
Using Machine Learning Techniques to Identify Botnet Traffic

Carl Livadas Robert Walsh David Lapsley W. Timothy Strayer
Internetwork Research Department

BBN Technologies
{clivadas,rwalsh,dlapsley,strayer}@bbn.com

Abstract

To date, techniques to counter cyber-attacks have pre-
dominantly been reactive; they focus on monitoring net-
work traffic, detecting anomalies and cyber-attack traffic
patterns, and, a posteriori, combating the cyber-attacks and
mitigating their effects. Contrary to such approaches, we
advocate proactively detecting and identifying botnets prior
to their being used as part of a cyber-attack [12]. In this pa-
per, we present our work on using machine learning-based
classification techniques to identify the command and con-
trol (C2) traffic of IRC-based botnets — compromised hosts
that are collectively commanded using Internet Relay Chat
(IRC). We split this task into two stages: (I) distinguishing
between IRC and non-IRC traffic, and (II) distinguishing
between botnet and real IRC traffic.

For Stage I, we compare the performance of J48, naive
Bayes, and Bayesian network classifiers, identify the fea-
tures that achieve good overall classification accuracy, and
determine the classification sensitivity to the training set
size. While sensitive to the training data and the at-
tributes used to characterize communication flows, machine
learning-based classifiers show promise in identifying IRC
traffic. Using classification in Stage II is trickier, since ac-
curately labeling IRC traffic as botnet and non-botnet is
challenging. We are currently exploring labeling flows as
suspicious and non-suspicious based on telltales of hosts
being compromised.

1. Introduction

One of the most vexing cyber-security threats today is
the use of very large, coordinated groups of hosts for brute-
force attacks. These large groups of hosts are assembled
by turning vulnerable hosts into so-called zombies, or bots,
after which they can be controlled from afar. A collection
of bots, when controlled by a single command and control
(C2) infrastructure, form what is called a botnet. Botnets
obfuscate the attacking host by providing a level of indirec-

Zombie
Host

Zombie
Host

Zombie
Host

Zombie
Host

Attack
Source

Host

Exploit
Host

Chat
Server

Code
Server

Store &
Forward
Drop Box

Out-of-band
Data Collection

Channel

Chain of C2 Channels

Data Collection
Return Path

Figure 1. Chat-Based Botnet Architecture

tion and separating the assembly of the botnet and its use
for attack by an arbitrary amount of time. Botnets, often
involving thousands of hosts, are increasingly being used to
launch highly-effective cyber-attacks.

Figure 1 depicts a high-level block diagram of a botnet
that uses a chat service as the C2 channel, the de facto C2
channel of choice of recent botnets [4,5,7,8,13]. The exploit
host initially compromises the zombies using well-known
host vulnerabilities. Subsequently, it instructs the zombies
to subscribe to a particular chat session. Finally, this chat
session is used to command the zombies into performing
coordinated tasks, such as fetching an executable from a
designated code server and running it at a particular point
in time.

Despite the development of various reactive techniques
to detect and trace a slew of cyber-attacks, detecting and
tracing the origin of botnet-based attacks is in its infancy.
Reactive techniques involve detecting the attack while it is
in progress and promptly tracing it to its true origin. Since



the setup of a botnet and its use to launch a cyber-attack may
be separated by arbitrarily long intervals of time, reactive
traceback techniques are not directly applicable.

Advocating a proactive approach to botnet-based attack
attribution, we propose detecting and identifying botnets
prior to their being used as part of a cyber-attack [12]. This
task can be broken down into: (1) detecting flows that likely
comprise botnet C2 traffic, (2) correlating these flows to
identify groups of flows that pertain to the same botnets,
(3) identifying the C2 hosts, which are one logical step
closer to the hosts instigating the attacks.

