
Detecting Botnets with Tight Command and Control1 
W. Timothy Strayer, Robert Walsh, Carl Livadas, and David Lapsley 

BBN Technologies 
10 Moulton St. 

Cambridge, MA 02138 
{strayer|rwalsh|clivadas|dlapsley}@bbn.com 

 
 

                                                             
1 This material is based upon work supported by the US Army Research Office under contract W911NF-05-C-0066. The content of the informa-
tion does not necessarily reflect the position or the policy of the US Government, and no official endorsement should be inferred. 

Abstract 
Systems are attempting to detect botnets by examin-

ing traffic content for IRC commands or by setting up 
honeynets. Our approach for detecting botnets is to 
examine flow characteristics such as bandwidth, dura-
tion, and packet timing looking for evidence of botnet 
command and control activity. We have constructed an 
architecture that first eliminates traffic that is unlikely 
to be a part of a botnet, classifies the remaining traffic 
into a group that is likely to be part of a botnet, then 
correlates the likely traffic to find common communi-
cations patterns that would suggest the activity of a 
botnet. Our results show that botnet evidence can be 
extracted from a traffic trace containing almost 9 mil-
lion flows. 

1 Introduction 
Botnets, and the zombie hosts that comprise their 

membership, present a particularly dangerous species 
of network-based attack. In February 2006 in Seattle, 
systems controlled by the Northwest Hospital com-
puter network started acting strangely, and investiga-
tion found the network was host to bots that formed a 
larger, worldwide botnet [1]. In August 2005, Britain’s 
NISCC (the UK equivalent to CERT) issued a warning 
about the increase in trojan activity targeting UK gov-
ernment networks, stating that “the attacker’s aim ap-
pears to be covert gathering and transmitting of com-
mercially or economically valuable information” [2]. 
In November 2005, the discovery of a botnet in US 
DoD [3] caused the head of JTF-CNO and DISA to 
issue an “information assurance standdown” followed 
by a full sweep of all DoD networks [4]. 

Botnets are built by assembling a large number of 
compromised hosts into a group that is commanded to 
carry out attacks. They derive their power by scale, 
both in their cumulative bandwidth and in their reach. 
Botnets can cause severe network disruptions through 
massive distributed denial-of-service attacks, and the 
threat of this disruption can cost enterprises large sums 

in extortion fees. They are responsible for 80% of the 
spam on the Internet today [5]. Botnets are also used to 
harvest personal, corporate, or government sensitive 
information for sale on a thriving organized crime 
market. They are a reusable and renewable resource. 

Efforts are underway to quantify the botnet problem 
and design defenses against attacks by botnets. The 
Honeynet Project [6] has done extensive work on cap-
turing live bots and characterizing botnet activities. A 
group of white-hat vigilantes is scouring the Internet 
looking for evidence of botnets [7]. A recent paper 
from a group at MIT suggests ways for websites and 
other services to thwart bot and other mechanical 
agents by using Turing tests [8]. 

Determining the source of a botnet-based attack is 
somewhat more challenging. First, there is a distinction 
between the attack and the attack mechanism. For sin-
gle-flow [9] and “stepping stone” chained-flow [10] 
attacks, the flow is both the mechanism and the attack, 
but for botnets, the mechanism (the botnet) is con-
structed and maintained independently of how it is 
used. Second, there is a difference of what constitutes 
the “attack origin.” The tracing of flow-based attacks 
attempts to yield a single responsible host; with bot-
nets, every zombie host is an attacker. Finally, most 
flow-based traceback systems adopt a reactive ap-
proach to attacks; the tracing of packets back to their 
origin hosts is triggered after an attack is detected. 
Botnets can exist in a benign state for an arbitrary 
amount of time before they are used for a specific at-
tack, affording some opportunity to identify them prior 
to the attack. 

This paper presents a system for aggregating moni-
tored traffic looking for evidence of botnets so that 
botnet-based attacks can be attributed to a botnet con-
troller. We adopt a proactive approach by identifying 
hosts that are likely part of a botnet. This is not the 
same as definitively identifying the botnet and its con-
troller; there is uncertainty until there is an actual at-
tack. One of the benefits of tracking collections of 



hosts displaying botnet characteristics is that there is a 
possibility (with strong enough evidence) of neutraliz-
ing the botnet prior to the launch of a large attack. 

