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Abstract

In this paper, we present and evaluate three application-
layer multicast (ALM) protocols, namely Narada [3–5],
NICE [1,2], and an ALM protocol implemented using the
Internet Indirection Infrastructure (i3 ) [11]. We evalu-
ate these three ALM protocols according to the quality
of their data delivery paths, their robustness to chang-
ing membership, changing network characteristics, and
failures, and their overhead. Our evaluation focuses on
the ability of each such protocol to scale to large mul-
ticast group sizes and to handle dynamic environments
involving frequent membership changes and failures. We
identify strengths and weaknesses of each such protocol
and propose modifications that may remedy or mitigate
some of these weaknesses.

1 Introduction

In the recent past, several implementations of the multi-
cast communication service at the application-layer have
been proposed. The earlier attempt to implement the
multicast communication service at the IP layer, namely
IP multicast, has not been as successful as initially ex-
pected. Although IP multicast affords latency character-
istics comparable to IP unicast and minimizes packet du-
plication, it requires routers to maintain per-group state
and to provide additional functionality. The resulting
scalability, network management, and deployment issues
have stifled its wide adoption. Conversely, application-
layer multicast (ALM) protocols make use of IP unicast
primitives and push all multicast related functionality
onto the members of the multicast group. Although less
efficient in terms of latency and network usage, this ap-
proach simplifies the issues of deployment and mainte-
nance and, thus, constitutes a more viable multicast ser-
vice implementation.

In this paper, we present and evaluate three ALM pro-
tocols, namely Narada [3–5], NICE [1, 2], and an ALM
protocol implemented using the Internet Indirection In-
frastructure (i3 ) [11], which we henceforth refer to as i3 -
mcast [8]. Narada constructs a richly connected overlay
network (referred to as a mesh) and disseminates multi-

cast traffic along per-source spanning trees of this mesh.
NICE organizes the multicast group members into a hier-
archy of clusters. In particular, NICE partitions the mem-
bers at each layer of this hierarchy into clusters, where
proximate members at the given layer belong to the same
cluster, and elects a leader to represent each such cluster
at the higher layer of the hierarchy. i3 -mcast constructs
a multicast forwarding tree using the rendez-vous-based
indirection primitive provided by i3 .

We evaluate these three ALM protocols according to the
quality of their data delivery paths, their robustness to
changing membership, changing network characteristics,
and failures, and their overhead. Our evaluation focuses
on the ability of each such protocol to scale to large mul-
ticast group sizes and to handle dynamic environments
involving frequent membership changes and failures. We
identify strengths and weaknesses of each such protocol
and propose modifications that may remedy or mitigate
some of these weaknesses.

This paper is organized as follows. Section 2 presents the
metrics used in the literature to evaluate the performance
of ALM protocols. Section 3 discusses the scalability is-
sues pertaining to each such performance metric. Sec-
tions 4, 5, and 6 describe and evaluate Narada, NICE,
and i3 -mcast, respectively. Section 7 briefly describes
the factors affecting one’s choice of an ALM protocol. Fi-
nally, Section 8 briefly summarizes our evaluation of each
protocol.

2 ALM Protocol Performance

The performance metrics used to evaluate overlay-based
application-layer multicast protocols are: i) the quality
of the data delivery paths between sources and receivers,
ii) the robustness of the overlay structure to membership
changes, network characteristic changes, and failures, and
iii) the protocol overhead.

Quality of Data Delivery The quality of data deliv-
ery paths between sources and receivers may be evaluated
from the perspective of either the application or the net-
work. From the application’s perspective, the quality of
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the data delivery path is measured in terms of data trans-
mission metrics, such as latency and bandwidth. The
performance of an ALM protocol in terms of latency and
bandwidth is often compared to and normalized by that
of IP multicast.1 This comparison quantifies the perfor-
mance cost of implementing the multicast service at the
application rather than the IP level. The term stretch is
used to denote the per-receiver ratio of the latency from
the source to the particular receiver along the overlay net-
work to the respective IP multicast (or, alternatively, IP
unicast).

From the network’s perspective, the quality of the data
delivery path is measured in terms of stress and resource

usage. Stress measures the concentration of overhead on
particular links and hosts. Link stress is the count of
identical packets that the protocol sends along each link
of the underlying network. Thus, IP multicast, in which
data is disseminated along trees of the underlying net-
work, incurs unit link stress. Host stress corresponds to
the number of copies of the same packet a particular host
must forward; this corresponds to the out-degree (fanout)
of the data path at the given host.

Presuming link delay is an indication of the cost associ-
ated with using a particular link, the resource usage of
an ALM protocol is defined to be the quantity

∑

i∈L disi,
where L is the set of underlying links used for data trans-
mission, di is the delay of link i, and si is the link stress of
link i. Once again, the resource usage of an ALM protocol
compared to (normalized by) that of IP multicast is an
indication of the overhead of implementing the multicast
service at the application rather than the IP layers.

Protocol Robustness Protocol robustness refers to
the ability of the application-layer multicast protocol to
mitigate the effects of membership changes (member joins
and leaves), network characteristic changes (e.g., conges-
tion), and overlay link and host failures. Measuring over-
lay robustness entails quantifying the extent to which the
delivery of data is disrupted and the time it takes for the
protocol to restore it.

Protocol robustness imposes several guidelines on the de-
sign of application-layer multicast protocols. First, over-
lay construction should minimize the introduction of sin-
gle points of failure, such as the concentration of data
forwarding responsibilities onto a small number of over-
lay nodes. Such failure points may partition the overlay
and result in extended disruptions in the delivery of data
and expensive overlay reconfigurations. Thus, ALM pro-
tocols should either assign equal responsibilities to each
node of the overlay, or introduce redundancy. Second,

1 In absence of IP multicast measurements, per-receiver IP unicast

measurements are used for this comparison and normalization.

This approximation is accurate only when IP multicast is imple-

mented using source-specific spanning trees, such as DVMRP,

and the IP unicast paths are symmetric.

routine overlay operations, such as member joins, should
not put stress on particular overlay nodes. Such prac-
tice load the particular nodes and lead to a degradation
of performance and, possibly, node or link failure. Fi-
nally, as argued by Chu et al. [3], it may be beneficial
to design an ALM protocol to be self-sufficient, in the
sense that, once a particular set of hosts have joined the
overlay, routine overlay operations should not rely on ex-
ternal services. For example, overlay partition should be
repairable without invoking some external bootstrapping
mechanism.

Protocol Overhead Protocol overhead refers to the
per-host memory, per-host processing, and control traffic
requirements associated with the construction and main-
tenance of the overlay. Hosts may be required to maintain
membership, topology, and routing information, compute
routing tables, and exchange control packets to dissemi-
nate such information and coordinate the reconfiguration
of the overlay.

One aspect of an ALM protocol’s overhead, which is often
overlooked, is inter-member distance estimation. Such es-
timates may be needed for the purposes of routing and
overlay reconfigurations. Of course, the distance metric
depends on the performance requirements of the appli-
cation using the ALM protocol. Inter-member distance
estimates can be obtained either passively, by monitoring
data and control traffic, or actively, by explicit measure-
ment probes. Although passive measurements introduce
minimal overhead, active measurements may heavily con-
tribute to an ALM protocol’s overhead [3, 4]. This is es-
pecially the case when the distance metric used involves
bandwidth. Thus, care must be taken on deciding when
and how such measurements are performed.

3 ALM Protocol Scalability

The scalability of an ALM protocol refers to its ability
to sustain good performance as the multicast group and,
consequently, the overlay grows in size. In this section, we
discuss the scalability issues that pertain to each of the
performance metrics discussed in Section 2. Such issues
guide our subsequent evaluation of the scalability of the
three ALM protocols considered in this paper.

Quality of Data Delivery The scalability of an ALM
protocol in terms of application-layer performance de-
pends on the performance requirements of the applica-
tion. We classify application-layer performance metrics
into either hop-independent and hop-cumulative metrics.
On one hand, the end-to-end cost associated with hop-
independent metrics, such as bandwidth, is not explicitly
affected by the number of overlay hops. On the other
hand, the end-to-end cost associated with hop-cumulative
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metrics, such as latency, depends explicitly on the hop
count. For instance, the end-to-end latency corresponds
to the sum of the latency incurred along each overlay hop.

Hop-cumulative metrics may constrain the scalability of
an ALM protocol. For the purpose of limiting link and
host stress, ALM protocols often constrain the degree of
the overlay network they construct. Thus, as the size
of the multicast group grows, inevitably the diameter in
terms of overlay hops increases. So as to sustain its per-
formance in terms of hop-cumulative metrics, an ALM
protocol must either minimize the overlay hops between
sources and receivers, minimize overlay hop latencies, or,
preferably, both. This suggests that the overlay of any
scalable ALM protocol must conform to the locality of the
underlying network topology, where locality is defined in
terms of the hop-cumulative metric required by the ap-
plication.

From the perspective of the network, the scalability of an
ALM protocol is measured in terms of whether and to
what degree the link and host stress increases as the size
of the multicast group grows.

Protocol Robustness As the size of the overlay (mul-
ticast group) increases, the probability of some hosts fail-
ing increases. This is due to both the sheer number of
hosts and the inevitable heterogeneous reliability and per-
formance capabilities of the hosts and links comprising
the overlay. Thus, as the size of the overlay increases, ro-
bustness becomes an increasingly important performance
issue.

We evaluate the scalability of an ALM protocol in terms
of robustness by analyzing the degree to which the ALM
protocol: i) avoids the construction of overlays having
single points of failure, ii) avoids over-stressing particu-
lar nodes of the overlay, and iii) constructs data delivery
paths that limit the extent to which congestion and fail-
ures disrupt the delivery of data, such as distinct source-
specific data delivery trees.

Protocol Overhead The scalability of an ALM pro-
tocol is highly dependent on the protocol’s overhead in
terms of per-host memory, per-host processing, and con-
trol traffic. Scalability with respect to the per-host mem-
ory is evaluated by estimating the amount of state that
each host must store. This may include both membership
information and routing information. Scalability with re-
spect to the per-host processing is evaluated by identi-
fying the processing requirements of each host, such as
the cost and the frequency of routing table recalculation.
Finally, scalability with respect to control traffic involves
estimating the cost of maintaining the overlay and per-
forming routine operations, such as handling a request to
join the overlay and reconfiguring the overlay to reestab-
lish connectivity after a failure.

In addition to how costly each overlay maintenance and

repair operation is, it is important to identify: i) how
often such an operation is invoked, ii) whether the over-
head of each such operation is concentrated on particu-
lar hosts, and iii) whether such operations can occur in
bursts. A burst of operations that stress particular hosts
or underlying links may prevent the scalability of an ALM
protocol.

4 Narada

Narada [3–5] is a mesh-based ALM protocol. As such, it
performs two tasks: i) the construction and maintenance
of a richly connected overlay graph of the members of
the multicast group, henceforth referred to as the over-
lay mesh, and ii) the construction of per-source spanning
trees within this overlay mesh for the purpose of multicast
traffic dissemination.

Chu et al. [3–5] argue that a mesh-based approach to
ALM is advantageous to tree-based approaches used by
other ALM protocols. On one hand, shared spanning
trees result in the concentration of multicast traffic on
particular paths, are susceptible to single points of fail-
ure, and involve sub-optimal source to receiver paths. On
the other hand, source-specific spanning trees incur the
overhead of constructing and maintaining multiple over-
lays in the case of multi-source multicast transmissions.