In this paper, we present our preliminary work on using
machine learning-based classification techniques to carry
out the first sub-task. We use two-stage approach. In
Stage I, we classify communication flows (i.e., TCP con-
nections) observed as either chat or non-chat flows. Here,
the underlying assumption is that the C2 flows of chat-based
botnets indeed resemble real chat flows. We argue that this
is the case for two reasons: (1) botnet C2 channels have, to
date, been observed to exchange text-based commands that
are of comparable length to that of real chat messages, and
(2) in order for botnet flows not to alarm chat server admin-
istrators, they must roughly resemble real chat connections.
Thus, we expect that a classifier that is trained to differen-
tiate between chat and non-chat flows will classify botnet
chat flows as chat flows.

Using classification in Stage II is trickier. We are cur-
rently investigating whether machine learning-based clas-
sifiers can be used to distinguish between botnet and real
IRC flows. Here, the underlying assumption is that bot-
net IRC flows are, in some subtle respects, different than
real IRC flows. The challenge here is to accurately label
IRC flows as either botnet or real IRC flows. Because the
traces available to us are anonymized and their payloads
have been discarded, labeling IRC traffic as either botnet or
real IRC traffic is challenging. Nevertheless, we are explor-
ing the possibility of labeling flows as either suspicious or
non-suspicious using telltales of hosts being compromised.

One of the challenges of using machine learning tech-
niques is the need for ground truth, an accurately labeled
data set that can be used for purposes of training (and test-
ing). Obtaining ground truth is particularly challenging. For
Stage I — that of discerning chat from non-chat flows —
obtaining ground truth entails being able to label flows as
either chat or non-chat. In the advent of payload encryption
and the use of random ports for communication, very lit-
tle information can be leveraged to carry out this labeling.
We focus on botnets that use Internet Relay Chat (IRC) as
the C2 channel. Since most IRC servers use the default IRC
port and IRC traffic is unencrypted, the default IRC port and
the packet payload (if available) can be used in identifying
IRC traffic.

For Stage II — that of discerning botnet from chat

flows — obtaining ground truth is more elusive. General
telltales of botnet flows are, to our knowledge, not publicly
available. We are currently exploring two approaches of la-
beling IRC flows are either botnet or real IRC flows. First,
we build and use a botnet testbed based on our own safe re-
implementation of the Kaiten botnet [6, 13]. The IRC flows
from our testbed can thus be used both for training and test-
ing purposes. Second, we use telltales of hosts being com-
promised to label flows as suspicious and non-suspicious.
This work still in progress.

2. Background

Several techniques have been developed to automatically
identify and, often, classify communication streams [1, 9–
11]. Dewes et al. [1] propose a scheme for identifying
chat traffic. Their approach relies on a combination of dis-
criminating criteria, including service port number, packet
size distribution, and packet content. Sen et al. [11] use a
signature-based scheme to discern traffic produced by sev-
eral well-known P2P applications. Their approach relies on
identifying particular characteristics in the syntax of packet
payloads exchanged as part of the operation of the particular
P2P applications, and then using these characteristics to dis-
cern the traffic of each application. The recent trend toward
using non-standard ports and encryption may reduce the ef-
fectiveness or, even, prevent the use of these techniques.

Others [9, 10] have proposed using statistical tech-
niques to characterize and classify traffic streams.
Roughan et al. [10] use traffic classification to identify the
class of service (CoS) of traffic streams and, thus, enable
the on-the-fly provision of distinct levels of quality of ser-
vice (QoS). The authors attempt to classify traffic streams
into four major traffic classes: interactive, bulk data trans-
fer, streaming, and transactional. Moreover, a multitude
of traffic statistics can be used to classify flows and these
statistics may pertain to either packets, flows, connections,
intra-flow, intra-connection, or multi-flow characteristics.
Roughan et al. investigate the effectiveness of using aver-
age packet size, RMS packet size, and average flow dura-
tion to discriminate among flows. Given these characteris-
tics, simple classification schemes produced very accurate
traffic flow classification.