In our model, a botnet is a group of cooperating 
hosts controlled by a single entity. The control is fairly 
tight, as shown in Figure 1. This definition fits with the 
most commonly found examples of botnets—those that 
use IRC as the control channel. (Looser control, such 
as formed by peer-to-peer networks, is currently out-
side of our botnet model). Further, we do not necessar-
ily assume that the control channel is indeed IRC, only 
that it shares properties of IRC: a single controller issu-
ing commands that are seen by everyone at essentially 
the same time. 

Our approach follows a set of increasingly more 
complex analyzers, filtering out unlikely flows along 
each step, so that the most computationally intensive 
analysis is done on a dramatically reduced traffic set. 
First, individual flows are subjected to a series of fil-
ters and classifiers to eliminate as many of the flows as 
possible, while being somewhat conservative so that 
botnet flows are not likely to be eliminated. Next, the 
flows are correlated with each other, looking for 
groups of flows that may be related by being part of 
the same botnet. The result is a group of flows that are 
most likely part of one or more botnets. Finally, the 
topological information in the flows are examined for 
the presence of a common communication hub. 

The central question for this system and this paper 
is: Can we find evidence of botnet activity by monitor-
ing network traffic only at various core locations? The 
results of our experiments suggest the answer is yes. 

2 Approach 
Since the vast majority of botnets are controlled us-

ing variations on IRC bots, many botnet detection sys-
tems begin by simply looking for chat sessions (TCP 
port 6667) [11] and then examining the content for 
botnet commands [12]. Like many client-server proto-
cols, however, the use of a standard port number is 
largely just a suggestion. Also, relying on having ac-
cess to the packet contents and, even with that access, 
being able to identify botnet commands, is an overly 
simplistic assumption. Our system assumes only that 

the botnet command and control (C2) infrastructure is 
based loosely on IRC. 

2.1 Characterization of IRC-based C2 Flows 
IRC-based botnets currently dominate as the pre-

ferred deployment technique. This reflects the freely 
available source code for IRC, allowing attackers to 
focus on botnet applications rather than on architecting 
and coding “mere plumbing.” IRC is implemented 
through text-based interactions. Strings are sent to the 
chat server, which replicates that data to each client. In 
the case of botnets, the clients are zombies, and botnet 
commands are special strings. 

We use chat traffic as an initial proxy for botnet C2 
traffic. By looking at example botnet commands [6], 
the important insight is that C2 messages are brief in 
addition to being text-based. In the absence of access 
to extensive botnet traces, we characterize chat flows 
to identify how we can separate the C2 channel from 
other Internet traffic. 

Specifically, there are four points worth noting. 
First, identification of chat is a statistical problem. For 
each attribute of a flow, chat flows are spread across 
the spectrum of values. Instead of a deterministic deci-
sion, one is left with a probabilistic conclusion, com-
plete with the risk of false positives and false nega-
tives. 

Second, identification of chat is a difficult problem. 
Flows can be winnowed into likely chat and likely 
non-chat classifications, but the likely chat classifica-
tion will certainly include a number of non-chat flows. 

Third, consideration of attributes in isolation is a 
good start, but is not sufficient—it is equivalent to us-
ing independent probabilities to evaluate the traffic. 
Stronger techniques based upon interdependent condi-
tional probabilities are needed as well. 

Finally, in spite of the first three points, the result-
ing characterization is good for guiding the construc-
tion of efficient filters whose focus is data reduction. 
By reducing the data set, even if it contains some false 
positives, later steps can take advantage of more com-
putationally intensive approaches. 

2.2 The Processing Pipeline 
Figure 2 shows our traffic-processing pipeline. 

Packet traces (in our case these are recorded traces, but 
there is no reason the input cannot be live) are fed into 
a series of quick reduction filters. With some a priori 
knowledge, one can also imagine a set of white lists 
and black lists based on known good sites (packets to 
or from eBay, for example, are very unlikely to be part 
of a botnet) and bad sites (those places on a watch list, 
for example). Other filters examine simple flow attri-
butions such as duration or average packet size. 

 

Figure 1—Actors in IRC-based Botnets 



After the initial filters, the remaining flows are 
passed through a flow classification engine based on 
machine learning techniques. The classifiers attempt to 
group flows into broadly defined applications. Those 
flows that appear to have chat-like characteristics are 
passed on to the correlator stage. 

