/descent rates of both aircraft are equal; that is, vz1 = vz2
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and vz1 = vz2. Thus, we define the upper bound on the magnitude of relative vertical speed as

∆vz = −∆vz = vz1 − vz2 = vz2 − vz1. Finally, we let S denote the set of states of WBS and

Admissible Execs denote the set of admissible executions of WBS, i.e., Admissible Execs = {α ∈

execs(WBS) | α.fstate ∈ ΘWBS and α.ltime =∞}.

We assume that the various parameters used by TCAS remain constant throughout any execution

of WBS . As discussed in Section 4, these parameters depend on the altitude of the aircraft and on

the sensitivity settings of the TCAS system.

Assumption 2 The parameters ALIM, DMOD, H1, TRTHR, and ZT are constant throughout any exe-

cution of WBS.

Without loss of generality, we assume that aircraft 1 is the high priority aircraft.

Assumption 3 Mode S1 < Mode S2

In view of only considering TCAS resolutions that utilize nominal resolutions, we assume that

the actions Declareij , Samplei, and Receiveij(dir), for i, j ∈ {1, 2}, i 6= j and dir ∈ Dir, only

set the Strength1 and Strength2 variables to 1500 ft/min. Indeed, since TCAS periodically resets

the strength of the RA based on reevaluating the projected vertical separation of the aircraft,

this assumption limits the interaction of discrete and continuous behavior in TCAS. We defer the

relaxation of this assumption to future research.

Assumption 4 Strength1 = Strength2 = NomStr = 1500 ft/min

Also, we assume that once pilots get alerted to a threat, they do not oppose the RA suggested by

TCAS. For example, following the issuing of a RA that instructs the pilot to climb, it is assumed

that the pilot will not decrease the aircraft’s vertical speed prior to implementing the RA. This

assumption is in agreement with our prior assumption that the pilots follow the RAs proposed by

the TCAS system.

Assumption 5 Pilots do not oppose advisories, i.e., for any state s ∈ S, s.σis.ai ≥ 0, for i ∈

{1, 2}.
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For any state s ∈ S, we define a derived variable s.T that denotes the time to closest horizontal

approach of the aircraft.

Definition 3 For any state s ∈ S, let s.T be defined as follows:

T = −∆x∆vx +∆y∆vy

∆v2
x +∆v2

y

By taking the derivative of T with respect to time, and recalling that axi = ayi = 0, for i ∈ {1, 2},

it can be shown that the time to closest horizontal approach is fixed in time.

For any execution α ∈ execs(WBS) and a state s ∈ S, let s ∈ α denote that s is visited along α. By

abusing the notation on state occurrences, when we refer to a state s occurring within an execution

α of WBS we refer to a particular state occurrence of the state s within α.

The states visited along an execution are ordered, i.e., for s1, s2 ∈ α, we write s1 ≤ s2 to denote

that s1 is visited by the finite prefix of α ending in s2.

Definition 4 For i, j ∈ {1, 2}, i 6= j, Conflict Imminentij = {s ∈ S | ∃dir ∈ Dir : (s.Pre(Declareij) =

True) ∨ (s.Pre(Receiveij(dir) = True)}

Definition 5 Conflict Imminent = Conflict Imminent12 ∪ Conflict Imminent21

Definition 6 Non Cross = {s ∈ S | (s.Sense1 6= ⊥) ∧ (s.Crossing1 = False)}

Definition 7 Cross = {s ∈ S | (s.Sense1 6= ⊥) ∧ (s.Crossing1 = True)}

Lemma 1 Non Cross ∩ Cross = ∅.

We define a history boolean variable, Conflict Over ∈ Bool, that records the termination of a

conflict. Thus, Conflict Over is False initially, and becomes True upon the occurrence of either

an Undeclare12 or Undeclare21 action.

Definition 8 Conflict Resolved = {s ∈ S | s.Conflict Over = True}
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The following assumption states that once either an Undeclare12 or Undeclare21 action in scheduled

by WBS , the aircraft no longer pose a threat to each other — that is, we assume that the TCAS

system is conservative in undeclaring a potential threat and that it deems it appropriate to undeclare

a threat when indeed it is safe to do so. We realize that this assumption is restricting, but we are

interested in analyzing the performance of the TCAS system whenever it is engaged through the

time of closest horizontal approach and are not concerned with the cases in which TCAS undeclares

prematurely. We defer the analysis of whether the TCAS system actually undeclares prematurely

to future research.

Assumption 6 For any state s ∈ S of WBS, it is the case that both s.Pre(Undeclare12) and

s.Pre(Undeclare21) imply that s.T < 0.

5.2 Agreement Protocol

We first define the set of execution fragments, Stable Resolution Frags, that consists of all execution

fragments of WBS in which threats are not undeclared and reversals do not occur, i.e., for any

execution fragment α in Stable Resolution Frags, none of the Sample1 and Sample2 actions in α

affect the Sense1 and Sense2 variables, respectively, and the Undeclare12 and Undeclare21 actions

are never scheduled within α.

In Table 2, we define sets of states ofWBS that represent milestones of the protocol used by TCAS

to obtain consistent RAs when two aircraft are involved in a conflict. The following lemma specifies

that the milestones of Table 2 correspond to the incremental progress in the agreement protocol

between the two aircraft involved in the conflict.

Lemma 2

1. Global-Agreement ⊆ Global-Resolution-Sent,

2. Global-Resolution-Sent ⊆ Global-Resolution,

3. Global-Resolution ⊆ Local-Resolution-Sent,

4. Local-Resolution-Sent ⊆ Local-Resolution,

5. Local-Resolution ⊆ Local-Awareness-Sent,

6. Local-Awareness-Sent ⊆ Local-Awareness.
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Table 2: Milestone Sets of the TCAS RA Protocol.