In a similar approach, Moore and Zuev [9] apply vari-
ants of the naive Bayesian classification scheme to clas-
sify flows into 10 distinct application groups. They also
search through the various traffic characteristics to iden-
tify those that are most effective at discriminating among
the various traffic flow classes. By also identifying highly-
correlated traffic flow characteristics, this search is also ef-
fective in pruning the number of traffic flow characteris-
tics used for classification. Highly-correlated characteris-
tics provide comparable and, often, redundant information



about the traffic flows. Thus, in many cases it suffices to
use only one of the correlated characteristics to discriminate
among traffic flows.

3. Description of Data

3.1. Real-Life Traces

We use a set of network traffic traces collected from
Dartmouth’s wireless campus network [3]. Wireless traf-
fic sniffers were used to collect complete TCP/IP head-
ers of all packets transmitted over a period of four months
(11/1/2003–2/28/2004) from 18 locations around campus,
including academic, library, residential, and social build-
ings. The traces are anonymized (in terms of the source and
destination IP addresses) and contain no payload informa-
tion.

These traces are valuable in many respects. First, the
number of hosts monitored and the collection duration
makes the traces good candidates for including a wide va-
riety of traffic. Second, the variety in the placement of the
wireless sniffers ensure the collection of a variety of activi-
ties, e.g., activities carried out either in the privacy of one’s
dorm, or in the anonymity of a library. Thus, even if the
traffic one is looking for is rare, there is a good chance that
the traces will contain enough of this traffic to perform sta-
tistical analysis and characterization.

Given the proliferation of packet payload encryption,
building a botnet identification system that relies upon pars-
ing payload data is not wise. However, had it been available,
payload data could be used to label flows more accurately
and to evaluate the accuracy of other labeling schemes.

3.2. Testbed Traces

We set up a botnet testbed modeled on the chat-based
botnet architecture of Figure 1. As depicted in Figure 2,
our setup involved an IRC server, a code server, 13 zom-
bies running a safe reimplementation of the Kaiten botnet
code [6, 13], an attacker, and a victim host.

We used this testbed to obtain actual traces of the com-
munications between the various botnet entities. Our ex-
periments entailed using the IRC server to instruct the zom-
bies to download attack code from the code server and to
subsequently launch a coordinated UDP attack on the vic-
tim host. The traces involved IRC traffic between the bots
and the IRC server, http traffic between the zombies and the
code server (for downloading the attack code), and the UDP
traffic involved in the coordinated UDP-attack on the victim
host. The setup and the launch of the attack were succes-
sively repeated in order to increase the amount of trace data
collected.

BBN

IRC
Server

Controller

Bot Bot

Bot

Code
Server

Public
Internet

NetBSD/XEN

Bot

Bot

Bot

Bot

Mac OS X/Virtual PC

Bot

Bot

Bot

Physical 
computer

Virtual
Computer

Botnet Test 
Facility

Bot

Bot

Bot

Network

Figure 2. Botnet Testbed Architecture

4. Trace Pre-filtering

4.1. From Packets to Flows

Since IRC-based botnets use TCP, we retain TCP packets
and discard all others (UDP, ICMP, etc.). We characterize
flows using attributes based on TCP and IP packet headers.
These can be interpreted even if the encapsulated payload is
encrypted. The headers contain detailed information, some
of which is only relevant to the networking stack. Other
information may be too application- and OS-specific to be
used consistently across flows.

Table 1 summarizes the flow characteristics that we col-
lected for each of the flows in the traffic traces we used in
our work. These include the cumulative application payload
size, the IP protocol type (TCP), the IP source and destina-
tion addresses, the source and destination ports, and TCP
flags. Moreover, we record flow start and end times, packet
counts, byte counts, statistics for variance, client/server role
for the connection (as indicated by the initial three-way-
handshake of TCP), and a histogram of application payload
sizes (this adds a finer grain breakdown of the distribution of
packet sizes of each flow). For experimental purposes, we
also recorded the packet counts associated with TCP push
and maximum window size.