The correlator does a pair-wise examination of the 
remaining flows looking for flows that are behaving in 
a similar manner, as one might expect of two flows 
generated by the same application. Botnets are so large 
that commands are issued to the whole group, or large 
subgroups, and not to individuals. Flows that are corre-
lated are passed on to topological analysis, where “so-
cial topology” is applied to determine which flows 
share a common controller. 

The result of this pipeline is a (hopefully) small set 
of flows that show a fair amount of evidence that they 
are related and are part of a botnet. The pipeline does 
not prove the flows are part of a botnet; rather, the 
flows that survive strongly suggest closer examination. 
This examination may be deep, if there is access to the 
hosts that are the flow endpoints, as may happen in an 
enterprise or campus, or the examination may be lim-
ited to listing the flows and the flow endpoints in a 
watch list for later use if a botnet-based attack occurs. 
Knowing the social structure of a group of hosts prior 
to an attack is better than trying to piece the structure 
together during the attack.  

3 Detecting a Botnet 
An advantage to using a pipelined approach is that 

each stage can be designed and tested largely inde-
pendently of the others, but the real test is if the pipe-
line behaves as expected from start to finish. We con-
ducted many experiments on each stage (in particular, 
the interesting results and insights from the classifiers 
stage is discussed in a separate paper [13]); in this pa-
per, however, we focus on the whole process, starting 
with over nine million flows to find evidence of a bot-
net operating in the network. 

3.1 Source of Background Traffic 
It would be too contrived to try to create a large 

dataset of both background and botnet traffic using a 
tightly controlled testbed. Instead, we incorporated a 
background traffic data set that seemed to typify the 
range and variety of real world traffic. We chose 
packet traces collected on the Dartmouth campus under 
their Crawdad project [14]. The traces are a complete 
set of TCP/IP headers from the campus wireless, taken 
over a period of four months (November 1, 2003 to 
February 28, 2004) from a variety of campus locations. 
No payloads were included in the trace.  

In all, the traces were 164 GBytes compressed, and 
approximately 3.8 times that amount when uncom-
pressed. This large trace set means that we truly are 
looking for the needle (botnet C2 flows) in a haystack. 

As the first step of data reduction, we convert the 
sequence of packets into flow summaries. Later, after 
suspect infrastructure is identified, a forensic archive 
of packet-level data can be collected and analyzed. 

3.2 Source of Botnet Traces 
In order to generate traffic that was reprentative of 

real botnet traffic, we implemented a benign bot based 
on the “Kaiten” bot, a widespread bot that has readily 
downloadable source code. The Kaiten bot was imple-
mented in C using approximately 1000 lines of code. 
We reverse engineered the Kaiten software and then 
re-implemented it.  

The original Kaiten bot had a reportoire of TCP- 
and UDP-based attacks. Our bot implementation attack 
code has been modified to render it “harmless.” Like 
the Kaiten bot, our bot provides a number of remotely 
controlled features, including a mechanism to execute 
arbitrary commands on the bot client, HTTP download 
capability, a flexible multi-process architecture, a 
highly configurable architecture and a rich command 
set. 

In order to obtain traces of actual botnet traffic, we 
constructed a botnet test facility. This facility involved 
a simple setup modeled along the lines of a chat-based 
botnet architecture. Our setup involved an IRC server, 

 

Figure 2—Botnet Detection 
Processing Pipeline 



a code server, 13 zombies, an attacker, and a victim 
host. Figure 3 depicts a block diagram of our botnet 
test facility architecture. 

We used this test facility to obtain actual traces of 
the communications between the various botnet entities 
while the botnet was in operation. Our experiments 
entailed using the IRC server to instruct the zombies to 
download attack code from the code server and to sub-
sequently launch a coordinated TCP “attack” on the 
victim host (the attack consisted of 1 packet from each 
zombie). The traces collected involved ssh transmis-
sions used for setting up and monitoring the experi-
ments, IRC traffic between the bots and the IRC server, 
http traffic between the zombies and the code server 
(for downloading the attack code), and the TCP traffic 
involved in the coordinated TCP -attack on the victim 
host. The setup and the launch of the attack were suc-
cessively repeated in order to increase the amount of 
trace data collected. 

