
Detecting Botnets with Tight Command and Control1
W. Timothy Strayer, Robert Walsh, Carl Livadas, and David Lapsley

BBN Technologies
10 Moulton St.

Cambridge, MA 02138
{strayer|rwalsh|clivadas|dlapsley}@bbn.com

1 This material is based upon work supported by the US Army Research Office under contract W911NF-05-C-0066. The content of the informa-
tion does not necessarily reflect the position or the policy of the US Government, and no official endorsement should be inferred.

Abstract
Systems are attempting to detect botnets by examin-

ing traffic content for IRC commands or by setting up
honeynets. Our approach for detecting botnets is to
examine flow characteristics such as bandwidth, dura-
tion, and packet timing looking for evidence of botnet
command and control activity. We have constructed an
architecture that first eliminates traffic that is unlikely
to be a part of a botnet, classifies the remaining traffic
into a group that is likely to be part of a botnet, then
correlates the likely traffic to find common communi-
cations patterns that would suggest the activity of a
botnet. Our results show that botnet evidence can be
extracted from a traffic trace containing almost 9 mil-
lion flows.

1 Introduction
Botnets, and the zombie hosts that comprise their

membership, present a particularly dangerous species
of network-based attack. In February 2006 in Seattle,
systems controlled by the Northwest Hospital com-
puter network started acting strangely, and investiga-
tion found the network was host to bots that formed a
larger, worldwide botnet [1]. In August 2005, Britain’s
NISCC (the UK equivalent to CERT) issued a warning
about the increase in trojan activity targeting UK gov-
ernment networks, stating that “the attacker’s aim ap-
pears to be covert gathering and transmitting of com-
mercially or economically valuable information” [2].
In November 2005, the discovery of a botnet in US
DoD [3] caused the head of JTF-CNO and DISA to
issue an “information assurance standdown” followed
by a full sweep of all DoD networks [4].

Botnets are built by assembling a large number of
compromised hosts into a group that is commanded to
carry out attacks. They derive their power by scale,
both in their cumulative bandwidth and in their reach.
Botnets can cause severe network disruptions through
massive distributed denial-of-service attacks, and the
threat of this disruption can cost enterprises large sums

in extortion fees. They are responsible for 80% of the
spam on the Internet today [5]. Botnets are also used to
harvest personal, corporate, or government sensitive
information for sale on a thriving organized crime
market. They are a reusable and renewable resource.

Efforts are underway to quantify the botnet problem
and design defenses against attacks by botnets. The
Honeynet Project [6] has done extensive work on cap-
turing live bots and characterizing botnet activities. A
group of white-hat vigilantes is scouring the Internet
looking for evidence of botnets [7]. A recent paper
from a group at MIT suggests ways for websites and
other services to thwart bot and other mechanical
agents by using Turing tests [8].

Determining the source of a botnet-based attack is
somewhat more challenging. First, there is a distinction
between the attack and the attack mechanism. For sin-
gle-flow [9] and “stepping stone” chained-flow [10]
attacks, the flow is both the mechanism and the attack,
but for botnets, the mechanism (the botnet) is con-
structed and maintained independently of how it is
used. Second, there is a difference of what constitutes
the “attack origin.” The tracing of flow-based attacks
attempts to yield a single responsible host; with bot-
nets, every zombie host is an attacker. Finally, most
flow-based traceback systems adopt a reactive ap-
proach to attacks; the tracing of packets back to their
origin hosts is triggered after an attack is detected.
Botnets can exist in a benign state for an arbitrary
amount of time before they are used for a specific at-
tack, affording some opportunity to identify them prior
to the attack.

This paper presents a system for aggregating moni-
tored traffic looking for evidence of botnets so that
botnet-based attacks can be attributed to a botnet con-
troller. We adopt a proactive approach by identifying
hosts that are likely part of a botnet. This is not the
same as definitively identifying the botnet and its con-
troller; there is uncertainty until there is an actual at-
tack. One of the benefits of tracking collections of

hosts displaying botnet characteristics is that there is a
possibility (with strong enough evidence) of neutraliz-
ing the botnet prior to the launch of a large attack.