4.2. Heuristic Flow Filtering

We use a set of heuristics crafted to discard flows that
are unlikely to be botnet flows. These heuristics are very
effective in reducing the total number of flows considered
in the subsequent classification stages of our work.

We eliminate all port-scanning activity from the data
set — flows containing only TCP Syn or TCP Rst indicate
that communication was never established. These provide
no information about chat or C2 flows.



Table 1. Traffic Flow Characteristics
start/end Flow start/end times
IP-proto IP protocol of flow
TCP flags Summary of TCP SYN/FIN/ACK flags
pkts Total pkts exchanged in flow
Bytes Total Bytes exchanged in flow
pushed pkts Total packets pushed in flow
duration Flow duration
maxwin Maximum initial congestion window
role Whether client or server initiated flow
Bpp Average Bytes-per-packet for flow
bps Average bits-per-second for flow
pps Average packets-per-second for flow
PctPktsPushed Percentage of packets pushed in flow
PctBppHistBin0–7 Percent of packets in one of eight packet size bins;

these variables collectively form a histogram of
packet size for flow

varIAT Variance of packet inter-arrival time for flow
varBpp Variance of Bytes-per-packet for flow

Peer-to-peer file sharing is a significant load on the In-
ternet and may take place on chat ports by co-incidence
(since the chat port is not reserved) or by intent (to avoid
identification and filtering). We dropped “high bandwidth”
flows, thus eliminating software updates and rich web page
transfers. This elimination is more significant for the non-
chat subset of flows and serves to focus subsequent machine
learning modeling techniques on the more important area of
overlap between either IRC and non-IR, or botnet and real
IRC flows.

Finally, we eliminated short-lived flows — flows of only
a few packets or a few seconds. These do not correspond to
bots that are standing by “at the ready.”

4.3. Filtered Traces

In our work presented in this paper, we use two sets of
flows: the set obtained after filtering the flows from a par-
ticular residential building from the Dartmouth traces and
that obtained after filtering the flows collected from a par-
ticular botnet experiment in our botnet testbed facility. We
henceforth refer to these flow sets as the Dartmouth flows
(or trace) and the Testbed flows (or trace), respectively.
The Dartmouth trace involves 227784 flows, 7343 of which
were IRC flows (as dictated by the use of the default 6667
IRC port). The Testbed trace involves 74 flows, 38 of which
were IRC flows.

5. Results

In this section, we present our work on using machine
learning-based classifiers to identify IRC-based botnet C2
flows. We first classify flows into IRC and non-IRC flows;
then, among the flows identified as IRC flows, we distin-
guish between authentic IRC and botnet flows.

All the results in this paper were obtained using the
WEKA ML toolbox [14]. We use the flow characteristics

in the lower part of Table 1 as the initial set of flow fea-
tures/attributes. We do not use the characteristics in the up-
per part of the table for classification purposes — they ei-
ther are inconsequential in classifying flows, or correspond
to accumulated quantities, which are indirectly captured by
the corresponding rates or percentages and the flow dura-
tion.

We use the false negative rate (FNR) and the false pos-
itive rate (FPR) to evaluate the performance of the classi-
fiers considered. The relative importance of each of these
metrics depends on the ultimate use of the classification
results. A low FNR guarantees that only a small fraction
of the IRC/botnet flows will be discarded during our bot-
net identification process. A low FPR guarantees that the
set of flows identified as IRC/botnet will not be infested by
non-IRC/botnet flows. In the first stage of our approach —
that of identifying IRC traffic — we expect traffic traces
to involve a large number of non-IRC/botnet flows. A low
FPR would thus be beneficial in cutting down the number of
flows that need to be examined during the second stage —
that of discerning botnet from chat flows. In Stage I, we
evaluate the classifiers considered in terms of the FNR in
identifying our botnet testbed IRC flows. We consider our
botnet testbed IRC flows to be representative examples of
actual botnet IRC flows. Thus, their accurate identification
as IRC traffic is crucial in allowing their consideration in
Stage II.