Conversely, mesh-based approaches construct a and main-
tain a single overlay graph. The use of a single mesh
averts the need to construct and maintain multiple over-
lays. Furthermore, mesh-based approaches take advan-
tage of the connectivity of such overlay meshes to con-
struct source-specific dissemination trees. Source-specific
trees comprise better source to receiver paths and prevent
single points of congestion and failure from disturbing
the traffic from all sources. Of course, the performance
of mesh-based approaches heavily depends on the mesh
quality; that is, whether the quality of the path between
any pair of members within the mesh is comparable to
the quality of the unicast path between the same pair of
members. Indeed, the mesh must continuously be recon-
figured so as to improve the quality of the dissemination
paths, avoid hot-spots in terms of node and link stress,
and recover from failures and group membership changes.

In the next few sections, we give an overview of Narada.
We describe how Narada manages the group membership,
how routing is performed, and how the mesh is main-
tained. We conclude our presentation of Narada by sum-
marizing the observed performance of Narada presented
in [3–5] and by commenting on its virtues and shortcom-
ings.

In our presentation and evaluation of Narada, we let N
denote the number of multicast group members.
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4.1 Group Management

In Narada, each member of the multicast group maintains
the complete multicast group membership. Heartbeat
messages are periodically exchanged by neighbor mem-
bers within the mesh. These messages announce that the
sender is still a member of the multicast group and propa-
gate the membership information across the mesh. More-
over, heartbeat messages are annotates with monotoni-
cally increasing sequence numbers. The sequence num-
ber of a heartbeat message indicates how up-to-date the
heartbeat message is.

The membership state maintained by each member i in-
cludes a tuple 〈j, sj , tj〉 for each member j of the multicast
group known to i. The element sj corresponds to the se-
quence number of the latest heartbeat message known by
i to have been issued by j. The element tj is the time at
which i learned that j issued a heartbeat message with
sequence number sj .

The heartbeat messages of a host i include a tuple 〈j, sj〉
for each member j of the multicast group known to i.
Thus, i’s heartbeat messages propagate the membership
state information known to i to each of its neighbors.
Upon receiving a heartbeat message from member i, each
of i’s neighbors updates its membership state to reflect
any new membership information revealed by i’s heart-
beat message.

We let Theartbeat denote the period with which multicast
group members send heartbeat messages. In view of re-
ducing control overhead, Chu et al. [3] also propose that
membership information be piggybacked onto the rout-
ing messages exchanged by neighbor members. However,
such a scheme presumes that heartbeat and routing mes-
sages are exchanged with the same period.

Member Join A host x joins the multicast group as
follows. Through a bootstrap mechanism, the host x at-
tains a set X of multicast group members. Then, the
host x randomly selects a subset of X, contacts each host
in this subset and requests to become its neighbor in the
mesh. This process is repeated until x becomes the neigh-
bor of one or more members in X. Subsequently, the ex-
change of heartbeat messages between x and its newly
established neighbors informs x of the complete multi-
cast group members and the remaining members of x’s
existence.

Member Leaves and Crashes A member x leaves the
multicast group by simply notifying its neighbors. The
fact that x has left the multicast group is propagated
throughout the mesh through the exchange of heartbeat
messages. In order to allow the routing to adapt to new
topology and to minimize the effect of departures on data
delivery, hosts are required to keep forwarding multicast
packets for a short period of time ∆forwarding following

their departure from the multicast group.

The fact that a member x has crashed is detected when
its neighbors in the mesh do not receive a heartbeat mes-
sage from x for ∆failure time units. When a neighbor
y of x suspects that x has crashed, it probes x. If this
probe (or any such probe sent by some other neighbor
of x) is not acknowledged, then y presumes that x has
indeed crashed and propagates this information through-
out the mesh through its heartbeat messages. The fact
that x has crashed is maintained within the membership
state information so that stale information pertaining to
x does not get misinterpreted as information pertaining
to a newly discovered member.

Mesh Partitions Mesh partitions are repaired as fol-
lows. Each member maintains a queue of all the mem-
bers whose tuple in the membership state hasn’t been
updated for ∆partition time units. The elements of this
queue are the members suspected of belonging to another
part of a partition in the mesh. Periodically and with
probability Ppartition-repair, the member at the head of
the queue is removed and probed. If this probe is not ac-
knowledged, then the given member is presumed to have
crashed and this information is propagated throughout
the mesh. Otherwise, a link connecting the two members
is added to the mesh. The probability Ppartition-repair is
chosen based on the size of both the queue and the group
so that even if several members detect the partition and
attempt to repair it, only a small number of new links are
added to the mesh.

4.2 Routing

Narada uses a distance vector routing protocol to com-
pute shortest point-to-point routes among the members
comprising the overlay mesh (multicast group). So as to
avoid the counting-to-infinity problem, the routing table
maintained by each member contains both the routing
cost to every other member and the path that affords the
given cost. Routing updates exchanged by neighbor mem-
bers include the respective member’s routing table; that
is, the respective member’s cost and path to each other
member. We let Trouting-updates denote the period with
which multicast group members send routing updates.

Depending on the needs of the application using the
Narada system, the distance vector routing protocol can
be customized to optimize for a variety of application-
layer performance metrics, such as latency, bandwidth.
Of course, the routing table calculation relies on mem-
bers estimating their distance to their neighbors in the
overlay mesh. Ref. 3 describes how to customize the dis-
tance vector routing protocol to optimize for both latency
and bandwidth. The authors observe that for conferenc-
ing applications, which impose both low latency and high
bandwidth performance requirements, a dual metric in-

4



volving both latency and bandwidth affords better per-
formance than using latency or bandwidth alone. We
refer the reader to [3, 4] for the full description of how
the dual metric involving both latency and bandwidth is
incorporated within Narada.

Narada constructs per-source multicast dissemination
trees for the overlay mesh using reverse-path broadcast-

ing [9, 10]. Packets are thus forwarded as follows. Sup-
pose that a member x receives a packet p from the source
s through its neighbor x′. x proceeds to forward p if and
only if x′ is the next hop of x to s according to its rout-
ing table. If indeed x′ is the next hop of x to s, then x
forwards p to each of its neighbors x′′ whose next hop to
s is x. Thus, each member also maintains a bit indicat-
ing whether it is the next hop on the shortest path from
each of its neighbors to each of the multicast transmission
sources.

4.3 Mesh Maintenance

Narada incrementally improves the quality of the overlay
mesh, with respect to a particular performance metric, by
dynamically adding and removing overlay links between
the members of the multicast group.

Links are added to the overlay mesh as follows. Each
member x periodically (with a period Tadd) chooses a
random member in the multicast group that is not one
of its neighbors and evaluates the utility of a link be-
tween itself and this random member. The utility of a
link corresponds to the improvement in performance that
the addition of the link would afford to x. Of course, a
link’s utility depends on the performance metric for which
the overlay mesh is optimized, e.g., latency or bandwidth.
For example, in the case of latency, Chu et al. define a
link’s utility to be

∑

h∈H(lc(h) − ln(h))/lc(h), where H
is the set of members of the multicast group, lc(h) is the
current latency to h, and ln(h) is the new latency to h
were the link in question added to the overlay mesh. If the
utility of adding a link exceeds some threshold Uadd, then
the link is added to the routing table of x and propagated
along the mesh to the other members of the multicast
group.

Links are removed from the overlay mesh as follows. Each
member x periodically (with a period Tdrop) computes the
utility of the overlay links connecting it to its neighbors.
In the case of removing a link, its utility corresponds to
the importance of the link to each of its endpoints. For
example, in [3] the utility of an existing link with re-
spect to one of its endpoints is defined to be the number
of members for which the given link comprises the next
hop. This count is computed from the perspective of both
endpoints and the link’s utility is chosen to be the maxi-
mum of the two counts. If the utility of any link is below
some threshold Udrop, then the link is removed from the
routing table of x and propagated along the mesh to the

other members of the multicast group.

Both thresholds Uadd and Udrop are chosen based on the
multicast group size and the number of neighbors of x.

When adding and removing links, caution must be taken
so as to cause neither instability, nor mesh partition. In-
stability refers to situations in which links are added and,
subsequently, immediately dropped or vice versa. Insta-
bility and mesh partition are avoided by: i) setting the
threshold Udrop lower than the threshold Uadd, ii) over-
estimating the utility of a link when deciding if it should
be removed, and iii) when deciding if a link should be
removed, evaluating its utility from the perspectives of
either endpoint and using the highest link utility value of
the two.

The overlay degree of each member in the multicast group
gets dynamically adjusted based on the capabilities of the
member and the network it its vicinity. With the onset
of congestion close to a particular member, its children
in the data delivery tree witness a degradation in perfor-
mance. Thus, the utility of the links to the congested
member drops. These links are eventually removed from
the mesh in favor of higher utility links. Chu et al. [3] ar-
gue that the onset of congestion will thus limit the degree
of each member in the mesh. Alternatively, the authors
suggest that the degree of each member in the mesh be
explicitly constrained.

4.4 Reported Performance

The performance of Narada has been extensively analyzed
both through internet experiments and simulations [3–5].
In the case of internet experiments, its performance has
been analyzed along the following dimensions: i) the vari-
ability in bandwidth and latency limitations of the paths
to participating hosts, i.e., host heterogeneity, ii) the dis-
tance metric used to construct and maintain the mesh
and to route multicast traffic, and iii) the source sending
rate.

In terms of host heterogeneity, identical internet experi-
ments were conducted on two sets of hosts. The first set,
referred to as the primary set, involved 13 well connected
hosts whose unicast paths from source to receivers could
support the source’s sending rate. The second set, re-
ferred to as the extended set, involved 20 hosts of varying
degree of connectivity. The extended set, which included
all the primary set, also included bandwidth limited hosts
that could not support the source’s sending rate. In
terms of its distance metric, Narada was implemented
using latency (denoted Latency), bandwidth (denoted
Bandwidth), and a dual metric involving bandwidth
and latency (denoted Bandwidth/Latency). In terms
of source sending rates, Narada was analyzed at sending
rates of either 1.2Mbps or 2.4Mbps. In all internet ex-
periments the performance of Narada was compared to
that of: i) sequential unicast, where traffic is sequentially
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unicast to all receivers, and ii) Random-Narada, where
a connected mesh is randomly generated, remains fixed
over time, and routing is carried out as in Narada.2

We first consider the results of the experiments involving
the primary set of receivers. At a source sending rate of
1.2Mbps, Bandwidth/Latency performs slightly worse
than the sequential unicast scheme in terms of latency but
comparably to it in terms of bandwidth. In some cases,
Bandwidth and Bandwidth/Latency in fact take
advantage of internet routing pathologies and achieve
higher bandwidth to some receivers than the sequen-
tial unicast transmissions. Finally, Latency and Band-
width/Latency outperform Bandwidth and Random-
Narada in terms of latency.

At a source rate of 2.4Mbps, the Bandwidth/Latency
still performed slightly worse than the sequential unicast
scheme in terms of latency but performed comparably to
it in terms of bandwidth. Latency, however, performs
poorly in terms of bandwidth. For the extended set of re-
ceivers and a source rate of 2.4Mbps, the performance of
Bandwidth/Latency is close to that of sequential uni-
cast and outperforms both Latency and Bandwidth;
Latency performs poorly in terms of bandwidth and
Bandwidth performs poorly in terms of latency.