In our model, a botnet is a group of cooperating
hosts controlled by a single entity. The control is fairly
tight, as shown in Figure 1. This definition fits with the
most commonly found examples of botnets—those that
use IRC as the control channel. (Looser control, such
as formed by peer-to-peer networks, is currently out-
side of our botnet model). Further, we do not necessar-
ily assume that the control channel is indeed IRC, only
that it shares properties of IRC: a single controller issu-
ing commands that are seen by everyone at essentially
the same time.

Our approach follows a set of increasingly more
complex analyzers, filtering out unlikely flows along
each step, so that the most computationally intensive
analysis is done on a dramatically reduced traffic set.
First, individual flows are subjected to a series of fil-
ters and classifiers to eliminate as many of the flows as
possible, while being somewhat conservative so that
botnet flows are not likely to be eliminated. Next, the
flows are correlated with each other, looking for
groups of flows that may be related by being part of
the same botnet. The result is a group of flows that are
most likely part of one or more botnets. Finally, the
topological information in the flows are examined for
the presence of a common communication hub.

The central question for this system and this paper
is: Can we find evidence of botnet activity by monitor-
ing network traffic only at various core locations? The
results of our experiments suggest the answer is yes.

2 Approach
Since the vast majority of botnets are controlled us-

ing variations on IRC bots, many botnet detection sys-
tems begin by simply looking for chat sessions (TCP
port 6667) [11] and then examining the content for
botnet commands [12]. Like many client-server proto-
cols, however, the use of a standard port number is
largely just a suggestion. Also, relying on having ac-
cess to the packet contents and, even with that access,
being able to identify botnet commands, is an overly
simplistic assumption. Our system assumes only that

the botnet command and control (C2) infrastructure is
based loosely on IRC.

2.1 Characterization of IRC-based C2 Flows
IRC-based botnets currently dominate as the pre-

ferred deployment technique. This reflects the freely
available source code for IRC, allowing attackers to
focus on botnet applications rather than on architecting
and coding “mere plumbing.” IRC is implemented
through text-based interactions. Strings are sent to the
chat server, which replicates that data to each client. In
the case of botnets, the clients are zombies, and botnet
commands are special strings.

We use chat traffic as an initial proxy for botnet C2
traffic. By looking at example botnet commands [6],
the important insight is that C2 messages are brief in
addition to being text-based. In the absence of access
to extensive botnet traces, we characterize chat flows
to identify how we can separate the C2 channel from
other Internet traffic.

Specifically, there are four points worth noting.
First, identification of chat is a statistical problem. For
each attribute of a flow, chat flows are spread across
the spectrum of values. Instead of a deterministic deci-
sion, one is left with a probabilistic conclusion, com-
plete with the risk of false positives and false nega-
tives.

Second, identification of chat is a difficult problem.
Flows can be winnowed into likely chat and likely
non-chat classifications, but the likely chat classifica-
tion will certainly include a number of non-chat flows.

Third, consideration of attributes in isolation is a
good start, but is not sufficient—it is equivalent to us-
ing independent probabilities to evaluate the traffic.
Stronger techniques based upon interdependent condi-
tional probabilities are needed as well.

Finally, in spite of the first three points, the result-
ing characterization is good for guiding the construc-
tion of efficient filters whose focus is data reduction.
By reducing the data set, even if it contains some false
positives, later steps can take advantage of more com-
putationally intensive approaches.

2.2 The Processing Pipeline
Figure 2 shows our traffic-processing pipeline.

Packet traces (in our case these are recorded traces, but
there is no reason the input cannot be live) are fed into
a series of quick reduction filters. With some a priori
knowledge, one can also imagine a set of white lists
and black lists based on known good sites (packets to
or from eBay, for example, are very unlikely to be part
of a botnet) and bad sites (those places on a watch list,
for example). Other filters examine simple flow attri-
butions such as duration or average packet size.

Figure 1—Actors in IRC-based Botnets

After the initial filters, the remaining flows are
passed through a flow classification engine based on
machine learning techniques. The classifiers attempt to
group flows into broadly defined applications. Those
flows that appear to have chat-like characteristics are
passed on to the correlator stage.