Local-Awareness = {s ∈ S |

(s.Threat12 ∧ s.Sense1 6= ⊥)

∨(s.Threat21 ∧ s.Sense2 6= ⊥)}

Local-Awareness-Sent = {s ∈ S |

(s.Threat12 ∧ s.Sense1 6= ⊥)

∨(s.Threat21 ∧ s.Sense2 6= ⊥

∧s.Intent Sent21 6= ⊥)}

Local-Resolution = {s ∈ S |

s.Threat12 ∧ s.Sense1 6= ⊥}

Local-Resolution-Sent = {s ∈ S | s.Threat12

∧s.Sense1 6= ⊥ ∧ s.Intent Sent12 = s.Sense1}

Global-Resolution = {s ∈ S |

s.Threat12 ∧ s.Threat21 ∧ s.Sense2 6= s.Sense1

∧s.Sense1 6= ⊥ ∧ s.Intent Sent12 = s.Sense1

∧s.Sense2 6= ⊥ ∧ s.mset12 = ∅}

Global-Resolution-Sent = {s ∈ S |

s.Threat12 ∧ s.Threat21 ∧ s.Sense1 6= s.Sense2

∧s.Sense1 6= ⊥ ∧ s.Intent Sent12 = s.Sense1

∧s.Sense2 6= ⊥ ∧ s.Intent Sent21 = s.Sense2

∧s.mset12 = ∅}

Global-Agreement = {s ∈ S |

s.Threat12 ∧ s.Threat21 ∧ s.Sense1 6= s.Sense2

∧s.Sense1 6= ⊥ ∧ s.Intent Sent12 = s.Sense1

∧s.Sense2 6= ⊥ ∧ s.Intent Sent21 = s.Sense2

∧s.mset12 = ∅ ∧ s.mset21 = ∅}
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The following lemma specifies the time that is needed to progress through some of the milestones

of the TCAS agreement protocol, provided that neither RAs get undeclared, nor reversals occur.

Once any aircraft gets alerted to the threat, the high priority aircraft gets alerted within dc time

units, a consistent advisory is reached within 2dc, and the protocol terminates within 3dc. It is

important to note that once consistent RAs are obtained, both pilots may implement the RA within

dp time units provided they decide to follow the RA. Thus, provided that the pilots follow RAs,

dc + dp time units after the high priority aircraft gets alerted to the advisory, both aircraft have

already implemented the RAs.

Lemma 3 For any finite execution fragment α of WBS in Stable Resolution Frags such that α.fstate ∈

Local-Awareness it is the case that:

1. α.ltime > dc =⇒ α.lstate ∈ Local-Resolution,

2. α.ltime > 2dc =⇒ α.lstate ∈ Global-Resolution,

3. α.ltime > 3dc =⇒ α.lstate ∈ Global-Agreement, and

4. α.ltime > 3dc+dp =⇒ (¬s.Follow1∨(σs.vz1 ≥ NomStr))∧(¬s.Follow2∨(−σs.vz2 ≥ NomStr)),

where s = α.lstate and σ = 1, if s.Sense1 = Climb, and σ = −1 otherwise.

5.3 Execution Categorization

We partition the hybrid executions of WBS into the following four categories:

1. Conflict Free Execs, executions for which the TCAS protocol is not invoked.

2. Non Crossing Execs, executions where the TCAS protocol is initiated, a non-crossing RA is

issued initially by aircraft 1 and is maintained until the conflict is over. It is important to

note that once the high priority aircraft decides upon a non-crossing RA, its decision can not

be reversed.

3. Crossing Execs, executions where the TCAS protocol is initiated, a crossing RA is issued

initially by aircraft 1 and is maintained until the conflict is over. In this case, it is worth

noting that once the aircraft cross in altitude and a sample action is scheduled, the advisory

switches from being a crossing RA to a non-crossing RA.
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4. Reversing Execs, executions where the TCAS protocol is initiated, a crossing RA is issued

initially by aircraft 1 and is reversed to a non-crossing RA before the aircraft cross in altitude

and is maintained until the conflict is over. Recall that it is only possible to reverse out of a

crossing RA.

These execution categories of WBS are formally defined below.

Definition 9 Conflict Free Execs = {α ∈ Admissible Execs | ∀ s ∈ α, s 6∈ Conflict Imminent}

Definition 10 Non Crossing Execs = {α ∈ Admissible Execs | ∃ s1 ∈ α, s1 ∈ Non Cross : ∀ s2 ∈

α, s2 ≤ s1, it is the case that s2 6∈ Cross}

Definition 11 Crossing Execs = {α ∈ Admissible Execs | ∃ s1 ∈ α, s1 ∈ Cross : ∀ s2 ∈ α, s1 ≤

s2, it is the case that

(s2 ∈ Cross) ∨ (s2.Sense1s2.∆z ≥ 0) ∨ (s2 ∈ Conflict Resolved)}.

Definition 12 Reversing Execs = {α ∈ Admissible Execs | ∃ s1 ∈ α, s1 ∈ Cross : ∃ s2 ∈ α, s1 ≤

s2, such that

(s2 ∈ Non Cross) ∧ (s1.Sense1s2.∆z < 0) ∧ (s2 6∈ Conflict Resolved)}.

Definition 13 Conflict Execs = Non Crossing Execs ∪ Crossing Execs ∪ Reversing Execs

Lemma 4 The sets Conflict Free Execs, Non Crossing Execs, Crossing Execs, and Reversing Execs

are pairwise disjoint.

Lemma 5 Admissible Execs = Conflict Free Execs ∪ Conflict Execs

We proceed by defining the set of safe executions ofWBS . The safe executions are defined to be the

executions in which the aircraft are sufficiently separated in altitude at closest horizontal approach.

Definition 14 Safe Execs = {α ∈ Admissible Execs | ∀ s ∈ α, (s.T = 0)⇒ (|s.∆z| ≥ ALIM)}
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The following assumption states that the set of conflict-free executions are safe. In this paper, we

assume that the TCAS system declares a conflict whenever there is a potential mid-air collision.