These experiments showed that: i) Narada performs com-
parably to sequential unicast (stretch on the order of 1.3–
1.5 and comparable bandwidth), in particular when the
dual metric of bandwidth and latency is used, ii) using
the dual metric involving both bandwidth and latency
is important for meeting both bandwidth and latency
performance requirements, and iii) in the case of Band-
width/Latency, control traffic comprised 10–15% of all
traffic, 90% of which was due to active bandwidth probes.

Chu et al. [3–5] also evaluated Narada through extensive
simulations. These simulations involved medium-sized
multicast groups, on the order of 256 receivers, over un-
derlying networks of 1000 routers and 3000 links. In these
simulations, Narada was implemented using a dual metric
of bandwidth and latency and was compared to IP multi-
cast (DVMRP) and the Random-Narada scheme. While
mean latency for IP multicast was found to be relatively
independent of group size, mean latency for Narada in-
creased with group size. This is possibly due to the in-
crease in the number of application-level hops traversed
by each packet. In addition, Narada achieved lower worst-
case stress than the Random-Narada scheme. However,
worst-case stress on members and links was found to in-
crease with group size. Finally, Narada’s overhead, not
including bandwidth probes, was found to be indepen-
dent of source sending rate and to increase linearly with
group size.

2 Narada is also compared to other schemes but due to space

constraints we are omitting them in this paper. The reader

is referred to Ref. 3–5 for the complete performance analysis

results.

Chu et al. [4] also analyzed the time it takes Narada to
adapt to the onset of congestion on a particular over-
lay link. With a routing table exchange period of 10sec,
Narada detects the need to adapt the overlay mesh within
20–35sec and recovers from the congested link within 20–
45sec. Of course, the adaptation time scale depends heav-
ily on the frequency with which routing tables are ex-
changed among neighboring members. Clearly, whether
the adaptation timescale of tens of seconds is sufficient
depends on the performance requirements of the applica-
tion. Chu et al. mention that, while a higher frequency
of routing updates would reduce the detection and recov-
ery times of Narada, it would also increase the chances of
the overlay becoming unstable by trying to adapt to the
highly dynamic network congestion characteristics.

4.5 Evaluation

The mesh-based approach used by Narada affords several
advantages. First, it decouples the membership manage-
ment from the data path construction. Thus, while per-
source spanning trees are constructed, a single copy of the
multicast group membership is maintained.

Second, the use of per-source spanning trees mitigates the
disruption of the data delivery due to congestion and fail-
ures. In the case of overlay link congestion and failure,
the data delivery on only some of the per-source spanning
trees may be disrupted. In the case of member failures,
since each member may be at different levels of each per-
source spanning tree, its failure disrupts the data deliv-
ery on the per-source spanning trees to different degrees.
Thus, Narada prevents single points of failure, where the
failure of a particular host causes the disruption of all
multicast traffic.

Finally, per-source spanning trees distribute the traffic by
different sources onto different overlay paths, thus reduc-
ing the stress sustained by overlay links. By extension,
the stress sustained by the underlying links is also re-
duced. By constraining (either implicitly, or explicitly)
the degree of each member in the mesh, Narada achieves
to further reduce link stress.

Apart from the bootstrapping mechanism, Narada is also
relatively robust to frequent joins. A host joins the multi-
cast group by contacting a random set of members. Thus,
provided the bootstrapping mechanism provides either a
large or a random set of members to the joining host, the
load of handling joins is distributed among all members
of the group.

By having each member of the group maintain the com-
plete multicast group membership, Narada is robust to
the failure of a substantial percentage of links or hosts.
Even if a large number of links or members fail, mem-
bers can eventually discover other members that are still
operational and reestablish connectivity. In this respect,
Narada is self-sufficient, in the sense that connectivity
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may be reestablished without resorting to an external
bootstrapping mechanism. Chu et al. [3, 4] argue that
self-sufficiency distinguishes Narada from other ALM pro-
tocols.

4.5.1 Overhead

Throughout this section, we presume that Narada con-
strains (either implicitly or explicitly) the mesh degree to
d.

Per-Host Memory Narada’s use of distance vec-
tor routing introduces considerable scalability concerns.
Each host in Narada records its distance to each other
member in the multicast group and the path along the
mesh that affords this distance. Presuming that each
of the per-source spanning trees are of considerable de-
gree and are full, each member’s routing table size is
O(N log N).

In addition, each member must record whether it is the
next hop from any of its neighbors to any of the mul-
ticast transmission sources. This information is used
to forward multicast packets along per-source spanning
trees according to the reverse-path broadcasting scheme.
Thus, each member’s memory requirement pertaining to
the per-source spanning trees is O(dN).

Per-Host Processing Each member of the multicast
group must update its routing table each time it receives a
routing update from one of its neighbors. The cost of such
an operation in the worst-case is O(N log N), because it
must check whether reaching each member through the
sender of the given routing update is preferable to the
current path and if so verify that the resulting path has no
loops. Thus, the processing requirements of each member
are, in the worst case, O(dN log N) every Trouting-updates

time units. Of course, routing updates in most cases can
be carried out much faster, since the routes to only some
members are updated as a result of each routing update.

Routing Update Overhead The scalability concerns
regarding Narada due its per-host memory requirements
are reinforced by the overhead associated with routing up-
dates. As described above, each member of the multicast
group exchanges its routing information with its neigh-
bors every Trouting-updates time units. Thus, each mem-
ber sends O(d) routing updates every Trouting-updates time
units. Each routing update is size O(N log N). Thus,
O(dN log N) bytes every Trouting-updates time units.

Although reducing the frequency of routing updates
would reduce this overhead, such a reduction would slow
down the convergence rate of the routing tables and the
overlay’s adaptation to joins, leaves, failures, and changes
in network characteristics.

Analysis of Overlay Operations The process of join-
ing the multicast group entails contacting a certain num-
ber of members and becoming their neighbor. Presuming
that Narada constrains (either implicitly or explicitly) the
degree of each member and that the set of members at-
tained through the bootstrapping mechanism are reach-
able, the joining process involves a constant number of
probes.

The cost of adding a link involves the exchange of routing
information and the calculation of the distance between
two hosts. This cost is incurred every Tadd time units by
every member. The cost of removing a link involves the
exchange of routing information between two hosts. This
cost is incurred every Tdrop time units by every member.

Partitions are repaired by periodically probing a
member from the partition queue. Provided that
the partition queue is non-empty, this cost is in-
curred every Tpartition-repair time units with probability
Ppartition-repair.

In summary, the process of adding and removing links
and repairing partitions involves a constant number of
message exchanges. The exchange of routing information
does however involve the transfer of O(N log N) bytes of
data.

4.5.2 Concerns and Suggestions

The effect of Narada’s parameters on its performance is
not well addressed in the literature [3–5]. In terms of eval-
uating its scalability, it is important to observe how each
parameter affects the protocol’s performance as the size
of the multicast group increases. For instance, consider
the case of partition detection and repair. In Narada,
hosts suspect partitions through timeouts; that is, if the
membership status of a particular host has not been up-
dated for ∆partition time units, then the host is suspected
of belonging to another part of a partition.

As the multicast group grows and presuming the degree
of each member is constrained (either implicitly or ex-
plicitly), the number of hops between members increases.
The increase in hop-count among members of the mul-
ticast group may increase the associated latency. Thus,
as the group size grows and the inter-member latencies
increase, members will begin falsely suspecting overlay
partitions. Such suspicions will induce extensive and un-
warranted partition repair probing. Clearly, this is not
the intended behavior of Narada. Rather, each member
x should use per-member timeouts each being propor-
tional to x’s latency to the respective member along the
overlay network. A similar scheme should also be used
for failure detection; that is, choosing per-member values
for the timeouts (∆failure) used to detect failures that
are proportional to the latency to the respective member
along the overlay network.

Although Narada can potentially handle a high frequency
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of joins, it is unclear whether Narada’s overlay can adapt
fast enough afford good performance in either highly dy-
namic environments or large multicast group sizes. This
is the case for a couple of reasons. First, the frequency
with which heartbeat and routing messages are exchanges
may not be increased so as to adapt quicker to the highly
dynamic environment. Both Chu et al. [3, 4] and Baner-
jee et al. [1] have observed that increasing the frequency of
heartbeat and routing messages leads to routing instabil-
ity. Moreover, increasing the frequency of heartbeat and
routing messages introduces additional control traffic.

Second, as the multicast group size increases, the time
required by the random link addition scheme to discover
efficient routes also increases. The number of candidate
overlay links at any point in time is N2 and the num-
ber of links evaluated every Tadd time units is N . Thus,
as the size of the multicast group grows a smaller frac-
tion of the overlay links are probed every Tadd time units.
As N increases, more attempts are required to discover
high utility links to be added to the mesh. For instance,
consider the scenario where a host joins a video confer-
ence close to its source and that all remaining receivers
are far away. Since it joins by contacting random mem-
bers, it will contact members that are far and connect
to the source through them. Since all members are far
away, chances are that the given member will keep on
probing far away members and never discover the overlay
link directly to the source. Heuristics that direct Narada’s
search for high utility links may prove highly beneficial in
terms of accelerating Narada’s convergence to high qual-
ity overlays.

Another concern is the high cost of active bandwidth
probes. Chu et al. [3, 4] observe that for conferencing
applications the use of a dual metric of bandwidth and
latency is highly beneficial for building a quality mesh. In
their experimental results however, Chu et al. observed
that bandwidth probes accounted for 90% of the over-
head.

5 NICE

The NICE Internet Cooperative Environment (NICE) [1,
2] is an ALM protocol that employs a tree-based (hier-
archical) data distribution structure. NICE arranges the
members of the multicast group into a hierarchy and uses
this hierarchy to disseminate multicast traffic among mul-
ticast group members. This hierarchy is constructed and
maintained so as to minimize a particular performance
metric, such as end-to-end latency.

We proceed by briefly describing the member hierarchy,
how it is maintained, and its reported performance. We
conclude by evaluating NICE’s overall design and scala-
bility and suggesting some possible improvements.

In our presentation and evaluation of NICE, we let N

denote the number of multicast group members.

5.1 Hierarchy Overview

NICE arranges members of the multicast group into a
hierarchy. The members at each layer (level) of the hier-
archy are partitioned into clusters ranging in size from k
to 3k − 1 members, where k ∈ N

+ is NICE’s cluster size
parameter. This partition observes the locality of the
members at the particular layer; that is, members that
are close together, with respect to the distance metric
for which the hierarchy is being optimized, belong to the
same cluster. The member that constitutes the graph-
theoretic center of each cluster is considered to be the
leader for the respective cluster and represents it at the
higher layer of the hierarchy.3 Thus, while the lowest
layer in the hierarchy is comprised of all members of the
multicast group, higher layers are comprised of progres-
sively fewer members.

Letting Li, for i ∈ N, denote the i-th layer of the NICE
hierarchy, with L0 corresponding to the lowest layer of
the hierarchy, the NICE hierarchy satisfies the following
properties:

• a member belongs to only one cluster in any layer,

• if a member is present in a layer Li, then it is also
present in any lower layer; in fact, it is its cluster’s
leader in each such layer,

• if a host is not present in layer Li, then it is not
present in any higher layer,

• provided the multicast group is comprised of at least
k members, each cluster at each layer of the hierarchy
is comprised of at least k and at most 3k−1 members,

• at each layer, cluster leaders are the graph-theoretic
centers of their clusters,

• letting N be the number of multicast group members,
the hierarchy is comprised of at most logk N layers.