The correlator does a pair-wise examination of the
remaining flows looking for flows that are behaving in
a similar manner, as one might expect of two flows
generated by the same application. Botnets are so large
that commands are issued to the whole group, or large
subgroups, and not to individuals. Flows that are corre-
lated are passed on to topological analysis, where “so-
cial topology” is applied to determine which flows
share a common controller.

The result of this pipeline is a (hopefully) small set
of flows that show a fair amount of evidence that they
are related and are part of a botnet. The pipeline does
not prove the flows are part of a botnet; rather, the
flows that survive strongly suggest closer examination.
This examination may be deep, if there is access to the
hosts that are the flow endpoints, as may happen in an
enterprise or campus, or the examination may be lim-
ited to listing the flows and the flow endpoints in a
watch list for later use if a botnet-based attack occurs.
Knowing the social structure of a group of hosts prior
to an attack is better than trying to piece the structure
together during the attack.

3 Detecting a Botnet
An advantage to using a pipelined approach is that

each stage can be designed and tested largely inde-
pendently of the others, but the real test is if the pipe-
line behaves as expected from start to finish. We con-
ducted many experiments on each stage (in particular,
the interesting results and insights from the classifiers
stage is discussed in a separate paper [13]); in this pa-
per, however, we focus on the whole process, starting
with over nine million flows to find evidence of a bot-
net operating in the network.

3.1 Source of Background Traffic
It would be too contrived to try to create a large

dataset of both background and botnet traffic using a
tightly controlled testbed. Instead, we incorporated a
background traffic data set that seemed to typify the
range and variety of real world traffic. We chose
packet traces collected on the Dartmouth campus under
their Crawdad project [14]. The traces are a complete
set of TCP/IP headers from the campus wireless, taken
over a period of four months (November 1, 2003 to
February 28, 2004) from a variety of campus locations.
No payloads were included in the trace.

In all, the traces were 164 GBytes compressed, and
approximately 3.8 times that amount when uncom-
pressed. This large trace set means that we truly are
looking for the needle (botnet C2 flows) in a haystack.

As the first step of data reduction, we convert the
sequence of packets into flow summaries. Later, after
suspect infrastructure is identified, a forensic archive
of packet-level data can be collected and analyzed.

3.2 Source of Botnet Traces
In order to generate traffic that was reprentative of

real botnet traffic, we implemented a benign bot based
on the “Kaiten” bot, a widespread bot that has readily
downloadable source code. The Kaiten bot was imple-
mented in C using approximately 1000 lines of code.
We reverse engineered the Kaiten software and then
re-implemented it.

The original Kaiten bot had a reportoire of TCP-
and UDP-based attacks. Our bot implementation attack
code has been modified to render it “harmless.” Like
the Kaiten bot, our bot provides a number of remotely
controlled features, including a mechanism to execute
arbitrary commands on the bot client, HTTP download
capability, a flexible multi-process architecture, a
highly configurable architecture and a rich command
set.

In order to obtain traces of actual botnet traffic, we
constructed a botnet test facility. This facility involved
a simple setup modeled along the lines of a chat-based
botnet architecture. Our setup involved an IRC server,

Figure 2—Botnet Detection
Processing Pipeline

a code server, 13 zombies, an attacker, and a victim
host. Figure 3 depicts a block diagram of our botnet
test facility architecture.

We used this test facility to obtain actual traces of
the communications between the various botnet entities
while the botnet was in operation. Our experiments
entailed using the IRC server to instruct the zombies to
download attack code from the code server and to sub-
sequently launch a coordinated TCP “attack” on the
victim host (the attack consisted of 1 packet from each
zombie). The traces collected involved ssh transmis-
sions used for setting up and monitoring the experi-
ments, IRC traffic between the bots and the IRC server,
http traffic between the zombies and the code server
(for downloading the attack code), and the TCP traffic
involved in the coordinated TCP -attack on the victim
host. The setup and the launch of the attack were suc-
cessively repeated in order to increase the amount of
trace data collected.

We collected 74 flows associated with our botnet,
of which 30 were C2 flows. We merged this botnet
trace with the Dartmouth traffic data set in order to
create a test data set that contained ground truth that
could be verified after all of the data reduction filters
and other analyzers have been applied. Our botnet was
active on the order of hours, while the Dartmouth
traces span four months, exacerbating the vast size
difference between the needle and the haystack.