5.1. Stage I: Identifying Chat Traffic

We explore the effectiveness of machine learning-based
classification in identifying chat traffic in three dimen-
sions: the classification scheme, the subset of characteris-
tics/features used to describe the flows, and the size of the
training set size.

In this stage, we use the Dartmouth trace to evaluate the
performance of classifying flows as IRC and non-IRC and
use the Testbed trace to determine whether the classifiers
accurately identify the IRC flows of the Testbed trace as IRC
flows; that is, the Dartmouth trace is used for both training
and testing while the Testbed trace is only used for testing.
Unless otherwise specified, when using the Dartmouth trace
we used half the flows for training and the rest for testing
the resulting classifiers.

5.1.1. Varying the Classification Scheme

We first compared the performance of three classification
schemes, namely J48, naive Bayes, and Bayesian networks.
J48 is the WEKA [14] implementation of C4.5 decision
trees [2]. In this model, the classification is performed us-
ing a decision tree in which each internal node corresponds
to a test on one or more attributes and each leaf corresponds



Figure 3. FNR and FPR of J48, Naive Bayes,
and Bayesian Net Classification Schemes for
IRC/non-IRC Flows of the Dartmouth Trace

to a decision outcome. Naive Bayes classifiers presume that
the features describing a particular sample are independent.
Thus, the maximum a posteriori probability that a sample
belongs to the class C is equal to the product of the prior
probability for C and each of the conditional feature prob-
abilities for the given sample. The Bayesian networks tech-
nique uses a directed acyclic graph to capture the depen-
dence among sample features. Classification of samples is
carried out based on this graphical representation of the con-
ditional probability distributions of the sample features.

Figure 3 depicts the FNR vs. FPR scatter plot for sev-
eral runs of J48, naive Bayes, and Bayesian networks for
the labeled Dartmouth trace. Each data point corresponds
to a different subset of the initial flow attribute set. Figure 3
reveals clustering in the performance of each of three clas-
sification techniques. Naive Bayes seems to have low FNR,
but higher FPR. The Bayesian networks technique seems to
have low FPR, but higher FNR. J48 seems to strike a bal-
ance between FNR and FPR.

Only the naive Bayes classifiers were successful in
achieving low FNR in the case of our botnet testbed IRC
flows — notably, one of our naive Bayes classifiers accu-
rately classified 35 out of the 38 botnet testbed IRC flows,
thus achieving an FNR of 7.89%. In contrast, the J48 and
the Bayesian networks classifiers, possibly tuned too tightly
to the training set, performed very poorly. Since the naive
Bayes classifier is the only one that showed potential in ac-
curately classifying our botnet testbed IRC flows, it would
be preferable to the J48 and Bayesian network classifiers.

5.1.2. Varying Flow Characterization Attribute Sets

The classification accuracy of the three classification
schemes that we investigated in the previous section de-

Table 2. Attributes Used at Different Levels of
J48 Decision Tree

Attribute Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

duration
maxWindow
role

√

Bpp
√ √ √

bps
√

pps
PctPktsPushed

√ √

PctBppHistBin0
√ √

PctBppHistBin1
√ √

PctBppHistBin2
PctBppHistBin3
PctBppHistBin4
PctBppHistBin5
PctBppHistBin6

√

PctBppHistBin7
varIAT

√

varBpp
√

pends heavily on the set of attributes used to character-
ize flows. We investigated which of the attribute sets pro-
vide the most flow differentiation benefit. We consid-
ered three different approaches. First, we use the decision
trees obtained from several runs of J48 to identify the at-
tributes with the most differentiating power. Then, we ex-
plore the attribute selection and exploration functionality of
WEKA [14]. Finally, we explore the attribute sets accord-
ing to our intuitive understanding of how IRC flows should
differ from other types of flows; for instance, we expect the
average packet size of IRC flows to be smaller than that of
other types of traffic, such as HTTP.