The structure of the hierarchy is maintained by the mem-
bers in soft state. Each member stores the members in
each of the clusters it belongs to (its cluster peers at each
layer at which it is present), the distance estimates to all
these cluster peers, and the members of its super-cluster.
Suppose the distinct members x and y belong to the clus-
ter Xi at some layer Li and y is the leader of Xi. Then,
the cluster Xi+1 to which y belongs at layer Li+1 is the
super-cluster of x. Similarly, Xi+1 is said to be the super-
cluster of Xi. Since the number of members per cluster
is limited to 3k − 1, the per-member memory required is
O(k) for each cluster it belongs to. Let x be a member
that is present in layer Li and not present in any higher

3 The graph-theoretic center of a cluster corresponds to the cluster

member whose maximum distance to any other member in the

cluster is the minimum among all other cluster members.
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layer. The memory requirement for x is O(ki); the mem-
ory requirement of the member at the top of the hierarchy
is O(k log N).

Control Path Cluster peers periodically exchange
heartbeat messages. Such messages include the member-
ship view of each cluster member pertaining to the given
cluster; that is, it contains a list of the cluster members
that are known to the sender. The heartbeat messages
sent out by cluster leaders also inform the cluster mem-
bers of the members comprising their super-cluster. Let
Theartbeat denote the period with which cluster members
send out heartbeat messages and x be a member that
is present at Li but at no higher layer. Then, x must
send out O(ki) heartbeat messages every Theartbeat time
units; the member at the top of the hierarchy must send
O(k log N) messages every Theartbeat time units.

Data Path Multicast traffic is disseminated through-
out the multicast group as follows. Suppose that x and
y are distinct members of a particular cluster at layer Li.
If x receives a multicast packet from y, then it forwards
the packet to each of the members of any other cluster it
belongs to. This routing strategy forwards multicast traf-
fic along per-source spanning trees; however, these trees
may share a substantial number of overlay links.

Similarly to above, a member x that is present at Li but
at no higher layer must forward each data packet to O(ki)
other members; the member at the top of the hierarchy
must forward each data packet to O(k log N) members.
Clearly the higher in the hierarchy that a member is
present, the higher its forwarding overhead. However,
by amortizing the forwarding overhead, the average per-
member forwarding overhead tends to O(k) with increas-
ing N .

In order to reduce the concentration of the overhead at
the members present at the higher layers of the hierar-
chy, Banerjee et al. [2] sketch a scheme where the leader
of each cluster delegates the responsibility of forwarding
data packets. In particular, each cluster leader instructs
each member in the given cluster to forward packets to
members in the given cluster’s super-cluster. Since clus-
ters are comprised of at least k and at most 3k − 1 mem-
bers, each cluster member is delegated the responsibility
of forwarding packets to at most 3 more members. Using
this delegation scheme and a more intricate data delivery
path, Banerjee et al. [2] reduce the per-member forward-
ing overhead to O(k).

5.2 Hierarchy Maintenance

Member Join A host x initiates the process of joining
the multicast group using a bootstrap mechanism. NICE
presumes that x knows of a particular host, referred to
as the rendez-vous point (RP), through which it learns

the member y at the top of the NICE hierarchy. Sub-
sequently, x contacts y and learns the cluster peers of y
at the next layer down the hierarchy. Then, x probes
each such member, determines which of these members is
closest, and asks this closest member for its cluster peers
an the next layer down the hierarchy. x proceeds to ex-
plore successively lower layers of the hierarchy in view of
finding and joining its closest L0 layer cluster.

During the joining process, a host must query O(k) mem-
bers at each layer of the hierarchy. Thus, the joining pro-
cess incurs an overhead of O(k log N) messages and spans
a time interval of O(log N) RTTs. In view of shortening
the delay is receiving multicast transmissions, the joining
host successively peers with the cluster leader of each clus-
ter whose members it queries as it successively explores
lower layers of the hierarchy.

Member Leaves/Crashes Graceful leaves are carried
out as follows. Prior to leaving the multicast group, the
member intending to leave sends a remove message to its
peers in each of the clusters it belongs. These messages
initiate a leader selection process in each of the affected
clusters. In each such cluster, each member estimates
which of the peers should be the cluster’s leader and a
leader is elected through heartbeat message exchanges
among the remaining cluster peers. In the cases when
multiple leaders are selected, further heartbeat messages
are used to select a single leader among them.

Once a new cluster leader is selected among the remaining
cluster peers, the new cluster leader joins the higher layer
by joining its super-cluster. If the new cluster leader is
unsuccessful in joining its super-cluster, e.g., due to stale
super-cluster state, then it contacts the RP and initiates
the process of joining the next highest layer of the NICE
hierarchy. This process is identical to the process of a
new host joining the multicast group, with the exception
that the process terminates when the cluster leader dis-
covers the appropriate cluster to join at the appropriate
layer. For instance, suppose a cluster leader x at layer
Li wants to join layer Li+1. It contacts the RP and be-
gins exploring the NICE hierarchy top-down in search of
the appropriate cluster to join. This joining process ter-
minates when it discovers its closest member y at layer
Li+1 and joins y’s cluster at that layer.

When a member crashes, its peers in each of the clusters
it belongs to stop receiving heartbeat messages. In each
such cluster, the remaining peers initiate the process of
selecting a new cluster leader as described above.

Member Migration In order to allow the hierarchy to
adapt to changing network characteristics and to correct
possible cluster selection errors when hosts join the hier-
archy, NICE allows members to migrate between clusters
as follows. Suppose x be a member that is present at
layer Li and no higher layer, Xi be the cluster to which x
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belongs at layer Li, and Xi+1 be the super-cluster of x at
layer Li+1. Periodically, x estimates its distance to each
of the members in Xi+1. If it discovers that it is closest
to some member y in Xi+1 than to the cluster-leader of
Xi, then it leaves Xi and joins the layer Li cluster of y.

Cluster Splitting and Merging Cluster leaders peri-
odically check the size of their clusters and appropriately
decide whether to split the clusters into two equally sized
clusters or to merge their clusters with other clusters in
their vicinity.

For instance, if a cluster leader x determines that the
size of its cluster Xi at layer Li exceeds 3k − 1, then it
initiates the process of splitting Xi. Based on the pairwise
distances between the cluster’s peers, the cluster leader x
splits Xi into two clusters such that the maximum of the
radii of the two clusters is minimized. Moreover, it selects
the leaders of each of the two new clusters and informs the
members of the original clusters of the split and of their
new leaders. Presumably, although not clearly specified
in [1,2], x removes itself from any clusters it belongs to at
layers higher than Li and the two new leaders join their
super-cluster at layer Li+1 as the leaders of the two new
clusters at layer Li.

If x determines that the size of Xi has fallen below k,
then it initiates the process of merging Xi with another
cluster in its vicinity. Let Xi+1 be the layer Li+1 cluster
to which x belongs, y be the member of Xi+1 that is
closest to x, and Yi be the layer Li cluster to which y
belongs. x initiates the merging of Xi and Yi by sending
a cluster merge request to y and informing its peers in
Xi of the merge. Upon receiving such a cluster merge
request, y informs its peers in Yi of the merge. Following
the merge, x removes itself from any clusters it belongs
to at layers higher than Li.

5.3 Reported Performance

Banerjee et al. [1, 2] have extensively analyzed the per-
formance of NICE using both simulations and wide-area
network experiments. In their simulations, the authors
compared the performance of NICE to that of Narada,
under single source transmission scenarios. In their wide-
area network experiments they validated their simulation
results.

In summary, their simulation and experimental findings
were that:

• NICE and Narada converge to trees of similar path
lengths,

• the stretch achieved by NICE is comparable to that
of Narada,

• the stress imposed by NICE is lower than that of
Narada, especially as the multicast group size in-
creases — for larger multicast groups, NICE con-

verges to topologies with 25% less average stress than
Narada,

• the failure recovery in both schemes is comparable,

• the overhead of NICE is much lower than that of
Narada, especially when the refresh rate of Narada is
increased so as to achieve comparable failure recovery
to that of NICE, and

• the worst-case control overhead at members running
the NICE protocol increases logarithmically with
group size.

The simulation experiments of Banerjee et al. [1, 2] are,
however, biased in favor of NICE. First, Banerjee et al.
seem to have incorrectly implemented the Narada pro-
tocol. In their brief overview of Narada, they claim that
members must exchanges heartbeat/routing updates with
every other member in the multicast group. Thus, they
estimate the aggregate control traffic to be O(N2), where
N is the size of the multicast group. Clearly, this is not
the intended behavior of Narada. As explained in Sec-
tion 4, each member in Narada periodically exchanges
heartbeat/routing updates with its neighbors in the over-
lay mesh. Chu et al. [3] state that a low degree overlay
is indeed preferred so as to reduce overhead and stress.
Moreover, the authors claim that the increase in load and
congestion at high degree members will induce the overlay
to reconfigure. Thus, Narada implicitly constrains the de-
gree of the overlay mesh. Chu et al. concede that when the
degree is unsuccessfully constrained implicitly, an explicit
scheme for limiting its degree should be employed. In fact,
in their simulation results, which model neither conges-
tion nor interference from other transmissions, Chu et al.
explicitly constrained the degree of Narada’s overlay mesh
within particular bounds.

It is unclear whether Banerjee et al. conducted a fair com-
parison of the overhead of NICE and Narada. This de-
pends on whether Banerjee et al. implemented Narada
such that members exchange heartbeat/routing messages
with all members in the group. The particulars of their
implementation affects also the results pertaining to the
recovery time of Narada. If heartbeat/messages are
exchanged using a complete graph, then members are
alerted to failures potentially sooner than in the case of
a bounded-degree mesh and the recovery is quicker.

5.4 Evaluation

5.4.1 Quality of Data Delivery

NICE’s cluster-based hierarchy results in a data delivery
path that has two highly desirable properties. First, the
hierarchy guarantees that multicast packets traverse at
most O(log N) application-level hops. Second, since clus-
ters capture the underlying locality (in terms of whichever
performance metric used), the application-level hops tra-
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verse incrementally larger regions of the underlying topol-
ogy and, thus, afford good aggregate end-to-end perfor-
mance. These two properties allow NICE to scale to large
multicast groups while still maintaining good application-
level performance.

Unless the data forwarding responsibilities of cluster lead-
ers are delegated, the stress subjected on underlying links
by NICE’s data delivery path may prohibit its use for
large groups and high bandwidth applications. Consider
a member x that is present at layer i and no higher layer.
This member forwards data packets to the O(ki) mem-
bers that comprise the clusters at layers i and below to
which x belongs. In the worst case, the stress sustained
by the underlying links emanating from x is O(ki). In
the worst-case scenario, the links emanating from the
member at the top of the hierarchy sustain a stress of
O(k log N). Clearly, the delegation of the data forwarding
responsibilities of cluster leaders, as suggested by Baner-
jee et al. [1, 2], is necessary. Using delegation, the stress
sustained in the worst case by underlying links is O(k).