We collected 74 flows associated with our botnet, 
of which 30 were C2 flows. We merged this botnet 
trace with the Dartmouth traffic data set in order to 
create a test data set that contained ground truth that 
could be verified after all of the data reduction filters 
and other analyzers have been applied. Our botnet was 
active on the order of hours, while the Dartmouth 
traces span four months, exacerbating the vast size 
difference between the needle and the haystack. 

3.3 Filtering Stage 
We recognize that there is a trade-off between iden-

tifying botnet C2 flows, and stepwise reduction of the 
data set to the meaningful subset of flows. The selec-
tion of the cutoff for quick filtering for data reduction 
requires both quantitative statistical information and 
human judgment. Even if the selection of the cutoff 
were phrased in terms of meeting a false positive or a 

false negative goal, that goal is based upon judgment. 
The filters and filter parameters we chose reflect this. 

There were five distinct filters in this stage. The 
first filtered by IP protocol to select TCP-based flows, 
resulting in 8,933,303 flows. Since the bot was derived 
from an IRC-style TCP base, all of the ground-truth 
botnet C2 flows were TCP based. All of the C2 flows 
survived this filter. 

The second filter removed the nuisance port-
scanning chaff, reducing the data set to 4,750,262 
flows. Flows containing only TCP packets with SYN 
or RST flags indicate that communication was never 
established, and so provide no information about chat 
or botnet C2 flows. No application-level data was 
transferred by these flows. Unfortunately for today’s 
Internet, probes of system vulnerabilities are common-
place. While SYN-RST exchanges indicate suspicious 
activity that may be worth investigation, they do not 
assist with characterizing botnet C2 flows. About 47% 
of the flows are eliminated by this step. Again, all of 
the ground-truth botnet C2 flows survived the filter. 

Since botnets do not sustain bulk data transfers, the 
next filter removed high bit-rate flows. Peer-to-peer 
file sharing is a significant load on the Internet, and 
may take place on chat ports by co-incidence (since the 
chat port is not reserved) or by intent (to avoid identifi-
cation and filtering). Dropping bulk transfers (flow 
bandwidth greater than 8 Kb/s with at least 50 packets) 
also eliminates software updates and rich web page 
transfers. Yet, filtering the high bit-rate flows had a 
small effect. About 1% of the flows are dropped, leav-
ing 4,699,662. From a flow perspective, this is a minor 
amount, but from a packet and forensic archive per-
spective this represents a worthwhile effort. Again, all 
of the bot C2 flows survived the filter. 

Chat (and botnet C2 commands) generally generate 
small packets. Using a 300-byte packet size cutoff for 
the chat packets in the Dartmouth data set shows that 
about 0.25% of the chat traffic would be falsely re-
jected and 72% of the non-chat flows are eliminated. 
Since there are several orders of magnitude more non-
chat flows than chat flows, filtering exclusively on 
average packet size would cut the amount of data to 
process in half; since this filter comes fourth, it has a 
relatively moderate affect. About 7% of the flows are 
dropped, leaving 4,385,435. All of the ground-truth 
botnet C2 flows survived the filter. 

The fifth filter drops brief flows (less than 2 packets 
or 60 seconds) from consideration. Real chats and bot-
nets are likely not well represented by excessively 
short duration flows. This filter has a significant effect, 
reducing the data by a factor of about 18.4, dominating 
even the elimination of the port-scanning activities. All 
of the ground-truth botnet C2 flows survived the filter. 

 

Figure 3—Botnet Test Facility 



Overall, the data set is reduced by a factor of about 
37.5, from 8,933,303 TCP flows down to 238,252, 
while still preserving the ground-truth botnet C2 flows. 
This filtering stage avoided the use of TCP port num-
bers, and therefore is relevant to situations where ap-
plications may be masquerading on unexpected ports. 
Furthermore, this significant data reduction resulted 
without the use of white-listing services as trusted IP 
address and port number combinations. 

3.4 Classifier Stage 
Once the simple filters have reduced the data set, 

the next step is to process the data set using more so-
phisticated flow classification techniques. Several 
techniques have been developed to automatically iden-
tify (and often classify) various types of communica-
tion streams. Some use clues from the traffic content. 
Dewes et al. [15] propose a scheme for identifying chat 
traffic that relies on a combination of discriminating 
criteria, including service port number, packet size 
distribution, and packet content. Sen et al. [16] use a 
signature-based scheme to discern traffic produced by 
several well-known P2P applications by identifying 
particular characteristics in the syntax of packet con-
tents exchanged as part of the operation of the particu-
lar P2P applications. 