3.3 Filtering Stage
We recognize that there is a trade-off between iden-

tifying botnet C2 flows, and stepwise reduction of the
data set to the meaningful subset of flows. The selec-
tion of the cutoff for quick filtering for data reduction
requires both quantitative statistical information and
human judgment. Even if the selection of the cutoff
were phrased in terms of meeting a false positive or a

false negative goal, that goal is based upon judgment.
The filters and filter parameters we chose reflect this.

There were five distinct filters in this stage. The
first filtered by IP protocol to select TCP-based flows,
resulting in 8,933,303 flows. Since the bot was derived
from an IRC-style TCP base, all of the ground-truth
botnet C2 flows were TCP based. All of the C2 flows
survived this filter.

The second filter removed the nuisance port-
scanning chaff, reducing the data set to 4,750,262
flows. Flows containing only TCP packets with SYN
or RST flags indicate that communication was never
established, and so provide no information about chat
or botnet C2 flows. No application-level data was
transferred by these flows. Unfortunately for today’s
Internet, probes of system vulnerabilities are common-
place. While SYN-RST exchanges indicate suspicious
activity that may be worth investigation, they do not
assist with characterizing botnet C2 flows. About 47%
of the flows are eliminated by this step. Again, all of
the ground-truth botnet C2 flows survived the filter.

Since botnets do not sustain bulk data transfers, the
next filter removed high bit-rate flows. Peer-to-peer
file sharing is a significant load on the Internet, and
may take place on chat ports by co-incidence (since the
chat port is not reserved) or by intent (to avoid identifi-
cation and filtering). Dropping bulk transfers (flow
bandwidth greater than 8 Kb/s with at least 50 packets)
also eliminates software updates and rich web page
transfers. Yet, filtering the high bit-rate flows had a
small effect. About 1% of the flows are dropped, leav-
ing 4,699,662. From a flow perspective, this is a minor
amount, but from a packet and forensic archive per-
spective this represents a worthwhile effort. Again, all
of the bot C2 flows survived the filter.

Chat (and botnet C2 commands) generally generate
small packets. Using a 300-byte packet size cutoff for
the chat packets in the Dartmouth data set shows that
about 0.25% of the chat traffic would be falsely re-
jected and 72% of the non-chat flows are eliminated.
Since there are several orders of magnitude more non-
chat flows than chat flows, filtering exclusively on
average packet size would cut the amount of data to
process in half; since this filter comes fourth, it has a
relatively moderate affect. About 7% of the flows are
dropped, leaving 4,385,435. All of the ground-truth
botnet C2 flows survived the filter.

The fifth filter drops brief flows (less than 2 packets
or 60 seconds) from consideration. Real chats and bot-
nets are likely not well represented by excessively
short duration flows. This filter has a significant effect,
reducing the data by a factor of about 18.4, dominating
even the elimination of the port-scanning activities. All
of the ground-truth botnet C2 flows survived the filter.

Figure 3—Botnet Test Facility

Overall, the data set is reduced by a factor of about
37.5, from 8,933,303 TCP flows down to 238,252,
while still preserving the ground-truth botnet C2 flows.
This filtering stage avoided the use of TCP port num-
bers, and therefore is relevant to situations where ap-
plications may be masquerading on unexpected ports.
Furthermore, this significant data reduction resulted
without the use of white-listing services as trusted IP
address and port number combinations.

3.4 Classifier Stage
Once the simple filters have reduced the data set,

the next step is to process the data set using more so-
phisticated flow classification techniques. Several
techniques have been developed to automatically iden-
tify (and often classify) various types of communica-
tion streams. Some use clues from the traffic content.
Dewes et al. [15] propose a scheme for identifying chat
traffic that relies on a combination of discriminating
criteria, including service port number, packet size
distribution, and packet content. Sen et al. [16] use a
signature-based scheme to discern traffic produced by
several well-known P2P applications by identifying
particular characteristics in the syntax of packet con-
tents exchanged as part of the operation of the particu-
lar P2P applications.