5.4.2 Robustness

Disruption of Data Delivery Due to hierarchical
structure of NICE’s data delivery paths, failures at higher
layers of the hierarchy disrupt the data delivery to larger
sets of receivers. Moreover, since the per-source data de-
livery trees within the NICE overlay share all their higher
layer members, failures affect to a similar degree the data
stream of each source. Consider the failure of a member
that it present at layer i and no higher layer. In such a
scenario, packets that are forwarded to it from its peers
at layer Li do not get forwarded to any of the members
in the sub-hierarchy for which it is the leader. Moreover,
any packets forwarded from its cluster peers at layer L0

don’t get forwarded but to their L0 cluster.

The delegation of data forwarding responsibilities by clus-
ter leaders improves the robustness of the data delivery to
congestion and failures. Through delegation, congestion
and failures affect more per-source data delivery paths
but to a lesser degree. Thus, a more graceful degradation
of overall data delivery is achieved.

Failure Repair Once NICE repairs a failure, for in-
stance, by electing new leaders to represent the particular
clusters affected by the failure, the data delivery resumes
as before, that is, with comparable performance charac-
teristics. In contrast, Narada repairs failures by randomly
adding links and, subsequently, gradually improving the
overlay mesh by adding and removing overlay links.

Member Joins NICE’s joining process constitutes a
robustness and scalability concern. This process involves
contacting the RP and then progressively exploring the
hierarchy top-down in search of the most appropriate

cluster for the new host to join. For either large multi-
cast groups or highly dynamic environments very frequent
joins may stress the RP and the higher layers of the hier-
archy. Were a distance metric whose active measurement
is costly, the problem would be aggravated. Further re-
search as to how to relieve this concentration of joining
overhead at the top of the hierarchy is needed.

Highly dynamic environments involving frequent joins
and leaves would probably result in more frequent clus-
ter merges and splits. In addition, more situations would
arise in which newly elected cluster leaders are unable
to reach any of the super-cluster members and resort to
querying the RP and rejoining the hierarchy from scratch.

Frequent merges, splits, re-joins may be mitigated by ad-
justing the minimum and maximum cluster size bounds.
Increasing the value of k would lower the chances of all
members of a group failing or becoming unreachable. In-
creasing the maximum cluster size to 6k−1, for instance,
would reduce the frequency of both merges and splits; the
resulting clusters would have roughly 3k members, so at
least 2k members would have to leave or crash and 3k
members would have to join for the cluster to merge or
split once again.

5.4.3 Overhead

Per-Host Memory The memory overhead for a mem-
ber that is present at layer i and no higher layer is O(ki);
this, includes the information pertaining to each of the
i clusters it belongs to. In the worst case, the member
at the top of the hierarchy has a memory requirement of
O(k log N). This is a major advantage to Narada which
has a memory requirement of O(N log N).

Per-Host Processing The only substantial processing
performed by the members of the multicast group is the
cluster split operation. Banerjee et al. [2] state that the
processing overhead of splitting a cluster C is O(|C|3).
Thus, presuming that k is relatively small, that each clus-
ter leader initiates the process of splitting its cluster soon
after it exceeds the upper size bound, and that splits do
not occur that frequently, this processing overhead seems
manageable.

Control Traffic The heartbeat messages that each
member exchanges with all its cluster peers comprises the
control traffic overhead of each member. A member sends
O(k) heartbeat messages every Theartbeat time units for
each cluster it belongs to. Thus, a member present at
layer i and no higher layer sends O(ki) heartbeat mes-
sages every Theartbeat time units. Of course, the worst
such overhead is incurred by the member at the top of
the hierarchy; it sends O(k log N) heartbeat messages.

Since each such heartbeat message contains cluster mem-
bership information, it is of size O(k) bytes. Thus, a
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member at layer i and no higher layer sends out O(k2i)
bytes every Theartbeat time units. Of course, the worst
such overhead is incurred by the member at the top of
the hierarchy; it sends O(k2 log N) bytes every Theartbeat

time units.

5.4.4 Concerns

An important concern regarding the NICE hierarchy is
that the migration of members from cluster to cluster
is insufficient to correct for inaccurate placement and
changes in the network characteristics. For example, con-
sider a host x that due to packet losses during its joining
process, is erroneously misled down the wrong branch in
the hierarchy and joins a cluster that is locally optimal
but globally sub-optimal. For instance, suppose that x
joins the cluster X0 at layer L0, y is the leader of X0, and
X1 is the cluster of y at layer L1. If indeed x joins X0 is
error, it is possible that x is closer to y than to any other
member in X1, but that it closer to the cluster leader of
another L0 layer cluster somewhere else in the hierarchy.
In this scenario, x is incapable of migrating and joining
its globally optimal cluster.

Chu et al. [3,4] have observed that a dual metric involving
both bandwidth and latency is crucial for achieving good
performance for conferencing applications. Using a dual
metric of bandwidth and latency as the distance metric in
the NICE hierarchy is questionable. Recall that in order
for a host to join the hierarchy, it successively explores the
layers of the hierarchy is search of the lowest layer cluster
that is closest to it. During this exploration, it performs
O(k log N) distance probes. Thus, if a dual metric were
used, then each join operation would involve O(k log N)
high overhead bandwidth probes [3,4]. A solution to this
overhead problem might be to have hosts join the hier-
archy based on a latency metric and then migrate using
the dual metric. However, as explained above, this might
result in hosts joining sub-optimal clusters and getting
stuck with poor performance.

Furthermore, NICE is dependent on the RP for recovering
from situations in which newly elected cluster leaders fail
to join their super-cluster. Thus, NICE doesn’t satisfy
the self-sufficiency requirement put forth by Chu et al. [3];
self-sufficiency is the property that once a set of hosts have
joined the multicast group, the ALM protocol should be
able to recover from failures and reestablish data delivery
without relying on out-of-band mechanisms.

5.4.5 Suggestions

A plausible solution to the problem of insufficient migra-
tion is for each member to maintain a list of all leaders
under which it resides in the hierarchy. This data can
maintained by having newly elected cluster leaders in-
form all the members in their respective region of their
election. Then, periodically each member would check

whether it is misplaced with respect to the cluster of its
leader at a randomly chosen layer of the hierarchy. Of
course, such probes would have to be less frequent for
higher layers of the hierarchy. If at any point in time a
member were to determine, through a probe at a clus-
ter Xi at layer Li, that it is misplaced, then it would
migrate at the region by jump-starting a joining process
from the cluster Xi. Although this is a plausible scheme,
it introduces additional overhead. First, each member
would have to maintain a list of all its higher layer lead-
ers. This amounts to a memory requirement of O(log N).
In addition, this information would probably have to be
exchanges within L0 clusters so as to ensure consistency.
Thus, a member at layer i and no higher layer would have
to send out O(ki log N) bytes every Theartbeat time units.
Of course, the worst such overhead is incurred by the
member at the top of the hierarchy; it sends O(k log2 N)
every Theartbeat time units.

All of the aforementioned concerns can potentially be ad-
dressed by maintaining partial group membership infor-
mation as is done in [6, 7]. In SCAMP [7], each member
maintains a list of (c + 1) log N members, where c is a
parameter, and even when a fraction c/(c + 1) of the un-
derlying links failing, this membership information guar-
antees connectivity through gossiping. In lpbcast [6], each
member maintains a fixed-size view of the membership.
Using random gossiping, the membership views of the
members are exchanged and continuously modified. We
propose the design of a similar scheme, where each mem-
ber maintains a partial view of the membership of size
O(log N) which is continuously exchanged and modified
as in lpbcast.

A member could use this membership information to pe-
riodically probe remote areas of the hierarchy in view of
discovering a more appropriate cluster to join. Since the
partial membership view would constantly be changing,
different regions of the hierarchy would be randomly ex-
plored. With migration in tact, dual metrics could poten-
tially also be handled. As described above, hosts would
join based on latency alone and slowly migrate based
on the dual metric. Finally, in the event of a hierar-
chy partition, this partial membership information would
also be useful in discovering other regions of a hierarchy;
thus, rendering NICE self-sufficient. Clearly, more work is
needed to see if such a scheme is feasible, provides robust-
ness and connectivity guarantees similar to those claimed
in [6,7], and indeed produces viable solutions to the con-
cerns regarding the NICE protocol.

6 Large-Scale Multicast Using i3

(i3 -mcast)

Lakshminarayanan et al. [8] are currently designing an
implementation of a large-scale multicast service using
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the Internet Indirection Infrastructure (i3 ) [11]. In this
section, we present and evaluate the current version of
their ALM implementation, which we refer to as i3 -
mcast. We begin by describing the functionality of the
i3 system and conclude by describing and evaluating i3 -
mcast.

6.1 The i3 System

i3 is an overlay-based system that enables the implemen-
tation of a collection of communication services. The i3

system involves an overlay network comprised of a dy-
namic set of i3 servers. Loosely speaking, clients interact
with the i3 system by: i) inserting triggers into the i3

system, ii) removing triggers from the i3 system, and
iii) sending packets addressed to i3 identifiers. Triggers
correspond to forwarding instructions; that is, a trigger
instructs the i3 system as to how to forward packets ad-
dressed to a particular i3 identifier (or set of i3 identi-
fiers). Each i3 server is responsible for: i) storing in soft-
state all triggers pertaining to a particular subset of the
identifier space, and ii) forwarding all packets addressed
to this particular subset of the i3 identifier space accord-
ing to the triggers currently stored. A client inserts a
trigger by submitting it to any of the i3 servers. The i3

system forwards this trigger along the i3 overlay to the
i3 server that is responsible for storing it. This server in-
serts the trigger by storing it in soft-state. Triggers are re-
moved from the i3 system analogously. All triggers stored
within the i3 system must periodically be refreshed; oth-
erwise, they expire and are discarded. A client sends a
packet by submitting it to any of the i3 servers. Subse-
quently, the i3 system forwards this trigger along the i3

overlay to the i3 server that is responsible for forwarding
it. In turn, this server forwards the packet according to
the triggers pertaining to the i3 identifier to which the
packet is addressed.

In our presentation of i3 , we let NS denote the number
of i3 servers (Chord nodes) comprising the i3 system.

6.1.1 Packets and Triggers

In their simplest form, packets are of the form
〈i3 -id, data〉; that is, pairs of i3 identifiers and data (pay-
load) of the packet. In their simplest form, triggers are
of the form 〈i3 -id, IP-addr〉; that is, pairs of i3 identi-
fiers and IP addresses.4 A packet submitted to the i3

system is forwarded based on its i3 identifier to the i3

server responsible for storing all triggers pertaining to the
given i3 identifier. Then, the given server forwards the
packet according to any trigger whose identifier matches

the identifier of the packet. If no such trigger exists, then
the packet is discarded.

4 The IP address of a trigger may also include a particular port

designation.

The i3 system uses an inexact identifier matching strat-
egy. Letting m denote the bit-length of the i3 identifiers,
the i3 system introduces an exact match threshold of k
bits, where k < m. A trigger identifier id t is said to match
a packet identifier idp if and only if: i) id t and idp have
a prefix match of at least k bits, and ii) no other trigger
in the i3 system has a longer identifier prefix match with
idp than id t. The exact match threshold k is presumed
to be chosen large enough such that the probability that
two randomly chosen identifiers match is negligible.

Suppose that a packet 〈idp, data〉 is submitted to the i3

system and forwarded along the i3 overlay to the server s
that is responsible for handling it. If s maintains a trigger
〈id t, a〉 whose identifier id t matches idp, then it replaces
the i3 identifier of the packet with the IP address a and
forwards the packet using IP. In the cases when multiple
triggers match a packet’s identifier, the packet is copied
and forwarded to multiple IP addresses.