Other flow classification approaches focus on the 
use of statistical techniques to characterize and classify 
traffic streams. Roughan et al. [17] use traffic classifi-
cation for the purpose of identifying four major classes 
of service: interactive, bulk data transfer, streaming, 
and transactional. They investigate the effectiveness of 
using packet size and flow duration characteristics, and 
simple classification schemes were observed to pro-
duce very accurate traffic flow classification. 

In a similar approach, Moore and Zuev [18] apply 
variants of the Naive Bayesian classification scheme to 
classify flows into 10 distinct application groups. The 
authors also search through the various traffic charac-
teristics to identify those that are most effective at dis-
criminating among the various traffic flow classes. By 
also identifying highly correlated traffic flow charac-
teristics, this search is also effective in pruning the 
number of traffic flow characteristics used to discrimi-
nate among traffic flows. Highly correlated characteris-
tics provide comparable and, often, redundant informa-
tion about the traffic flows. Thus, in many cases it suf-
fices to use only one of the correlated characteristics to 
discriminate among traffic flows. 

Since IRC-type botnet C2 flows share many charac-
teristics with normal IRC chat flows, we adopt and 
build upon the above statistical flow classification 
techniques to discriminate among IRC and non-IRC 
traffic. (A deeper discussion of our insights and lessons 
learned using machine learning techniques for this type 

of classification is given in [13]). The focus on IRC 
traffic simplifies the training step because the default 
IRC port (namely, port 6667) can be used to accurately 
identify and label IRC traffic. 

We experimented with three machine learning clas-
sification algorithms, namely J48 decision trees (the 
WEKA [20] implementation of C4.5 decision trees 
[21]), Naive Bayes, and Bayesian Networks, and 
evaluated the performance of each classifier using the 
false negative rate (FNR) and the false positive rate 
(FPR). The relative importance of each of these metrics 
depends on the ultimate use of the classification re-
sults. A low FNR attempts to minimize the fraction of 
the IRC flows will be discarded, while a low FPR at-
tempts to minimize the amount of non-IRC flows in-
cluded. We explored the effectiveness of these ma-
chine learning techniques along three dimensions: (1) 
the classification scheme, (2) the subset of characteris-
tics/features used to describe the flows, and (3) the size 
of the training set size.  

Table 1 summarizes the flow characteristics that we 
collected for each of the flows in the Dartmouth traces. 
The characteristics in the top of the table were not used 
for classification purposes—they either involve charac-
teristics that seemed inconsequential in classifying 
flows, or are accumulated quantities, which are indi-
rectly captured by the corresponding rates or percent-
ages and the flow duration. Our experiments revealed 
that the following attributes have high discriminatory 
value: duration, role, average bytes per packet (Bpp), 
average bits per second (bps), and average packets per 
second (pps). Among these, the Bpp provided the most 
discriminatory power. 

Depending on the classification scheme used and 
the set of traffic flow characteristics, the classification 
was capable of correctly identifying between 88% and 
99% of the IRC flows and non-IRC flows. A naive 
Bayes classifier performed best; it achieved both low 
FNR (2.49%) and low FPR (15.04%) for the Dart-
mouth flows and low FNR (7.89%) for our botnet test-
bed IRC flows. While some J48 and Bayesian network 
classifiers performed better for the Dartmouth flows, 
they classified our ground-truth botnet C2 flows 
poorly. Finally, for the feature sets and the traces we 
considered, we observed that training sets of 10K 
flows were sufficient, and that the benefit of using 
larger sets was minimal. 

After training on roughly half of the flows yielded 
from the earlier heuristic filtering stage, our best-
performing classifiers achieved an 80% (or, factor of 5) 
reduction in the number of candidate chat flows when 
used to classify the remaining set of testing flows. Pre-
suming that such performance would be routinely 
achievable in this stage, the ~238K flows yielded from 
the heuristic filtering stage would be further reduced to 



~48K flows. In the case of the testbed flows, our best-
performing classifiers retained 29 of the 30 chat flows. 

Despite their promise, the training and performance 
of classifiers was quite sensitive to the flow attributes 
used, the training set, and the number of flows used for 
training. Thus, prior to their use in a deployable system 
we expect that further effort would be needed in order 
to identify the most beneficial flow characteristics and 
training set. 