We realize that this assumption is restricting, but we are interested in analyzing the performance

of the TCAS system whenever it is engaged. Again, we defer the analysis of whether the TCAS

system actually gets engaged in all potential mid-air collisions to future research.

Assumption 7 Conflict Free Execs ⊆ Safe Execs

5.4 Safety Conditions

For an execution α ∈ Conflict Execs, we define α.s0 ∈ α such that α.s0 ∈ Conflict Imminent12 and

for all s ∈ α, s < α.s0, it is the case that s 6∈ Conflict Imminent12; that is, α.s0 is the state prior to

which the high priority aircraft gets initially alerted to a potential mid-air collision threat. Also,

by abusing notation, let α.T0 denote the time to closest horizontal approach from the state α.s0.

We also keep track of the time elapsing from the initial declaration of a threat by the high priority

aircraft through an auxiliary variable tRA. Although discrete transitions do not affect the value of

tRA, along trajectories, it is the case that ṫRA = 1. Let D be an upper bound on the delay from

the time in which the high priority aircraft gets alerted to the threat up to the time in which both

aircraft implement consistent RAs, i.e., D = dc + dp. We assume that the bound D is larger than

the bound d used by the TCAS algorithm to determine what type of RA to issue.

Assumption 8 D > d

We assume that the TCAS algorithm detects a conflict far enough in advance so as to have enough

time to react, i.e., the time of closest horizontal approach occurs more than D time units after the

declaration of a mid-air collision threat by aircraft 1. In view of analyzing the correctness of the

TCAS algorithm, this seems to be a reasonable assumption because we should not expect TCAS

to be able to prevent collisions in cases where the system as a whole does not have sufficient time

to decide upon and implement the RAs issued by TCAS.

Assumption 9 For any execution α ∈ Conflict Execs, it is the case that α.T0 > D.
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5.4.1 Safety of Non-Crossing Executions

In the case of non-crossing executions, we define a derived variable, PNC , that denotes the minimum

possible vertical separation of the aircraft at closest horizontal approach under the assumption that

both aircraft implement a non-crossing advisory following an initial implementation delay of D time

units. For s ∈ S, we define the derived variable PNC as follows:

s.PNC = |s.∆z|+ s.∆vNCD + 2NomStr(s.T −D)

where s.∆vNC = min(2NomStr, σs.vz1 + max(vz,−σs.vz2 − azdc)) with σ = sign(s.vz1 − s.vz2).

Intuitively, the worst-case vertical separation at the time of closest horizontal approach is the

initial altitude separation, minus potential losses during the implementation delay, i.e., the time

it takes both aircraft to agree to and to implement the non-crossing advisory, plus the separation

that is gained by following the RA at nominal strength once it is implemented.

We proceed by defining the set of states of WBS from which the choice and implementation of

a non-crossing RA is guaranteed to result in adequate separation in altitude at closest horizontal

approach.

Definition 15 Non Cross Safe = {s ∈ S | s.PNC ≥ ALIM}.

Lemma 6 If α ∈ Non Crossing Execs and s1 ∈ α such that D < s1.tRA < α.T0, then it is

the case that σs1.∆z ≥ σs0.∆z + s0.∆vNCD, where σ = sign(s0.vz1 − s0.vz2) and s0.∆vNC =

min(2NomStr, σs0.vz1 +max(vz,−σs0.vz2 − azdc)).

Lemma 7 If α ∈ Non Crossing Execs and s1, s2 ∈ α such that D < s1.tRA < α.T0 and s2.tRA =

α.T0, then it is the case that σs2.∆z ≥ σs1.∆z+2NomStr(s2.tRA−s1.tRA), where σ = sign(s0.vz1−

s0.vz2).

Corollary 8 If α ∈ Non Crossing Execs and s2 ∈ α such that s2.tRA = α.T0, then it is the case

that σs2.∆z ≥ σs0.∆z + s0.∆vNCD + 2NomStr(α.T0 − D), where σ = sign(s0.vz1 − s0.vz2) and

s0.∆vNC = min(2NomStr, σs0.vz1 +max(vz,−σs0.vz2 − azdc)).
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Lemma 9 If α ∈ Non Crossing Execs and α.s0 ∈ Non Cross Safe, then α ∈ Safe Execs.

5.4.2 Safety of Crossing Executions

In the case of crossing executions, we define a derived variable, PC , that denotes the minimum

possible vertical separation of the aircraft at closest horizontal approach under the assumption

that both aircraft implement a crossing advisory following an initial implementation delay of D

time units. For s ∈ S, we define the derived variable PC as follows:

s.PC = −|s.∆z|+ s.∆vCD + 2NomStr(s.T −D)

where s.∆vC = min(2NomStr,−σs.vz1 + max(vz, σs.vz2 − azdc)) with σ = sign(s.vz1 − s.vz2).

Intuitively, the worst-case vertical separation at the time of closest horizontal approach is the

initial altitude separation, minus potential losses during the implementation delay, i.e., the time it

takes both aircraft to agree to and to implement the crossing advisory, plus the separation that is

gained by following the RA at nominal strength once it is implemented.

We proceed by defining the set of states of WBS from which the choice and implementation of

a crossing RA that is carried out to completion is guaranteed to result in adequate separation in

altitude at closest horizontal approach.

Definition 16 Cross Safe = {s ∈ S | s.PC ≥ ALIM}.

Lemma 10 If α ∈ Crossing Execs and s1 ∈ α such that D < s1.tRA < α.T0, then it is the case that

−σs1.∆z ≥ −σs0.∆z+s0.∆vCD, where σ = sign(s0.vz1−s0.vz2) and s0.∆vC = min(2NomStr,−σs0.vz1+

max(vz, σs0.vz2 − 2azdc)).