This indirection scheme can be used by a client h1 to
send packets to a client h2 as follows: client h2 inserts a
trigger 〈id2, a2〉, where id2 is some i3 identifier known to
h1 and a2 is its IP address, and client h1 simply sends
packets addressed to the i3 identifier i2. In effect, the
server handling the packets addressed to the i3 identi-
fier i2 (or, abstractly, the identifier itself) serves as the
communication rendez-vous point.

Forwarding Preferences: The m− k least significant
i3 identifier bits may be used to encode packet forwarding
preferences (or trigger matching preferences). For exam-
ple, these bits can be used to distribute client requests to
a collection of web servers or to direct client requests to
web servers that are geographically close to the respective
clients. The former is achieved as follows. Clients address
requests to i3 identifiers whose m−k least significant bits
are chosen at random and web servers insert triggers with
i3 identifiers whose m − k least significant bits are cho-
sen at random. Thus, client requests will be forwarded to
the web server whose trigger i3 identifier shares a longer
prefix with the i3 identifier of the request.

The latter is achieved by having both clients and web
servers encode their location into the m − k least signif-
icant bits (presuming this encoding is hierarchical in the
sense that a longer prefix match implies that clients and
web servers are closer, either geographically or in terms
of latency).

Trigger Chains: The i3 system supports additional
levels of indirection by allowing clients to insert triggers
of the form 〈i3 -id, i3 -id〉. For example, suppose that a
client sends a packet 〈id1, data〉 to any i3 server. This
packet is forwarded along the overlay to the i3 server s1

responsible for handling packets addressed to id1. More-
over, suppose that a trigger of the form 〈id1, id2〉 is stored
at s1. Since this trigger matches the packet 〈id1, data〉,
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the i3 identifier of the packet is replaced with the des-
tination i3 identifier id2 of the trigger and the packet is
forwarded once again. In this case however, the packet
is forwarded along the overlay to the i3 server s2 that is
responsible for handling packets addressed to id2.

Such triggers allow clients to set up complex packet for-
warding chains, such as the large-scale multicast dissem-
ination trees suggested by Lakshminarayanan et al. [8].

Identifier Stacks: The i3 system also supports packet
and trigger identifier stacks. In their most general form,
packets are of the form 〈idstack , data〉 — pairs involving
an identifier stack and a payload — and triggers are of
the form 〈i3 -id, idstack 〉 — pairs involving an i3 identifier
and an identifier stack. An identifier stack corresponds
to a list of either i3 identifiers or IP addresses.

A packet is forwarded by the i3 system according to the
identifier on the top of the packet’s identifier stack. If this
identifier is an IP address, then the packet is forwarded
to particular IP address through IP. A client processes a
packet addressed to an identifier stack either by ignoring
the identifier stack and simply delivering the packet to
the application or by popping the stack, processing the
packet, and subsequently sending another packet (pos-
sibly containing the results of processing the packet re-
ceived) addressed to the remainder of the identifier stack.
The choice as to how such packets are processed may be
determined by either the clients or additional flags within
the packet headers that dictate how each packet should
be processed by the client.

If the identifier on the top of a packet’s identifier stack is
an i3 identifier, then the i3 system forwards the packet
to the server responsible for handling packets addressed
to the particular i3 identifier. For any matching trig-
ger, this server pops the packet’s identifier stack, pushes
the trigger’s destination identifier (or, identifier stack)
onto the stack, and once again forwards the packet with
the updated identifier stack once again. For example,
suppose that the triggers 〈id1, id3|a1〉 and 〈id1, a2〉 are
stored at the i3 server s and that s receives a packet
〈id1|id2, data〉. Then, the server s forwards the following
packets 〈id3|a1|id2, data〉 and 〈a2|id2, data〉 to the server
responsible for id3 and to the client at a2, respectively.

The use of identifier stacks enables clients to implement
several communication primitives, such as service compo-

sition and heterogeneous multicast. Service composition
is implemented by having the sender address packets to
an identifier stack. Each identifier in the packet’s iden-
tifier stack results in the processing of the packet and
the subsequent forwarding of the result of such process-
ing. For example, in order for a client to send an HTML
web page to a wireless client, it may first forward the
packet to a wireless application protocol gateway that
translates HTML to WML (simplified mark-up language
for wireless devices) prior to delivering the packet to the

wireless client. This can easily be done using the i3 sys-
tem by addressing such packets to an identifier stack
idHTMl-to-WML|idwireless−client, where idHTMl-to-WML is
the rendez-vous i3 identifier for the wireless application
protocol gateway that translates HTML to WML and
idwireless−client is the rendez-vous i3 identifier for the
wireless client.

Heterogeneous multicast refers to the service where clients
with different streaming capacities simultaneously sub-
scribe to a particular multicast transmission. For ex-
ample, consider a wireless client that wants to sub-
scribe to a high bandwidth MPEG stream. This
client may redirect the MPEG stream through an
MPEG to H.263 transcoder by inserting a trigger of
the form 〈idMPEG, idMPEG−to−H.263|a〉, where idMPEG is
the i3 identifier for the high bandwidth MPEG stream,
idMPEG−to−H.263 is the i3 identifier for an MPEG to
H.263 transcoder, and a is the IP address of the wireless
client.

6.1.2 Routing Using Chord

The Chord protocol is used to route packets and trig-
gers to the i3 servers that are responsible for forwarding
and storing them, respectively. Chord is efficient, robust,
and scalable. Using the Chord protocol, each i3 server
maintains routing information regarding O(log NS) other
servers and routes packets and triggers to the appropriate
i3 server within O(log NS) steps. Moreover, the overhead
in maintaining the routing information when i3 servers
join or leave the Chord system involves O(log2 NS) mes-
sages. The reader is referred to [12] for an extensive anal-
ysis of Chord’s performance and robustness analysis.

Although Stoica et al. [11] use Chord in their presentation
of the i3 system, any distributed lookup protocol similar
to Chord may be used. Of course, it is important that
such a protocol be efficient, robust, and scalable.

6.1.3 Routing Efficiency

Although routing packets and inserting/removing triggers
through the overlay network using the Chord protocol is
efficient, it is typically less efficient than routing directly
to the appropriate server using IP. The i3 system ad-
dresses this inefficiency by exposing to client originally
sending the packet or inserting/removing the trigger the
IP address of the i3 server that is responsible for han-
dling and storing the packet or trigger, respectively. Once
the i3 server’s IP address is cached, the client uses IP
to send subsequent packets or triggers pertaining to the
particular i3 identifier to the appropriate server. If, sub-
sequently, another server takes responsibility of the par-
ticular i3 identifier, packets and triggers will be routed
to the new server using Chord and the IP address of the
new server will be cached.
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Routing efficiency may also be improved by having clients
probe the overlay network in search of a server that is
close-by in terms of RTT latency. For instance, a client
c with IP address a may probe the i3 system as follows.
It selects a random i3 identifier id , then it inserts a trig-
ger of the form 〈id , a〉, sends a dummy packet addressed
to id , and measures the packets RTT latency. Presuming
that the mapping of i3 identifiers onto servers is relatively
stable, this operation need only be done off-line and in-
frequently.

6.1.4 Robustness

In terms of routing packets and inserting/removing trig-
gers, the i3 system inherits its robustness to node failures
from the underlying Chord location protocol. Since trig-
gers are maintained by the i3 system as soft-state, it is
also robust. This is because all triggers must periodically
be refreshed/reinserted by clients. Thus, even if a server
storing a particular trigger fails, the trigger will be rein-
serted into the i3 system the next time its client refreshes
it.

Trigger re-insertion is not however immediate. One ap-
proach to improve the robustness of the i3 system to the
interruption of service due to the delay in re-inserting
lost triggers is replication. Replication can be done by
either the clients or the overlay network. In the former
solution, receivers may generate multiple triggers (hope-
fully stored on distinct servers) and senders can address
packets to an identifier stack involving the i3 identifier
of each such trigger. If the trigger corresponding to the
identifier on the top of the stack is lost, then the packet
is forwarded to the subsequent i3 identifiers in the stack
in search of the trigger replicas.

6.1.5 Relieving Hot-Spots

Replication can also be employed to avoid or relieve hot-
spots in the underlying overlay network. When a server
becomes overwhelmed with traffic, it may duplicate trig-
gers pertaining to particular sets of i3 identifiers to other
servers and, thus, distribute the load. Of course, this
replication must ensure that: i) the triggers are copied
to a server that will process a substantial amount of the
packets routed to the swamped server, and ii) all triggers
that have a prefix match of k bits must be replicated so
that the new server can match triggers correctly.

6.1.6 Scalability

The scalability of the i3 system involves both the scalabil-
ity of the underlying Chord service and that of the storage
requirements introduced by the i3 system. Chord com-
prises a highly scalable overlay-based lookup protocol.
In terms of the storage requirements when implementing

communication services using the i3 system, each point-
to-point flow involves two triggers. However, only a sub-
set of the triggers are stored by each i3 server. Presuming
that the i3 identifiers are uniformly distributed, the num-
ber of point-to-point flows is n, each server is on average
required to store n/NS triggers. Of course, the implemen-
tation of more complex communication services using the
i3 system may require the storage of a larger number of
triggers.

6.2 The i3 -mcast Protocol

i3 -mcast uses i3 identifier chains to construct a source-
specific multicast spanning tree of the members of the
multicast group within the i3 infrastructure. The i3 -
mcast protocol can be implemented in either a strict
peer-to-peer sense, or a client-server sense. In the strict
peer-to-peer sense, the multicast group members imple-
ment the i3 system and the underlying lookup protocol.
In the client-server sense, the multicast group members
are clients to the i3 service, which is provided as a service
by some other entity. In our presentation and evaluation,
we let N denote the number of multicast group members
and NS denote the number of i3 servers (Chord nodes).
The strictly peer-to-peer setting is obtained by letting
N = NS and, of course, realizing that the members in-
herit the overhead responsibilities of the i3 servers.

Multicast Spanning Tree i3 identifiers and triggers
play the role of the nodes and the edges, respectively, of
the multicast spanning tree. A set of i3 identifiers, one
corresponding to each member of the multicast group,
comprise the nodes of the multicast spanning tree. Each
member hk subscribes to its distinct i3 identifier idk by
inserting (and continuously refreshing) a trigger 〈idk, hk〉
into the i3 system. A set of triggers comprise the edges
between the nodes of the multicast spanning tree. For
instance, an edge between node idk1

and idk2
is estab-

lished by inserting (and continuously refreshing) the trig-
ger 〈idk1

, idk2
〉.

The identifier idr of the root node comprises the multicast
group address; that is, the identifier to which any multi-
cast traffic should be addressed. The host hr subscribing
to the root node of the multicast tree is the source since
the multicast tree is constructed such that the latency
between hr and any other member of the multicast group
is minimized.

Lakshminarayanan et al. limit the degree of the multicast
tree by imposing a limit D + 1 on the number of triggers
stored for any given i3 identifier — one trigger connecting
the node to its member and up to D triggers connecting
the node to up to D other nodes (children). We say that
a node is joinable if it has less than D children nodes and
full if it already has D children nodes.

The members of the multicast group maintain two addi-
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tional multicast groups per node. Let jHash and fHash be
hashes from the i3 identifier space to itself. For each node
id , the multicast groups with i3 identifiers jHash(id) and
fHash(id) consist of the hosts that are directly connected
to the joinable and full, respectively, children nodes of
id . These multicast groups are flat in the sense that the
server handling their i3 identifier stores triggers pointing
to each of the members of the group.