Other flow classification approaches focus on the
use of statistical techniques to characterize and classify
traffic streams. Roughan et al. [17] use traffic classifi-
cation for the purpose of identifying four major classes
of service: interactive, bulk data transfer, streaming,
and transactional. They investigate the effectiveness of
using packet size and flow duration characteristics, and
simple classification schemes were observed to pro-
duce very accurate traffic flow classification.

In a similar approach, Moore and Zuev [18] apply
variants of the Naive Bayesian classification scheme to
classify flows into 10 distinct application groups. The
authors also search through the various traffic charac-
teristics to identify those that are most effective at dis-
criminating among the various traffic flow classes. By
also identifying highly correlated traffic flow charac-
teristics, this search is also effective in pruning the
number of traffic flow characteristics used to discrimi-
nate among traffic flows. Highly correlated characteris-
tics provide comparable and, often, redundant informa-
tion about the traffic flows. Thus, in many cases it suf-
fices to use only one of the correlated characteristics to
discriminate among traffic flows.

Since IRC-type botnet C2 flows share many charac-
teristics with normal IRC chat flows, we adopt and
build upon the above statistical flow classification
techniques to discriminate among IRC and non-IRC
traffic. (A deeper discussion of our insights and lessons
learned using machine learning techniques for this type

of classification is given in [13]). The focus on IRC
traffic simplifies the training step because the default
IRC port (namely, port 6667) can be used to accurately
identify and label IRC traffic.

We experimented with three machine learning clas-
sification algorithms, namely J48 decision trees (the
WEKA [20] implementation of C4.5 decision trees
[21]), Naive Bayes, and Bayesian Networks, and
evaluated the performance of each classifier using the
false negative rate (FNR) and the false positive rate
(FPR). The relative importance of each of these metrics
depends on the ultimate use of the classification re-
sults. A low FNR attempts to minimize the fraction of
the IRC flows will be discarded, while a low FPR at-
tempts to minimize the amount of non-IRC flows in-
cluded. We explored the effectiveness of these ma-
chine learning techniques along three dimensions: (1)
the classification scheme, (2) the subset of characteris-
tics/features used to describe the flows, and (3) the size
of the training set size.

Table 1 summarizes the flow characteristics that we
collected for each of the flows in the Dartmouth traces.
The characteristics in the top of the table were not used
for classification purposes—they either involve charac-
teristics that seemed inconsequential in classifying
flows, or are accumulated quantities, which are indi-
rectly captured by the corresponding rates or percent-
ages and the flow duration. Our experiments revealed
that the following attributes have high discriminatory
value: duration, role, average bytes per packet (Bpp),
average bits per second (bps), and average packets per
second (pps). Among these, the Bpp provided the most
discriminatory power.

Depending on the classification scheme used and
the set of traffic flow characteristics, the classification
was capable of correctly identifying between 88% and
99% of the IRC flows and non-IRC flows. A naive
Bayes classifier performed best; it achieved both low
FNR (2.49%) and low FPR (15.04%) for the Dart-
mouth flows and low FNR (7.89%) for our botnet test-
bed IRC flows. While some J48 and Bayesian network
classifiers performed better for the Dartmouth flows,
they classified our ground-truth botnet C2 flows
poorly. Finally, for the feature sets and the traces we
considered, we observed that training sets of 10K
flows were sufficient, and that the benefit of using
larger sets was minimal.

After training on roughly half of the flows yielded
from the earlier heuristic filtering stage, our best-
performing classifiers achieved an 80% (or, factor of 5)
reduction in the number of candidate chat flows when
used to classify the remaining set of testing flows. Pre-
suming that such performance would be routinely
achievable in this stage, the ~238K flows yielded from
the heuristic filtering stage would be further reduced to

~48K flows. In the case of the testbed flows, our best-
performing classifiers retained 29 of the 30 chat flows.

Despite their promise, the training and performance
of classifiers was quite sensitive to the flow attributes
used, the training set, and the number of flows used for
training. Thus, prior to their use in a deployable system
we expect that further effort would be needed in order
to identify the most beneficial flow characteristics and
training set.