Our first approach to evaluating the differentiation power
of particular attributes involves examining the decision trees
produced by J48. By construction, attributes that appear
higher up in the decision tree have more discriminatory
power. Thus, by examining a particular decision tree we
can identify the attributes of more discriminatory power.

Table 2 depicts the levels of the decision tree in which
each of the flow attributes appears for an example use of J48
in classifying the Dartmouth flows as either IRC or non-IRC
flows. A simple examination of the table reveals the flow
attributes that have the most discriminatory power in this
case, namely the Bytes-per-packet (Bpp), the % of pack-
ets that are pushed (PctPktsPushed), and the variance in the
Bytes-per-packet (varBpp).

After training a number of J48 classifiers on a variety of
attribute sets and training sets, we observed a great varia-
tion in the resulting J48 trees. This inconsistency in identi-
fying the most discriminatory attributes indicates that this
approach may not, on average, be accurate. Neverthe-
less, it may be used as a crude technique for identifying
which attributes are more important than others. Indeed,



Table 3. Search-Based Optimal Attribute Sets

Attribute Baseline Optimal
Attribute Set Attribute Set

J48 NB BN J48 NB BN
duration

√ √ √ √ √ √

maxWindow
√ √ √ √ √ √

role
√ √ √ √ √ √

Bpp
√ √ √ √ √ √

bps
√ √ √ √ √ √

pps
√ √ √ √ √ √

PctPktsPushed
√ √ √ √ √ √

PctBppHistBin0
√ √ √ √ √ √

PctBppHistBin1
√ √ √ √ √

PctBppHistBin2
√ √ √ √ √

PctBppHistBin3
√ √ √ √

PctBppHistBin4
√ √ √ √

PctBppHistBin5
√ √ √ √

PctBppHistBin6
√ √ √

PctBppHistBin7
√ √ √

varIAT
√ √ √

varBpp
√ √ √

FNR (%) 3.07 2.65 6.66 3.23 3.23 6.74
FPR (%) 1.48 11.00 1.40 1.47 8.05 1.39
Testbed Trace FNR (%) 100 68.42 100 100 100 100

our examination of several J48 trees revealed that the Bytes-
per-packet (Bpp) and the variance in the Bytes-per-packet
(varBpp) often appear high up in the J48 decision trees.
Thus, they are of particular discriminatory value.

WEKA provides several search techniques for exploring
the attribute space. We used exhaustive searches starting
from the initial attribute set search and using the classifica-
tion performance of the respective classification schemes as
the search performance metric. Table 3 depicts the attribute
sets obtained by running such exhaustive searches for the
J48, naive Bayes, and Bayesian network classifiers. Table 3
includes the FPR and FNR achieved by the baseline and
optimal attribute sets for each of these classification tech-
niques.

In the case of the J48 and the Bayesian network classi-
fiers, the performance difference between the initial and op-
timal attribute sets is negligible. In the case of naive Bayes,
the optimal attribute set trades off FNR and FPR. Moreover,
the optimal attribute set performs worse in identifying the
testbed botnet traces.

Lastly, we explored selecting attributes based on how we
expect IRC traffic to differ from other types of traffic. For
instance, because of the nature of chat, we expect packets
to involve the transmission of small sentences involving a
small number of characters. Thus, we expect chat traffic to
involve small packets compared to other services, such as
long ftp transfers, that predominantly use MTU-size pack-
ets. Another example is the variance of the number of bytes
per packet. Since in the case of chat, packets correspond to
chat exchanges, we expect the variance in the packet sizes
to be large. In contrast, we expect the variance of the packet

Table 4. Intuition-Based Attribute Sets
Attribute Baseline Intuition-Based

Attribute Set Attribute Sets
duration

√ √

maxWindow
√

role
√ √ √ √

Bpp
√ √ √ √

bps
√ √ √ √

pps
√ √ √ √

PctPktsPushed
√ √ √ √

PctBppHistBin0–7
√ √ √ √

varIAT
√ √ √

varBpp
√ √ √

FNR (%) 2.65 2.46 2.21 2.49
FPR (%) 11.00 14.17 14.73 15.04
Testbed Trace FNR (%) 68.42 47.37 18.42 7.89

size for other applications, such as bulk transfers, to be quite
small.