Member Joins A new host hj joins the multicast
group by choosing a random i3 identifier id j (preferably
one that is handled by an i3 server that is close-by), sub-
scribing to it, and attaching it to a node of the multicast
spanning tree by inserting the appropriate trigger. The
node onto which to attach id j is chosen so as to afford
good performance to hj . In particular, the joining host
hj traverses the multicast tree in search of a joinable node
that affords good latency between the root host hr and
itself along the multicast tree.

This traversal starts at the root node idr and proceeds
down the multicast tree according to a branch-and-bound
scheme. At any point in time during this traversal, the
joining host hj records the joinable node id∗ that up to
that point in the traversal affords the minimum latency
between hr and hj ; thus, up to that point in the traversal,
id∗ is the best candidate node to which the joining node
should attach its node id j .

The joining host hj traverses the multicast tree top-down
visiting one node per-level starting at the root node idr.
For each node id it visits, it performs several tasks. First,
it estimates the distance from hr to itself along the mul-
ticast tree through each of the joinable children nodes of
id . This is done by sending a join-probe control packet
to the multicast group jHash(id). Any host that receives
such a packet responds to hj . Such responses include
relative timing information that enable hj to determine
which of the joinable nodes of id affords the minimum
latency from hr to itself. Let id jmin denote the node
among the joinable nodes of id that affords the minimum
such latency. If the latency afforded by id jmin is less than
that afforded by id∗, then id jmin is recorded as the best
candidate node so far; that is, id∗ is reset to id jmin .

Subsequently, using the multicast group fHash(id), hj de-
termines which of the full children nodes of id affords the
minimum latency from hr to itself. Let id fmin denote the
node among the full nodes of id that affords the minimum
such latency. If the latency afforded by id fmin is less than
that afforded by id∗, then hj continues the traversal of
the tree by exploring the subtree rooted at id fmin in the
same fashion. Otherwise, hj ceases its traversal.

Once hj ceases its traversal, subscribes to id j , and at-
taches id j to the multicast tree at the node id∗ by in-
serting the trigger 〈id j , hj〉 and 〈id∗, id j〉, respectively.
The trigger 〈id j , hj〉 instructs id j to forward the multi-
cast packets to hj and the trigger 〈id∗, id j〉 instructs id∗

to forward the multicast packets to id j .

Finally, hj also updates the joinable and full multicast
groups of id∗. hj determines if id j is joinable or full
by inserting (and, subsequently, immediately removing)
a dummy trigger 〈id j , iddummy〉. If this trigger insertion
is successful, which indicates that id j is joinable, then
hj joins the joinable group of id∗ by inserting the trigger
〈jHash(id∗), hj〉. Otherwise, hj joins the full group of id∗

by inserting the trigger 〈fHash(id∗), hj〉. Clearly, unless
by chance another member of the multicast group is also
subscribed to id j , hj will join the joinable multicast group
of id∗.

Multicast Tree Maintenance Since triggers are
stored as soft-state at the i3 servers, they must period-
ically be refreshed. This includes both the triggers per-
taining to the multicast tree and those pertaining to the
joinable and full multicast groups.

In order for each member of the multicast group to main-
tain the data path from the root node to itself, it must
periodically refresh all the triggers comprising the trigger
chain from the root node to itself. Having clients refresh
all the triggers comprising their respective trigger chains
is not scalable, because triggers high up in the dissemina-
tion tree, which are shared by numerous receivers, would
get refreshed by a multitude of clients.

Lakshminarayanan et al. propose two techniques for re-
ducing the number of times each trigger gets refreshed
within each refresh period. First, a client uses random-
ization to vary the points in time at which it refreshes
each of the triggers in its trigger chain. Thus, not all
members that share a particular trigger refresh the given
trigger all at once. Second, when a client refreshes a trig-
ger 〈id l1 , id l2〉, it also sends out a refresh-ack control
packet addressed to id l2 . This control packet is dissem-
inated throughout the subtree rooted at id l2 and sup-
presses any other refresh messages for the given trigger.
In conjunction, these techniques reduce the number of
times a trigger is refreshed within each refresh period.
More sophisticated randomization schemes can further re-
duce duplicate refreshing of triggers [8].

In addition to refreshing the trigger chain from the root
node to itself, a host hk must also maintain its mem-
bership to either the joinable or full multicast groups
of its parent node. Thus, it periodically determines
whether idk is joinable or full, as described above, and
re-subscribes to the appropriate multicast group.

If at any point in time all the members of the joinable
and full multicast groups of a node leave the multicast
group or crash, then hosts that are joining the group may
be prevented from either exploring promising branches of
the multicast tree or joining altogether. Such scenarios
are avoided by having members periodically probe their
parent nodes to determine whether any member is di-
rectly attached to it. If not, then the member migrates
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to its parent node and joins the joinable or full multi-
cast group of the node that was its grandparent prior to
migrating.

Multiple Sources The multicast tree construction
process described above attempts to minimize the latency
from the root host hr to each of the other members of the
multicast group. Although this results in a source-specific
multicast tree, any member h of the multicast group may
send packets to the multicast group by addressing them
to idr. Of course, the latency of multicast traffic from
members other than the root host will incur the addi-
tional latency of reaching the root node.

6.3 Evaluation and Suggestions

In our analysis of i3 -mcast, we presume that the multi-
cast tree constructed by i3 -mcast is at all times full and,
thus, of depth O(log N).

6.3.1 Quality of Data Delivery

Multicast Path Length Multicast packets are for-
warded by i3 to the root of the i3 -mcast multicast
tree, along the tree, and finally to the multicast group
members. The forwarding of a packet to the root node
and between nodes of the multicast tree correspond to
Chord lookups. Thus, they involve in most cases at
most O(log NS) application-level hops [12]. Each node-
to-member edge in the tree corresponds to a single
application-level hop. Thus, the transmission of each mul-
ticast packet involves O(log N log NS) application-level
hops. Thus, each packet multicast using i3 -mcast in-
curs more application level hops than in NICE.

Stoica et al. [11] suggest that hosts should cache the IP
address of the i3 server that handles the leading packet of
a stream of packets addressed to a particular i3 identifier
and, subsequently, submit the later packets to the appro-
priate i3 server directly. Thus, the O(log NS) application-
level hops incurred by a Chord lookup may be avoided for
the later packets within the stream.

Using this caching scheme, the sources of a multicast
transmission can avoid the O(log NS) application-level
hops involved in forwarding packets to the root node of
the i3 -mcast multicast tree. This caching idea can be
potentially employed within the i3 system itself. For in-
stance, consider an i3 server x storing a trigger of the
form 〈id1, id2〉. By caching the IP address of the i3

server y responsible for handling the i3 identifier id2, sub-
sequent packets matching id1 can be sent directly to y,
rather than incurring a Chord lookup involving O(log NS)
application-level hops. Thus, caching all edges in the
multicast tree successfully would reduce the number of
application-level hops required to deliver multicast pack-
ets from O(log N log NS) to O(log N).

Alternatively, other techniques for reducing the latency of
Chord lookups, such as those presented in Section 6.1.3,
may be required so as to match the performance of either
Narada or NICE.

Stress We estimate the stress that i3 -mcast imposes
on the underlying network by calculating the number of
times each Chord node must forward the same packet;
this should be an upper bound on the stress sustained
from the network links emanating from given Chord node.
Each multicast transmission is routed to each node of
the multicast tree using a Chord lookup and to each
member of the multicast group along an application-level
hop. Thus, the number of application-level messages in-
volved in the multicast transmission of each packet is
O(N log NS) (or, O(N) using caching, if effective). Pre-
suming a well balanced Chord system, the number of
application-level messages sent by each Chord node is
O((N log NS)/NS) (or, O(N/NS) using caching, if effec-
tive). Clearly, unless our proposed caching scheme is ef-
fective, the stress sustained by underlying links may pro-
hibit the use of i3 -mcast for high bandwidth applica-
tions.

Multicast Tree Concerns Several issues arise con-
cerning the process with which the i3 -mcast multicast
tree is constructed. First, a new host determines where to
join the multicast tree based on the latency to the source
host. In a scenario involving multiple sources, this ap-
proach gives a latency advantage to the members close to
the root node of the multicast tree.

Second, the branch-and-bound search scheme used during
the joining process is not exhaustive and may result in the
construction of a sub-optimal multicast tree. This could
be either an oversight (since this work is still in progress)
or a conscious attempt to reduce the cost and duration
of the joining process. The branch-and-bound traversal,
as described in [8], explores only the most promising full
node at each level. Thus, a promising full node may at-
tract joining nodes down a branch that is less favorable
than others. It is worth evaluating the trade-off between
joining cost and multicast tree quality when using a sim-
plistic versus a full-fledged branch-and-bound search dur-
ing the joining process.

Finally, the quality of the multicast tree depends on the
order in which hosts join the multicast group. Consider
for instance the scenario where a number of hosts that are
far away from the source join the multicast tree and fill
up the first level nodes. Then, suppose that a host next
to the source joins the multicast group. Since the first
level is full, it is forced to join further down within the
multicast tree. Thus, although the last host is very close
to the source, multicast packets are forwarded to the far
away hosts and back. Clearly, it would be beneficial to
devise a scheme with which hosts can join higher up in
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the tree by pushing other nodes further down.

In summary, it is debatable whether the multicast tree
construction of Lakshminarayanan et al. [8] introduces
enough locality to afford comparable performance to
Narada or NICE. In the worst case, the dissemina-
tion of multicast packets would involve O(log N log NS)
application-level hops, each of whose latencies may be ar-
bitrary.

6.3.2 Robustness

The main advantage of i3 -mcast is that, by taking ad-
vantage of layering, it inherits its robustness from the
i3 system (which in turn inherits it from Chord, or
whichever distributed lookup protocol is used). Since the
triggers comprising the multicast tree are stored in soft-
state and are periodically refreshed, i3 -mcast is highly
robust to failures. Once the underlying lookup protocol
has recovered from a failure, the multicast tree is restored
when the triggers comprising it are refreshed.

Of course, failures may interrupt the multicast transmis-
sion to particular subtrees of the i3 -mcast multicast tree
until the appropriate triggers are refreshed, possibly as
long as Trefresh time units. This interruption may also be
compounded by staggered failures. The replication-based
scheme proposed by Stoica et al. [11] and presented in
Section 6.1.4 may mitigate such interruptions.

Since each member of the multicast group is responsible
for refreshing all the triggers comprising its trigger chain,
the departure of members does not disrupt the data de-
livery. On the other hand, the departure of i3 servers
(Chord nodes) may temporarily disrupt the data delivery
until Chord manages to redistribute the responsibility of
handling lookups. Of course, in the strictly peer-to-peer
setting member leaves correspond to server leaves and
may thus temporarily disrupt data delivery.

6.3.3 Overhead

The overhead of i3 -mcast involves the overhead associ-
ated with the underlying lookup protocol and the con-
struction and maintenance of the multicast tree.

Overhead of Lookup Protocol The overhead of the
underlying lookup protocol depends on which such pro-
tocol is used. In the case of Chord, the memory require-
ments are O(log NS) memory and the cost of nodes join-
ing and leaving is, with high probability, no more than
O(log2 NS) messages.