Lemma 11 If α ∈ Crossing Execs and s1, s2 ∈ α such that D < s1.tRA < α.T0 and s2.tRA = α.T0,

then it is the case that −σs2.∆z ≥ −σs1.∆z + 2NomStr(s2.tRA − s1.tRA), where σ = sign(s0.vz1 −

s0.vz2).

Corollary 12 If α ∈ Crossing Execs and s2 ∈ α such that s2.tRA = α.T0, then it is the case
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that −σs2.∆z ≥ −σs0.∆z + s0.∆vCD + 2NomStr(α.T0 − D), where σ = sign(s0.vz1 − s0.vz2) and

s0.∆vC = min(2NomStr,−σs0.vz1 +max(vz, σs0.vz2 − 2azdc)).

Lemma 13 If α ∈ Crossing Execs and α.s0 ∈ Cross Safe, then α ∈ Safe Execs.

5.4.3 Safety of Reversing Executions

In the case of reversing executions, a reversal can occur in two distinct parts of the execution,

namely, prior to and on or after the time in which the crossing execution gets implemented. We

analyze each of these cases separately.

First, we analyze the case in which the reversal occurs prior to the implementation of the crossing

resolution. In this case, the reversal occurs prior to D time units after the first declaration of the

threat and gets implemented by both aircraft within D of the time of the sense reversal of aircraft

1. Thus, the time elapsing from the state α.s0 to the latest possible time in which the non-crossing

RA gets implemented is 2D. We define a derived variable, P<
R , that denotes the minimum possible

vertical separation of the aircraft at closest horizontal approach. Note that up to 2D time units

after the first threat declaration, the aircraft could be engaging in a trajectory that opposes the

non-crossing RA sense. For all s ∈ S, the derived variable P<
R is defined as follows:

s.P<
R = |s.∆z|+ s.∆v<

R(2D) + 2NomStr(s.T − 2D)

where s.∆v<
R = min(2NomStr,max(vz, σs.vz1 − azD) + max(vz,−σs.vz2 − az(D + dc))) with σ =

sign(s.vz1 − s.vz2), i.e., σ is the non-crossing RA sense of aircraft 1 is state s.

In this case, the intuitive understanding of the function P<
R involves realizing that the worst-case

would be to decide to reverse at the latest possible point in time, i.e., D time units after the initial

threat declaration, which would in turn allow the least amount of time for the new advisory to

attain the necessary vertical separation at closest horizontal approach. It follows that the state s

is safe in this type of an execution if the following inequality is satisfied:
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s.P<
R ≥ ALIM

Thus, in all reversing executions where the reversal occurs earlier than the point in time when the

initial crossing execution gets implemented, the above inequality guarantees that the aircraft will

attain the necessary vertical separation by the time of closest horizontal approach.

Lemma 14 Let α ∈ Reversing Execs be an execution of WBS in which the reversal occurs prior to

D time units after the first threat declaration by aircraft 1. If s0.P
<
R ≥ ALIM, then α ∈ Safe Execs.

Second, we analyze the case in which a reversal occurs subsequent to the implementation of the

crossing advisory by both aircraft, i.e., the reversal occurs in a state in which both aircraft are

following the crossing resolution advisory. Let s be the state in which the first alert declaration is

scheduled by aircraft 1, s′ be the first state in which both aircraft are implementing the crossing

advisory, and s′′ be the state in which the sample action resulting in the reversal is scheduled. Note

that the maximum time between the occurrence of state s and s′ is D. Throughout this section we

will refer to the time to closest horizontal approach from state s as T , instead of s.T .

Let the crossing and non-crossing senses of aircraft 1 in state s be denoted by −σ and σ, respectively,

the conditions that would dictate the reversal in state s′′ according to the TCAS specifications are

as follows:
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SEP12(−σ, NomStr) < ALIM

⇒ σ∆z − σ∆vzτ12 < ALIM, and

SEP12(σ, NomStr) ≥ ALIM

⇒















































σ∆z + σ∆vzd+ (NomStr− σvz2)(τ12 − d) ≥ ALIM

if τ12 > d, or

σ∆z + σ∆vzτ12 ≥ ALIM

otherwise

i.e., a reversal is warranted only if the crossing advisory is unsafe and the non-crossing advisory is

safe. Rearranging each of the inequalities corresponding to SEP12(σ, NomStr) ≥ ALIM, we get:

σ∆z ≥ ALIM− σ∆vzd− (NomStr− σvz2)(τ12 − d)

if τ12 > d, or

σ∆z ≥ ALIM− σ∆vzτ12

otherwise

Since we are assuming that the crossing advisory has already been implemented, it follows that

−σvz1 ≥ NomStr and σvz2 ≥ NomStr. Moreover, since reversals can only be considered while the

difference in altitude opposes the current RA sense, it follows that −σ∆z < 0. Combining the

above conditions, we obtain the pair of conservative inequalities, for state s′′:
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if τ12 > d then:

σ∆z ≥ ALIM− σ∆vzd− (NomStr− σvz2)(τ12 − d)

≥ ALIM+ 2NomStrd− (NomStr− σvz2)(τ12 − d)

≥ ALIM+ 2NomStrd

> ALIM

else:

σ∆z ≥ ALIM− σ∆vzτ12

≥ ALIM+ 2NomStrτ12

≥ ALIM

Thus, in order for an aircraft to reverse out of an implemented crossing RA, −σ, it the case that

σ∆z ≥ ALIM, i.e., the aircraft altitude separation must be greater than or equal to ALIM. From this

condition, we obtain conditions on the latest possible time, TR, at which a reversal can occur. For

any state s in which the first alert declaration is scheduled, the latest point in time at which the

reversal could occur corresponds to the latest point in time that the inequality σ∆z ≥ ALIM could

be violated, i.e., TR is bounded by the inequality:

−|∆z|+ s.∆vCD + 2NomStr(TR −D) ≤ −ALIM

Solving for TR we have:

TR ≤
−ALIM+ |∆z| − s.∆vCD + 2NomStrD

2NomStr

It is important to note that if the value of TR turns out to be negative, then it follows that the

reversal could never have been scheduled in the first place, i.e., we have reached a contradiction.