3.5 Correlation Stage 
The filters and classifiers have reduced the traffic 

data set from almost 9 million flows to about 48 thou-
sand, but recall that these flows span a four-month pe-
riod. Our next stage, correlation, looks for relationships 
between two or more flows that suggest that they are 
part of the same botnet. The question about whether 
one flow is correlated with another only makes sense if 
the two flows are active at the same time, so while we 
have four months of data, the correlation stage is run at 
a particular instance in time. The question is: Who is 
correlated at this moment? 

We picked a time during the data when we knew the 
botnet was active (7:44am on November 2). There 
were 69 post-filtered flows active at that time, as com-
pared to 2112 active flows if no filtering or classifica-
tion had occurred. Of the 69 active flows, 30 were 
ground-truth botnet C2 flows. 

There are several reasons for closely correlated 
flows, namely chains of remote logins, or stepping 
stones, simultaneous bulk or periodic transfers, and 
broadcasts or multicasts. Because of the one-to-many 
“multicasting” model of the C2 (and chat) architecture, 
we expect the communication flows between the botnet 
C2 host and the IRC server, and between the IRC 
server and the botnet members, to be temporally corre-
lated. Since data sent to the chat server is promptly 
multicast to all chat members, the flows to and from all 

chat members should exhibit similar timing character-
istics as well as contemporary fluctuations in band-
width. 

There are several temporal correlation algorithms 
proposed to identify flows related by being part of a 
“stepping stone” connection chain [10][22][23]. BBN 
also designed a timing-based correlation algorithm 
[24]. Any of these could be applied to this stage, but 
they are each computationally expensive. These and 
most other current flow correlation algorithms examine 
each flow every time there is a new packet arrival, and 
every pair-wise “correlation value” is updated. This 
implies O(n2) calculations for each packet, where n is 
the number of active flows. We wanted to develop an 
algorithm that performed a calculation only on the 
packet’s flow, delaying the O(n2) comparison until the 
time when flow correlation question was asked. 

However, we decided to use the opportunity to ap-
ply a completely new algorithm that we were designing 
that described a flow as a point in a five-dimensional 
space. The first three dimensions are moments on the 
packet interarrival times (IAT), specifically the most 
recent IAT, the weighted moving average IAT, and the 
weighted moving variation of the IAT. The fourth and 
fifth dimensions are moments on the packet size, spe-
cifically the weighted moving average packet size and 
the weighted moving variation of the packet size. We 
hypothesize that a point in 5-space (normalized to the 
range 0 to 1 on each axis) can accurately describe a 
particular flow at a particular moment in time, and that 
using the distance between two points represents how 
different two flows are. That is, two flows are consid-
ered correlated if the Euclidean distance between their 
points in 5-space is small. 

Figure 4 shows the results of pair-wise distances be-
tween each of the 69 flows. Five flows have a distance 
of less than 0.01 (no units, but highly correlated). 
These five flows almost completely form a cluster; 
only flows 1 and 3 do not have a distance less than 
0.01. This clustering strongly suggests that the flows 

start/end Flow start and end times

IP-proto IP protocol of flow

TCP flags Summary of TCP SYN/FIN/ACK flags

pkts Total pkts exchanged in flow

Bytes Total Bytes exchanged in flow

pushed pkts Total packets pushed in flow

duration Flow duration

maxwin Maximum initial congestion window

role Whether client or server initiated flow

Bpp Average Bytes-per-packet for flow

bps Average bits-per-second for flow

pps Average packets-per-second for flow

PctPktsPushed Percentage of packets pushed in flow

PctBppHistBin0-7 Percent of packets in one of eight packet size 

bins; these variables collectively form a 

histogram of packet size for flow

varIAT Variance of packet inter-arrival time for flow

varBpp Variance of Bytes-per-packet for flow  

Table 1—Traffic Flow Characteristics 

 

Figure 4—Clustering of Correlated Flows 



are related and, in fact, they are five of our ground-
truth botnet flows. 

Two questions arise: Why didn’t more of the botnet 
flows correlate closely with these 5, and Why is it 
more important to get at least some in a cluster and not 
necessarily all? The answer to the first question has to 
do with the way we constructed the botnet testbed. We 
hosted 10 bots on two virtual machines, which proba-
bly skewed the flow timing. Also, we continue to ex-
periment with different flow characteristics as dimen-
sions for the correlation algorithm, and packet size 
appears to be a rather weak one. 