Each node of the multicast tree is implemented by at most
2D + 1; D + 1 triggers implement its edges to its multi-
cast group member and its children nodes and D triggers
implement its joinable and full multicast groups. Thus,
O(DN) triggers comprise the multicast tree. Presuming
a well balanced Chord system, the memory requirements

at each node are O(DN/NS). Of course, in a peer-to-peer
setting, the average number of triggers stored per-node is
O(D).

Trigger Refreshing Since all triggers are stored at the
i3 servers as soft-state, they are periodically refreshed.
Each multicast group member must refresh: i) the trigger
attaching it its node in the multicast tree, ii) the trigger
establishing its membership to either the joinable or the
full multicast group of its parent node, and iii) all the
triggers comprising its trigger chain from the root to its
own node.

The calculation of the expected number of triggers re-
freshed by each member depends on the probabilistic
scheme used to limit the number of members refreshing
each edge of the multicast tree. Nevertheless, we estimate
the aggregate cost of refreshing triggers by presuming
that the number of times each trigger gets refreshed dur-
ing each refresh period is bounded by a constant. Thus,
the number of refresh messages are O(DN); recall, the
i3 -mcast multicast tree is comprised of at most O(DN)
triggers. Thus, the number of application-level messages
is O(DN log NS) (or, O(DN) using caching).

Suppression of Trigger Refreshing Each time a
member refreshes one of its triggers, it also sends a
refresh-ack control packet to suppress other mem-
bers from refreshing the same trigger during the par-
ticular refresh period. Such a packet is disseminated
throughout the subtree emanating from the edge es-
tablished by the particular trigger. At any level i of
the multicast tree, there are Di nodes each of which
has D node-to-node edges (triggers). A refresh-ack
packet for each of these triggers is disseminated along
Dlog

D
N−i − 1 node-to-node edges and Dlog

D
N−i node-

to-member edges. Node-to-node edges involve O(log NS)
application-level hops and node-to-member edges involve
single application-level hops. Thus, the total number of
application-level messages sent for suppression purposes

is
∑log

D
N

i=0 Di+1
[(

Dlog
D

N−i − 1
)

log NS + Dlog
D

N−i
]

=
O(DN log N log NS). In a well balanced Chord system,
each node would have to send O((DN log N log NS)/NS)
application-level messages (O(D log2 N) in a strictly peer-
to-peer setting).

Presuming that the proposed caching scheme if ef-
fective, the total number of application-level mes-
sages sent for suppression purposes is reduced to
∑log

D
N

i=0 Di+1
(

2Dlog
D

N−i − 1
)

= O(DN log N). Again,
in a well balanced Chord system, each node would have
to send O((DN log N)/NS) application-level messages
(O(D log N) in a strictly peer-to-peer setting).

This overhead is substantial, especially since it is in-
curred during each refresh period Trefresh. We proceed
by sketching an alternative scheme for refreshing the trig-
gers comprising the i3 -mcast multicast tree. Instead of
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requiring each member to refresh each trigger in its trig-
ger chain from the root to its own node, we require it to
simply refresh the edge from its parent to its own node.
Suppose that a member hk is attached to the multicast
tree at the node idk and that the parent node of idk is
id ′

k. We propose that hk be responsible for refreshing
only the edge from id ′

k to idk, i.e., the trigger 〈id ′

k, idk〉.

Using this scheme, each member relies on its ancestor
members to refresh the prefix of its trigger chain lead-
ing to its parent node. Member failures could thus break
the chain and partition the tree. To prevent such parti-
tions, we also require that each member send heartbeat
messages to its children members; the members that are
subscribing to either its joinable or full multicast groups.
If at any point in time a member ceases to receive heart-
beat messages from its parent member, then it determines
whether its parent has either left the multicast group or
crashed by probing its parent node (in an attempt to
migrate upward in the tree). If the parent node indi-
cates that no member is directly attached to it (i.e., that
the parent member has either left the multicast group or
crashed), the child member migrates upward in the tree
and informs its prior children members of its migration.

Our proposed refreshing scheme involves: i) O(N log NS)
application-level messages (or, O(N) using caching) to
refresh the triggers comprising the multicast group; each
member must refresh the trigger attaching it to its node
in the multicast tree, the trigger connecting its node to
its parent node, and the trigger establishing its member-
ship to either the joinable or the full multicast group of
its parent node, and ii) O(DN log NS) application-level
messages (or, O(DN) using caching, if effective) for each
member to send heartbeat messages to its D children
members. The second count of messages replaces the
O(DN log N log NS) (or, O(DN log N) using caching, if
effective) application-level messages used to suppress du-
plicate trigger refreshes. Thus, our proposed scheme re-
duces the number of application-level messages for sup-
pression by a factor of log N .

Of course, a more rigorous correctness analysis of the this
alternative scheme for refreshing the i3 -mcast multicast
tree triggers would need to be conducted. If such a scheme
were to fail in refreshing the appropriate trigger chains in
highly dynamic environments, then potentially a combi-
nation of the two schemes would work. When the system
is stable the proposed scheme is used and when failures
are detected members revert to refreshing all their trigger
chains.

Per-Host Memory Each member of the multicast
group is in charge of refreshing the complete trigger chain
from the root node to itself. Since the depth of the i3 -
mcast multicast tree is O(log N), its memory require-
ments are O(log N).

6.3.4 Extensibility

Since i3 -mcast is implemented using the i3 system, it
can easily be extended to provide other services, such
as service composition and heterogeneous multicast (pre-
sented in Section 6.1.1). Lakshminarayanan et al. [8] de-
scribe how the i3 -mcast system can be extended using
additional i3 system functionality so as to provide the
reliable multicast service. Thus, i3 -mcast affords the
added advantage of easy extensibility.

7 Choosing an ALM Protocol

Given a particular application, the choice of ALM proto-
col depends on the following factors:

Transmission Properties Clearly, each application
has distinct transmission property requirements. For ex-
ample, a conferencing application requires low latency
and high bandwidth. As we have seen, some protocols
may be able to cater to multiple application-level perfor-
mance metrics easier than others. For instance, while
Narada has been implemented using a dual metric of
bandwidth and latency, a dual metric is trickier to sup-
port in NICE and i3 -mcast due to their costlier join
operations.

Robustness The degree to which the ALM protocol is
robust to congestion and failures may also affect the de-
cision as to which protocol to choose. This also depends
on the environment within which an application is used.
For instance, an application that either operates within
a highly dynamic environment or interacts with hetero-
geneous clients, would require an ALM protocol that is
highly robust. For example, consider a highly dynamic
environment where host joins, leaves, and failures may
occur in bursts. In the case of joins, while Narada dis-
tributes the load of a burst of join operations, the joining
members may load the members high up in the NICE hi-
erarchy and those at the top of the i3 -mcast multicast
tree.

Scalability Scalability becomes an important issue
when the application is intended for large multicast
group, such as streaming video involving millions of re-
ceivers. The per-source memory, processing, and control
overhead of some ALM protocols may prohibit their use
for multicast groups of such size. Narada seems to suffer
from such scalability constraints. Taking advantage of
layering, i3 -mcast inherits its robustness from the un-
derlying distributed lookup protocol. This may allow i3 -
mcast to scale to larger multicast group sizes.
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8 Summary

We conclude this paper by summarizing our ALM pro-
tocol evaluations. We begin by the Narada protocol. As
described earlier, Narada disseminates multicast traffic
along per-source spanning trees of a richly connected over-
lay mesh. This mesh is continuously reconfigured to af-
ford better application-layer performance and adapt to
changes in the group membership, changes in the net-
work characteristics, and failures. By distributing the
load of joins among its members, Narada is capable of
handling frequent joins. Moreover, by having each mem-
ber of the group maintain the complete multicast group
membership, Narada is capable of reestablishing connec-
tivity even in cases of a significant number of failures. No-
tably, this is achieved without relying on an external boot-
strap mechanism; that is, even in the case of a substantial
number of failures, Narada is self-sufficient. Narada’s per-
member memory and control overhead requirements may
prohibit its scalability. In particular, the per-member
memory requirement is O(N log N). Furthermore, this
state is periodically exchanged among neighbors in the
overlay mesh. Thus, presuming the degree of the mesh
is d, each member must periodically exchange O(d) mes-
sages, each of which is of size O(N log N). It is also ques-
tionable whether Narada’s random link addition scheme
can discover high utility links in a large and highly dy-
namic multicast setting fast enough to afford an efficient
overlay.

NICE is a hierarchy-based ALM protocol. It partitions
the members at each layer of this hierarchy into clusters,
where proximate members at any given layer belong to
the same cluster, and elects a leader to represent each
such cluster at the higher layer of the hierarchy. NICE’s
hierarchy guarantees that multicast packets traverse at
most O(log N) application-level hops. Moreover, since
clusters capture the underlying locality, these application-
level hops traverse incrementally larger regions of the un-
derlying topology. Thus, NICE achieves good aggregate
end-to-end performance. Through delegation of the for-
warding responsibilities of members at the higher layers of
the hierarchy, NICE imposes O(k) stress on the links and
members due to the data path. In the case of the control
path, however, members at layer i must send O(ki) heart-
beat messages (in the worst case, O(k log N) for the mem-
ber at the top of the hierarchy). NICE’s shortcomings are
that: i) the join process concentrates load on the higher
layers of the hierarchy, ii) in some situations, which will
probably arise in highly dynamic environments, NICE re-
covers from hierarchy partitions by resorting to an exter-
nal bootstrapping mechanism, and iii) NICE’s migration
process is incapable of correcting clustering errors and
adapting to large changes in the network characteristics.
Our proposed modifications to NICE, presented in Sec-
tion 5.4.5, compensate for the latter two of these draw-
backs.

i3 -mcast constructs a multicast forwarding tree using
the rendez-vous-based indirection primitive provided by
i3 . Each of the edges in i3 -mcast’s multicast tree con-
stitute Chord lookups. Thus, the number of application-
level hops required to deliver multicast packets is, in most
cases, O(log N log NS). However, the degree of locality
captured by the multicast tree is questionable so the la-
tency incurred by each such application-level hop may be
arbitrary. The stress sustained by the underlying links
may be as high as O(log NS). Stress may thus prevent
the use of i3 -mcast for high bandwidth applications.
Furthermore, i3 -mcast incurs substantial overhead for
refreshing the triggers comprising the multicast tree and
for subcasting suppression messages so as to limit the
number of refreshes per trigger.

We propose two schemes for improving the applicability
and scalability of i3 -mcast. First, we propose that i3

servers be augmented with a caching scheme in which,
for each of their triggers, they cache the i3 server that is
responsible for the destination i3 identifier of the trigger.
Thus, packets can be forwarded directly to the appro-
priate i3 server and need not be routed using a Chord
lookup. If viable, this scheme has the potential of re-
ducing the number of application-level hops required to
deliver multicast packets to O(log N) and reducing the
stress sustained by underlying links to O(D). Second,
instead of each member being responsible for refreshing
all the triggers comprising its trigger chain, we propose
that each member only refresh the trigger comprising the
edge from its parent node to its own node. Thus, each
member relies on its ancestor members to refresh the trig-
gers earlier in its trigger chain. To avoid partitions, we
propose using heartbeat messages from parent to children
members. Thus, when children notice their parents have
either left or failed, they take their place. This scheme
reduces the aggregate number of application-level mes-
sages associated with refreshing the triggers comprising
the multicast tree.
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