For simplicity, we assume that if TR turns out to be negative, then the execution is safe.

In order for such a state to be safe, the worst case trajectory must be safe; that is, given an altitude
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separation of ALIM, the worst case would be to follow a trajectory of minimum vertical velocity

until the non-crossing RA gets implemented and then carry on with a nominal strength non-crossing

RA. We define a derived variable, P≥R , that denotes the minimum possible vertical separation of

the aircraft at closest horizontal approach given that aircraft 1 reverses its sense T R time units

after its initial declaration of a threat. For all s ∈ S, the derived variable P≥R is defined as follows:

s.P≥R = ALIM+ s.∆v≥RD + 2NomStr(T − TR −D)

where s.∆v≥R = min(2NomStr,max(vz, σs.vz1 − azTR) + max(vz,−σs.vz2 − az(TR + dc))) with

σ = sign(s.vz1 − s.vz2), i.e., σ is the non-crossing RA sense of aircraft 1.

Plugging in the value for TR and simplifying, we get:

s.P≥R =2ALIM− |∆z|+ (s.∆vC + s.∆v≥R)D

+ 2NomStr(T − 2D)

It follows that the state s is safe in this type of an execution if the following inequality is satisfied:

s.P≥R ≥ ALIM

Thus, in all reversing executions where the reversal occurs no earlier than the point in time in which

the initial crossing execution gets implemented, the above inequality guarantees that the aircraft

will attain the necessary vertical separation by the time of closest horizontal approach.

Lemma 15 Let α ∈ Reversing Execs be an execution of WBS in which the reversal occurs no

earlier than D time units after the first threat declaration by aircraft 1. If s0.P
≥
R ≥ ALIM, then

α ∈ Safe Execs.

We continue by defining a set of states from which any type of reversing execution would result in
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sufficient altitude separation at closest horizontal approach. Our approach is to take the conjunction

of the safety properties for the two types of reversing executions. When doing so however, we must

be cautious because the second condition is only valid if the reversal occurs after the crossing

advisory gets implemented.

Definition 17 Reverse Safe = {s ∈ S | (s.P<
R ≥ ALIM) ∧ ((s.P≥R ≥ ALIM) ∨ (TR < D))}.

Lemma 16 If α ∈ Reversing Execs and α.s0 ∈ Reverse Safe, then α ∈ Safe Execs.

5.5 Safety of Executions in Summary

In the previous section, we derived safety conditions for each of the categories of executions ofWBS .

In particular, we defined sets of states from which the choice and execution of a non-crossing,

crossing, and reversing execution, respectively, would result is sufficient altitude separation at

closest horizontal approach. In this section, we provide three ways in which these safety conditions

can be combined in order to provide overall safety conditions.

5.5.1 Conjunction of Per-Category Safety Properties

In this section, we define our overall safety property to be the conjunction of the per-category

safety properties. The following theorem states that if the initial state of a conflict satisfies all

per-category safety conditions, then the execution is a safe execution.

Theorem 17 If α ∈ Conflict Execs and α.s0 ∈ Non Crossing Safe∩Crossing Safe∩Reverse Safe,

then α ∈ Safe Execs.

Albeit simple, Theorem 17 is conservative since in order for an execution of WBS to be deemed

safe, it must satisfy the safety conditions of all types of executions.

5.5.2 Isolating Non-Crossing Executions

In this section, we remove some of the conservatism of Theorem 17 by isolating the non-crossing

execution advisories. The inherent bias in the TCAS system toward non-crossing RAs dictates
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that the majority of RAs issued by TCAS will be non-crossing RAs. Thus, by isolating the set

of non-crossing executions and distinguishing them from the crossing and reversing executions, we

obtain less conservative results.

We begin by defining a necessary condition for initially choosing a crossing advisory. In order for a

crossing advisory to be chosen, at the point in time of the advisory declaration by the high priority

aircraft, the TCAS algorithm should deem it appropriate. According to the conflict resolution

automaton Ri, the declaration occurs through either a Declare12 or a Receive12(dir) action, where

dir ∈ Dir. In the case of a Declare12 action, the crossing advisory is selected only when the

estimated altitude separation at closest approach resulting from a crossing and a non-crossing

advisory is sufficient and insufficient, respectively. In the case of a Receive12(dir) action, where

dir ∈ Dir, a crossing advisory is chosen only in the case when the RA suggested by the low priority

aircraft is a crossing RA and the high priority aircraft agrees with it. For any execution α ofWBS ,

we let the state from which the high priority aircraft gets alerted to the threat by a Declare12 or a

Receive12(dir) action, where dir ∈ Dir, be denoted by α.s0 and the state following the scheduling

of the action as α.s′0. Moreover, we define the derived variable C to denote whether the choice of

a crossing RA is possible from the perspective of aircraft 1, which is the high priority aircraft:

s.C = ∃ σ ∈ {1,−1} such that

(σs.∆z < 0)

∧ (Sep12(σ, NomStr) ≥ ALIM

∧ Sep12(−σ, NomStr) < ALIM)

Since s.C is a necessary condition for the aircraft to engage in a crossing RA, the negation of this

condition is a sufficient condition for choosing a non-crossing RA.

Definition 18 Cross Impossible = {s ∈ S | s.C = False}

Lemma 18 If α ∈ Conflict Execs and α.s0 ∈ Cross Impossible, then α ∈ Non Crossing Execs.