It is more important to find an incomplete cluster 
than to focus on finding a complete one because a clus-
ter of any size is unusual enough to suggest further 
investigation. Once we have a reason to believe that a 
cluster exists, then we can move to the topological 
analysis stage to try to figure out why there is a cluster, 
and if there are other pieces of information we can de-
rived from the cluster. 

3.6 Topological Analysis Stage 
The identification of clusters of related flows cer-

tainly suggest further investigation, which is the aim of 
this last stage, the topological analysis. The correlation 
stage does not prove the existence of a botnet—there is 
no test for maliciousness in the filtering, classifying, 
and clustering of flows—but given a cluster of flows, 
the natural next question is, What structure do these 
and other flows form, and does this structure identify a 
host that is acting like a botnet controller. 

The topological analysis starts by using the IP ad-
dresses in the cluster to look for a common endpoint, 
or rendezvous point, as shown in Figure 1. This is the 
communications relay that takes the commands from 
the controller and distributes them out to the zombie 
hosts. (Note that there can be multiple rendezvous 
points, and these rendezvous points can be hierarchical, 
to support scalability.) A graph of these clustered flows 
can be easily generated automatically. 

The next step is to expand the cluster of flows dis-
covered by correlation by searching through the traffic 
data set for other flows that share this endpoint and are 
contemporary to the original cluster. 

The final step, one for which we have no automated 
algorithm, is to examine the flows for clues as to which 
among them, if any, is the flow between the controller 
and the rendezvous point. There are several character-
istics that this controller flow may exhibit that the oth-
ers do not. Such characteristics may include differ-
ences in the amount of data, in the timing of the trans-
missions, etc. For instance, the controller-rendezvous 
point flow may initiate more frequent and higher vol-
ume transmissions to the rendezvous point than the 
flows from the rendezvous point to the zombie hosts. 

There may also be causal relationship between the 
transmissions from the controller with respect to the 
transmissions to the zombies. 

4 Discussion 
While it has been suggested that botnet controllers 

will migrate from IRC as their preferred C2 infrastruc-
ture [25], the abstract model of tight central control 
represented by IRC is very efficient and will likely 
survive for quite some time. It is important, therefore, 
to consider a system that detects very large, high vol-
ume data sets for evidence of tight botnet C2 activity. 

 Our system performs gross, simple filtering to re-
duce the amount of data that will be subjected to more 
computationally intensive algorithms. Once the data 
has been filtered, the flows are classified using ma-
chine learning techniques, then the flows that are in the 
“chat” class are correlated to find clusters of flows that 
share similar timing and packet size characteristics. 
The cluster is then analyzed to try to identify the botnet 
controller host. 

Our experiment with Dartmouth campus data, start-
ing with nearly 9 million flows augmented with traffic 
traces from a benign botnet, shows that the ground 
truth botnet C2 flows can indeed survive the data re-
duction and correlation to be identified as a cluster. 
These results show that the method is promising. 

This method is also nicely suited for real-time 
analysis of traffic data. The filtering stage requires very 
simple logic to cull the data set down by a factor of 37. 
While we may not be able to expect that degree of re-
duction in all cases, there was nothing particularly spe-
cial about the Dartmouth data that contributed to the 
reduction factor. The culling of the data, especially 
when done in real time, allows much more time for 
more complex algorithms later in the pipe, namely the 
machine learning classifiers and the correlation. 

An important lesson learned from our classification 
stage is the importance of both legitimate and mali-
cious training traffic and an accurate manner to label it. 
Given such representative training traffic, machine 
learning based classifiers can perform well and be very 
effective. The trick is the get a good training set. 

Our experience with the new correlation algorithm 
showed that the algorithm holds promise. The algo-
rithm we used is designed to reduce the computational 
complexity of comparing n flows in a pair-wise man-
ner. The resulting cluster, while not a complete set of 
flows from the ground truth botnet, was certainly 
enough to allow the topological analysis of the flow 
endpoints, and the rest of the ground-truth botnet traf-
fic was easily extracted. 

Detecting botnet activity is presently labor intensive 
and largely ad hoc. Our pipelined botnet C2 detection 
system shows that it is possible to comb through 



packet traces, even in real time, to extract evidence of 
tight command and control activity. 
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