We identified the flow duration as a useful attribute.
Apart from differentiating flows according to how long they
persist, the duration and the average rates of the various flow
characteristics indirectly capture the absolute flow charac-
teristics that we excluded from our initial attribute set; for
instance, the duration and the average Bps capture the total
number of bytes transmitted during the given flow.

Table 4 presents the performance of several of the
intuition-based attribute sets that we investigated. Once
again we present the FPR and FNR, for each of the attribute
sets evaluated. Due to space limitations, we only present
the results for the Naive Bayes classification scheme.

Table 4 reveals a low variability in the FNR and FPR
rates achieved with respect to the attribute set for the flows
of the Dartmouth trace. However, the attribute set does
affect the FNR achieved in the case of the testbed botnet
flows; the FNR dropped from the initial 68.42% to 7.89%.
Since a low FNR for our botnet testbed IRC flows is critical,
these results demonstrate that a careful selection of the flow
attributes used is crucial.

The far right column of Table 4 indicates that solely
excluding the maxWindow flow attribute results in a clas-
sifier that retains a higher percentage of the Testbed IRC
flows. It follows that the maxWindow used for IRC flows in
the Dartmouth trace (which is used for training the classi-
fiers) is different than that in the Testbed trace. Indeed, our
Testbed IRC flows are among unix-based machines, while
we conjecture that the IRC flows in the Dartmouth trace
involve predominantly Windows machines. This example
demonstrates how important it is to train on flows that are
indeed prototypical of what one is looking to identify.

5.1.3. Varying the Training Set Size

We evaluated the sensitivity of the naive Bayes classifica-
tion scheme on the size of the training set. The experiments
in this section were performed as follows. We started off



with all the Dartmouth flows, set aside 10% of the flows for
testing, and used the remaining 90% for generating train-
ing sets of different sizes. These training sets were ran-
dom subsets of the flows set aside for training. Moreover,
they involved 1–9% and 10-100% of the number of flows
set aside for training, resulting in 19 random training sets.
We repeated this process 10 times, generating 10 different
testing sets and 10 different sets of training sets. We used
the attribute set appearing on the far right of Table 4; this
attribute set was the one achieving the lowest FNR for our
testbed botnet flows.

Figure 4 is a scatter plot of the FNR and FPR as a func-
tion of the training set size. The mean FNR remains quite
constant throughout the range of training set sizes that we
used. Moving from the left of the graph to the right, there
are three distinct regions of the graph. For the smallest
training set, the FNR is a bit higher. For the middle range,
the variance of the FNR grows but there are some runs that
perform distinctly better. In these runs, the training sets rep-
resent the respective testing sets well. For large training
sets, the FNR has values of higher mean but lower variance.

The observed effect of the training set size on the FPR is
slightly different. The mean FPR increases slightly, while
the variance decreases with the increase with the training set
size. This indicates that in the case of FPR, smaller training
set sizes can be used and, indeed, they result in lower FPRs.

These FNR and FPR statistics indicate that the benefit to
using large training sets is low. In the case of our exper-
iments, training sets on the order of 10K flows were ade-
quate (and often preferable) for both the Dartmouth and the
Testbed flows.

5.2. Stage II: Identifying Botnet Traffic

We are currently exploring two approaches of labeling
IRC flows as either botnet or real IRC flows. First, we are
using our botnet testbed to collect both real and botnet IRC
flows and label them based on our knowledge of the ex-
perimental setup. Second, we are exploring the possibility
of labeling flows as either suspicious or non-suspicious us-
ing telltales of hosts being compromised. For example, a
host that is initiating port scans may be deemed compro-
mised and its IRC flows may be labeled as suspicious. We
are also looking into obtaining real-life traces that contain
packet payloads and using these to positively identify bot-
net IRC through textual payload analysis. Once identify-
ing a sufficiently accurate labeling scheme, we’ll investigate
whether machine learning-based classifiers can be used to
distinguish between botnet and real IRC flows.