Theorem 19 If α ∈ Conflict Execs and α.s0 ∈ (Cross Impossible∩Non Cross Safe)∪(Non Cross Safe∩

Cross Safe ∩ Reverse Safe), then α ∈ Safe Execs.
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5.5.3 Aircraft Close in Altitude

In this section, we specify safety conditions for a set of executions that are defined parametrically

with respect to the altitude separation of the aircraft at the point in time when the conflict is

initially declared by aircraft 1. This approach was suggested to us by engineers actively involved in

the design and analysis of the TCAS system. The intuition behind this approach is that crossing

advisories will most likely be chosen when the aircraft are close in altitude, so it is very useful to

consider and reason about the performance of TCAS is such executions.

If the aircraft are close in altitude when the threat gets declared, then the type of execution to

be carried out is finalized by the time the aircraft would cross in altitude had a crossing advisory

been chosen initially and carried out to completion. On one hand, if a non-crossing RA is declared

initially by aircraft 1, the execution type is known immediately. On the other hand, if a crossing

RA is declared initially by aircraft 1, the RA is either carried out to completion, or reversed before

the aircraft cross in altitude. Thus, by the time the aircraft cross in altitude, it is known whether

the execution is crossing or reversing.

We proceed by defining the set of executions ofWBS in which the aircraft are separated in altitude

by at most Kft when aircraft 1 is alerted to a threat.

Definition 19 Close-in-Alt Execs = {α ∈ Conflict Execs | s = α.s0, |s.∆vz| ≤ K}

The safety condition for executions in Close-in-Alt Execs is obtained in a very similar fashion to the

way the safety condition is obtained for the second type of reversing executions. In particular, the

separation obtained by any type of execution is bounded from below by the separation obtained by

a reversing execution in which aircraft 1 reverses its sense just as the aircraft cross in altitude. We

denote the latest possible crossing time by TC . For any state s ∈ S in which the threat declaration

is scheduled by aircraft 1, the latest point in time at which the aircraft could cross in altitude

corresponds to the latest point in time that the inequality σ∆z ≥ 0 could be violated, i.e., T C is

bounded by the inequality:

−K + s.∆vCD + 2NomStr(TC −D) ≤ 0
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Solving for TC we have:

TC ≤
K − s.∆vCD + 2NomStrD

2NomStr

If −K + s.∆vCD > 0, then the above calculation for TC will result in a negative value. However,

such cases imply that the reversal would have occurred prior to D time units following the initial

declaration of a threat by aircraft 1. Thus, in such cases we can use the value of D time units as

an upper bound on the delay in reversing.

In order for a state s to be safe, the worst case altitude separation would be obtained by an

execution in which the aircraft follow a trajectory of minimum vertical velocity until the reversal

gets implemented and then carry on with nominal strength. We define a derived variable, P , that

denotes the minimum possible vertical separation of the aircraft at closest horizontal approach

given that aircraft 1 starts to implement a non-crossing advisory max(D,T C) time units after the

initial threat declaration by aircraft 1. For all s ∈ S, the derived variable P is defined as follows:

s.P = s.∆vRD + 2NomStr(T −max(D,TC)−D)

where s.∆vR = max(vz, σs.vz1 − az max(D,TC)) + max(vz,−σs.vz2 − az(max(D,TC) + dc)) with

σ = sign(s.vz1 − s.vz2), i.e., σ is the non-crossing RA sense of aircraft 1.

It follows that the state s is safe in this type of an execution if the following inequality is satisfied:

s.P ≥ ALIM

We proceed by defining the set of states of WBS from which a close in altitude encounter results

in adequate separation in altitude at closest horizontal approach.

Definition 20 Close-in-Alt Safe = {s ∈ S | s.P ≥ ALIM}.
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Theorem 20 If α ∈ Close-in-Alt Execs and α.s0 ∈ Close-in-Alt Safe, then α ∈ Safe Execs.

6 Conclusions and Future Research

We demonstrate how high-level modeling techniques involving the HIOA model can be used to

model and analyze complex safety-critical hybrid systems such as the Traffic Alert and Collision

Avoidance System (TCAS). In our presentation, we define HIOA models of the core components

of closed-loop system involving aircraft, pilots, TCAS system components, and the communication

channels used by the aircraft to communicate among themselves. Then, we define an idealized

system involving two TCAS-equipped and “well-behaved” aircraft — that is, aircraft that do not

accelerate in the horizontal plane and whose pilots follow the RAs issued by their TCAS system.

We proceed by splitting the aircraft encounters into categories and providing safety conditions

for each such category. Finally, we combine the per-category safety conditions into overall safety

conditions. The contributions of this paper are the high-level models of the TCAS system, which

may be used as a basis for studying a wide range of TCAS properties, and the demonstration of

the usefulness and practicality of high-level modeling and analysis techniques.

Clearly, this paper constitutes the first step toward a comprehensive analysis and verification of

TCAS. The analysis presented in this paper needs to be extended by relaxing several of the restrict-

ing assumptions of the pair of well-behaved and TCAS-equipped aircraft and extending the model

to describe more detailed and realistic views of the closed-loop system components. In the case of

the pair of well-behaved and TCAS-equipped aircraft, we need to consider cases in which multiple

aircraft are simultaneously involved in a conflict, pilots accelerate in the x and y directions, and

pilots thwart TCAS’s resolution advisories. In the case of the TCAS model, we ought to progres-

sively remove the various simplifications in the aircraft dynamics, the TCAS algorithm, and the

pilot response. When relaxing the various assumptions and removing the various simplifications

made in our analysis, model refinement may be used to extend the results of the high-level models

to their more refined counterparts; that is, by showing that the more refined system model actually

implements the high-level model, the properties shown in this paper extend to the more refined

model. Finally, it would be interesting to see whether, given a sufficiently detailed system model,

the software for the discrete parts of the system could be generated automatically such that, by

construction, the software generated is a truthful implementation of the higher level specifications.
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A Aircraft Automaton Ai

Variables:

Input:

ai ∈ R3

Output:

Mode Si ∈ N, initially arbitrary

Equipmenti ∈ {None,Report,TCAS}, initially arbitrary

pi ∈ R3, initially arbitrary with zi ≥ 0

vi ∈ R3, initially arbitrary

Actions:

Input:

e, the environment action

Discrete Transitions:
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e:

Effect: Arbitrarily reset the input variables.

Trajectories:

Input variables follow arbitrary trajectories.

Mode Si and Equipmenti remain constant.




ṗi(t)

v̇i(t)



 =





vi(t)

ai(t)





B Sensor Automaton Si

Variables:

Input:

pj ∈ R3 for all j ∈ Aircraft

vj ∈ R3 for all j ∈ Aircraft

Internal:

tSi
∈ R+, initially 0

Output:

Rij ∈ R+, for all j ∈ Othersi, initially 0

Ṙij ∈ R, for all j ∈ Othersi, initially 0

hij ∈ R+, for all j ∈ Aircraft, initially 0

ḣij ∈ R, for all j ∈ Aircraft, initially 0

Actions:

Input:

e, the environment action

Output:

Samplei

Discrete Transitions:

e:
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Effect: Arbitrarily reset the input variables.

Samplei:

Precondition:

tSi
= TSi

Effect:

tSi
:= 0

hij :∈
[

zj ± nAi

2

]

ḣij :∈
[

zj ± nARi

2

]

Rij :∈
[

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ± nRi

2

]

Ṙij :∈
[

(xi−xj)(vxi−vxj)+(yi−yj)(vyi−vyj)+(zi−zj)(vzi−vzj)√
(xi−xj)2+(yi−yj)2+(zi−zj)2

± nRRi

2

]

Trajectories:

Input variables follow arbitrary trajectories.

ṫSi
= 1

Output variables remain constant.

Trajectories stop once the Samplei action is enabled.

C Conflict Detection Automaton Di

Variables:

Input:

Threatij ∈ Bool for all j ∈ Othersi

Rij ∈ R+, for all j ∈ Othersi

Ṙij ∈ R, for all j ∈ Othersi

hij ∈ R+, for all j ∈ Aircraft

ḣij ∈ R, for all j ∈ Aircraft

Derived:

Range Testij ∈ Bool (see text)

Altitude Testij ∈ Bool (see text)

Actions:
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Input:

e, the environment action

Output:

Declareij , for all j ∈ Othersi

Undeclareij , for all j ∈ Othersi

Discrete Transitions:

e:

Effect: Arbitrarily reset the input variables.

Declareij :

Precondition: (¬Threatij) ∧ Range Testij ∧Altitude Testij
Undeclareij :

Precondition: Threatij ∧ ¬Range Testij

Trajectories:

Input variables follow arbitrary trajectories.

Trajectories stop once any output action is enabled.

D Conflict Resolution Automaton Ri

Variables:

Input:

Mode Sj ∈ N for all j ∈ Aircraft

Equipmentj ∈ {None,Report,TCAS} for all j ∈ Aircraft

Rij ∈ R+, for all j ∈ Othersi

Ṙij ∈ R, for all j ∈ Othersi

hij ∈ R+, for all j ∈ Aircraft

ḣij ∈ R, for all j ∈ Aircraft

Internal:

Reversedi ∈ Bool, initially False

Crossingi ∈ Bool, initially False
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Intent Sentij ∈ Dir⊥, for all j ∈ Othersi, initially ⊥

Output:

Sensei ∈ Dir⊥, initially ⊥

Threatij ∈ Bool, for all j ∈ Othersi, initially False

Strengthi ∈ Strengths, initially 0

Derived:

SEP(dir, str) ∈ R with dir ∈ Dir, str ∈ Strengths (see text)

OK(dir) ∈ Bool with dir ∈ Dir

OK(dir) := (SEP(dir, 1500) ≥ ALIM)

Indep Choiceij ∈ Dir

if (OK(Climb) ∧OK(Descend) ∧ (hii ≥ hij)) then Indep Choiceij = Climb

if (OK(Climb) ∧OK(Descend) ∧ (hii < hij)) then Indep Choiceij = Descend

if (OK(Climb) ∧ ¬OK(Descend)) then Indep Choiceij = Climb

if (¬OK(Climb) ∧OK(Descend)) then Indep Choiceij = Descend

if (¬OK(Climb) ∧ ¬OK(Descend) ∧ (SEP(Climb, 1500) ≥ SEP(Descend, 1500))) then

Indep Choiceij = Climb

if (¬OK(Climb) ∧ ¬OK(Descend) ∧ (SEP(Climb, 1500) < SEP(Descend, 1500))) then

Indep Choiceij = Descend

Strength Choiceij ∈ Bool (see text)

Actions:

Input:

e, the environment action

Declareij , for all j ∈ Aircraft

Undeclareij , for all j ∈ Aircraft

Receiveij(dir), for all j ∈ Othersi, with dir ∈ Dir

Samplei

Output:

Sendij(dir), for all j ∈ Othersi, with dir ∈ Dir

Discrete Transitions:
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e:

Effect: Arbitrarily reset the input variables.

Declareij :

Effect:

if Equipmenti = TCAS then

if ¬Threatij then

Threatij := True

Sensei := Indep Choiceij

if (Sensei = Climb ∧ hii < hij − 100ft) ∨ (Sensei = Descend ∧ hii > hij + 100ft)

then Crossingi := True

Choose Strengthi so that Strength Choiceij = True.

Undeclareij :

Effect:

if Threatij then

Sensei := ⊥

Threatij := False

Reversedi := False

Crossingi := False

Intent Sentij := ⊥

Receiveij(dir):

Effect:

if Equipmenti = TCAS then

if (Mode Si > Mode Sj) then

if ¬Threatij then Threatij := True

Sensei := dir

if (Sensei = Climb ∧ hii < hij − 100ft) ∨ (Sensei = Descend ∧ hii > hij + 100ft)

then Crossingi := True

Choose Strengthi so that Strength Choiceij = True.
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if ¬Threatij ∧ (Mode Si < Mode Sj) then

Threatij := True

if (dir = Climb ∧ hii ≥ hij) then Sensei := Climb

elseif (dir = Descend ∧ hii ≤ hij) then Sensei := Descend

else Sensei := Indep Choiceij

if (Sensei = Climb ∧ hii < hij − 100ft) ∨ (Sensei = Descend ∧ hii > hij + 100ft)

then Crossingi := True

Choose Strengthi so that Strength Choiceij = True.