Figure 4. FNR and FPR of Naive Bayes clas-
sification with respect to training set size for
the Dartmouth trace.

6. Conclusions

In this paper, we used machine learning techniques to
identify C2 traffic of IRC-based botnets. We split this
task into two stages: (I) distinguishing between IRC and
non-IRC traffic, and (II) distinguishing between botnet and
real IRC traffic. In Stage I, a naive Bayes classifier per-
formed best, achieving both low FNR (2.49%) and low FPR
(15.04%) for the Dartmouth flows and low FNR (7.89%)
for the Testbed flows. While some J48 and Bayesian net-
work classifiers performed better for the Dartmouth flows,
they classified the Testbed IRC flows poorly. For the feature
sets and the traces we used, we observed that training sets
of 10K flows were sufficient and that the benefit of using
larger sets was minimal. For Stage II, we are currently run-
ning more testbed experiments and collecting testbed botnet
and real IRC flows to be used for training. We are also eval-
uating the use of telltales of hosts being compromised to
label flows as suspicious and non-suspicious and to distin-
guish between botnet and real IRC flows.



Acknowledgments

We thank David Kotz for the Dartmouth traces and Mark
Allman for his insightful comments on paper drafts.

References

[1] C. Dewes, A. Wichmann, and A. Feldmann. An analysis
of internet chat systems. In IMC ’03: Proceedings of the
3rd ACM SIGCOMM conference on Internet measurement,
pages 51–64, New York, NY, USA, 2003. ACM Press.

[2] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-
tion. John Wiley & Sons, Inc., 2 edition, 2001.

[3] T. Henderson, D. Kotz, and I. Abyzov. The changing us-
age of a mature campus-wide wireless network. In Pro-
ceedings of the Tenth Annual International Conference on
Mobile Computing and Networking (MobiCom), pages 187–
201. ACM Press, September 2004.

[4] T. Holz. A Short Visit to the Bot Zoo. IEEE Security &
Privacy, 3(3):76–79, May 2005.

[5] E. Levy. The Making of a Spam Zombie Army. IEEE Secu-
rity & Privacy, 1(4):58–59, July 2003.

[6] McAfee. 2006/3/6; DDoS-Kaiten
http://vil.nai.com/vil/content/v_99371.htm.

[7] B. McCarty. Automated Identity Theft. IEEE Security &
Privacy, 1(5):89–92, Sept. 2003.

[8] B. McCarty. Botnets: Big and Bigger. IEEE Security &
Privacy, 1(4):87–90, July 2003.

[9] A. W. Moore and D. Zuev. Internet traffic classification us-
ing bayesian analysis techniques. In SIGMETRICS ’05: Pro-
ceedings of the 2005 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer systems,
pages 50–60, New York, NY, USA, 2005. ACM Press.

[10] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-
of-service mapping for qos: a statistical signature-based ap-
proach to ip traffic classification. In IMC ’04: Proceedings
of the 4th ACM SIGCOMM conference on Internet measure-
ment, pages 135–148, New York, NY, USA, 2004. ACM
Press.

[11] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-
network identification of p2p traffic using application signa-
tures. In WWW ’04: Proceedings of the 13th international
conference on World Wide Web, pages 512–521, New York,
NY, USA, 2004. ACM Press.

[12] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley. De-
tecting Botnets with Tight Command and Control. To Ap-
pear in 31st IEEE Conference on Local Computer Networks
(LCN’06), 2006.

[13] The Honeynet Project. Know Your Enemy : Learning about
Security Threats. Addison-Wesley Professional; 2 edition
(May 17, 2004), Mar. 2004.

[14] I. H. Witten and E. Frank. Data Mining: Practical Ma-
chine Learning Tools and Techniques (2nd Edition). Morgan
Kaufmann, San Francisco, CA, 2005.