Samplei:

Effect:

if Equipmenti = TCAS then

if Threatij then

if (Equipmentj 6= TCAS ∧OK(Climb) ∧ ¬OK(Descend)) then Sensei := Climb

if (Equipmentj 6= TCAS ∧ ¬OK(Climb) ∧OK(Descend)) then Sensei := Descend

if (Equipmentj = TCAS ∧Mode Si < Mode Sj ∧ ¬Reversed ∧ Crossingi) then

if (Sensei = Descend ∧OK(Climb) ∧ ¬OK(Descend)) then

Sensei := Climb

Reversedi := True

if (Sensei = Climb ∧ ¬OK(Climb) ∧OK(Descend)) then

Sensei := Descend

Reversedi := True

if (Sensei = Climb ∧ hii > hij − 100ft) ∨ (Sensei = Descend ∧ hii < hij + 100ft)

then Crossingi := False

Choose Strengthi so that Strength Choiceij = True.

Sendij(dir):

Precondition:

(Equipmenti = TCAS ∧ Equipmentj = TCAS)∧

([Sensei = Climb ∧ Intent Sentij 6= Descend ∧ dir = Descend]∨

[Sensei = Descend ∧ Intent Sentij 6= Climb ∧ dir = Climb])
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Effect:

Intent Sentij := dir

Trajectories:

Input variables follow arbitrary trajectories.

Internal and output variables remain constant.

Trajectories stop once any Sendij(dir) action, for dir ∈ Dir, is enabled.

E Communication Channel Automaton Cij

Variables:

Internal:

tCij
∈ R+, initially 0

msetij = queue of (dir, t, t), with dir ∈ Dir, t, t ∈ R+, initially ∅

Actions:

Input:

e, the environment action

Sendij(dir), with dir ∈ Dir

Output:

Receiveji(dir), with dir ∈ Dir

Discrete Transitions:

e:

Effect: None

Sendij(dir):

Effect: Append (dir, tCij
+ dij , tCij

+ dij) to the tail of msetij .

Receiveji(dir):

Precondition: tCij
∈ [t, t], where (dir, t, t) is the head of msetij

Effect: Pop (dir, t, t) from the head of msetij .
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Trajectories:

msetij remains constant

ṫCij
= 1

Trajectories stop once tCij
≥ t, where (dir, t, t) is the head of msetij

F Pilot Automaton Pi

Variables:

Input:

Sensei ∈ Dir⊥

Strengthi ∈ Strengths

ḣii ∈ R

Internal:

tPi
∈ R+, initially 0

Q Sizei ∈ N, initially 0

Current Sensei ∈ Dir⊥, initially ⊥

Current Strengthi ∈ Strengths, initially 0

Last Sensei ∈ Dir⊥, initially ⊥

Last Strengthi ∈ Strengths, initially 0

Adv Q queue of (i, sns, str, t, t), initially empty,

with i ∈ N, sns ∈ Dir⊥, str ∈ Strengths, t ∈ R+, t ∈ R+

Followi ∈ Bool, initially True

Output:

ai ∈ R3, initially [0 0 0]T

Derived:

σ ∈ {−1, 0, 1}, such that

σ :=























1 if Current Sensei = Climb

0 if Current Sensei = ⊥

−1 if Current Sensei = Descend

Actions:
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Input:

e, the environment action

Internal:

New Advisoryi

Implement Advisoryi

Discrete Transitions:

e:

Effect: arbitrarily reset the input variables

New Advisoryi:

Precondition:

Last Sensei 6= Sensei ∨ Last Strengthi 6= Strengthi
Effect:

Q Sizei := Q Sizei + 1

Add (Q Sizei,Sensei,Strengthi, tPi
+ di, tPi

+ di) to Adv Q

Last Sensei := Sensei

Last Strengthi := Strengthi

Implement Advisoryi:

Precondition:

There exists (i, sns, str, t, t) ∈ Adv Q such that tPi
∈ [t, t]

Effect:

Remove (i′, sns′, str′, t′, t
′
) with i′ ≤ i from Adv Q

Replace (i′, sns′, str′, t′, t
′
) with (i′ − i, sns′, str′, t′, t

′
) in Adv Q , for all i′ > i

Q Sizei := Q Sizei − i

Current Sensei := sns

Current Strengthi := str

Followi :∈ {True,False}

Trajectories:
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Input variables follow arbitrary trajectories.

All internal variables except tPi
remain constant.

ṫPi
= 1

Output variables satisfy:

axi(t) ∈ [aix, aix]

ayi(t) ∈
[

aiy, aiy

]

azi(t) ∈











































































[azi, azi] if
[

Current Sensei = ⊥ ∨ (¬Followi) ∨ σḣii ≥ Current Strengthi
]

∧ḣii ∈ (vzi, vzi)

[0, azi] if
[

Current Sensei = ⊥ ∨ (¬Followi) ∨ σḣii ≥ Current Strengthi
]

∧ḣii ≤ vzi

[azi, 0] if
[

Current Sensei = ⊥ ∨ (¬Followi) ∨ σḣii ≥ Current Strengthi
]

∧ḣii ≥ vzi

[σa, σa] if Current Sensei 6= ⊥ ∧ Followi ∧ σḣii < Current Strengthi

Trajectories stop once the New Advisoryi action is enabled.

Trajectories stop once there exists (i, sns, str, t, t) ∈ Adv Q with tPi
≥ t.
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