3.5 Correlation Stage
The filters and classifiers have reduced the traffic

data set from almost 9 million flows to about 48 thou-
sand, but recall that these flows span a four-month pe-
riod. Our next stage, correlation, looks for relationships
between two or more flows that suggest that they are
part of the same botnet. The question about whether
one flow is correlated with another only makes sense if
the two flows are active at the same time, so while we
have four months of data, the correlation stage is run at
a particular instance in time. The question is: Who is
correlated at this moment?

We picked a time during the data when we knew the
botnet was active (7:44am on November 2). There
were 69 post-filtered flows active at that time, as com-
pared to 2112 active flows if no filtering or classifica-
tion had occurred. Of the 69 active flows, 30 were
ground-truth botnet C2 flows.

There are several reasons for closely correlated
flows, namely chains of remote logins, or stepping
stones, simultaneous bulk or periodic transfers, and
broadcasts or multicasts. Because of the one-to-many
“multicasting” model of the C2 (and chat) architecture,
we expect the communication flows between the botnet
C2 host and the IRC server, and between the IRC
server and the botnet members, to be temporally corre-
lated. Since data sent to the chat server is promptly
multicast to all chat members, the flows to and from all

chat members should exhibit similar timing character-
istics as well as contemporary fluctuations in band-
width.

There are several temporal correlation algorithms
proposed to identify flows related by being part of a
“stepping stone” connection chain [10][22][23]. BBN
also designed a timing-based correlation algorithm
[24]. Any of these could be applied to this stage, but
they are each computationally expensive. These and
most other current flow correlation algorithms examine
each flow every time there is a new packet arrival, and
every pair-wise “correlation value” is updated. This
implies O(n2) calculations for each packet, where n is
the number of active flows. We wanted to develop an
algorithm that performed a calculation only on the
packet’s flow, delaying the O(n2) comparison until the
time when flow correlation question was asked.

However, we decided to use the opportunity to ap-
ply a completely new algorithm that we were designing
that described a flow as a point in a five-dimensional
space. The first three dimensions are moments on the
packet interarrival times (IAT), specifically the most
recent IAT, the weighted moving average IAT, and the
weighted moving variation of the IAT. The fourth and
fifth dimensions are moments on the packet size, spe-
cifically the weighted moving average packet size and
the weighted moving variation of the packet size. We
hypothesize that a point in 5-space (normalized to the
range 0 to 1 on each axis) can accurately describe a
particular flow at a particular moment in time, and that
using the distance between two points represents how
different two flows are. That is, two flows are consid-
ered correlated if the Euclidean distance between their
points in 5-space is small.

Figure 4 shows the results of pair-wise distances be-
tween each of the 69 flows. Five flows have a distance
of less than 0.01 (no units, but highly correlated).
These five flows almost completely form a cluster;
only flows 1 and 3 do not have a distance less than
0.01. This clustering strongly suggests that the flows

start/end Flow start and end times

IP-proto IP protocol of flow

TCP flags Summary of TCP SYN/FIN/ACK flags

pkts Total pkts exchanged in flow

Bytes Total Bytes exchanged in flow

pushed pkts Total packets pushed in flow

duration Flow duration

maxwin Maximum initial congestion window

role Whether client or server initiated flow

Bpp Average Bytes-per-packet for flow

bps Average bits-per-second for flow

pps Average packets-per-second for flow

PctPktsPushed Percentage of packets pushed in flow

PctBppHistBin0-7 Percent of packets in one of eight packet size

bins; these variables collectively form a

histogram of packet size for flow

varIAT Variance of packet inter-arrival time for flow

varBpp Variance of Bytes-per-packet for flow

Table 1—Traffic Flow Characteristics

Figure 4—Clustering of Correlated Flows

are related and, in fact, they are five of our ground-
truth botnet flows.

Two questions arise: Why didn’t more of the botnet
flows correlate closely with these 5, and Why is it
more important to get at least some in a cluster and not
necessarily all? The answer to the first question has to
do with the way we constructed the botnet testbed. We
hosted 10 bots on two virtual machines, which proba-
bly skewed the flow timing. Also, we continue to ex-
periment with different flow characteristics as dimen-
sions for the correlation algorithm, and packet size
appears to be a rather weak one.

It is more important to find an incomplete cluster
than to focus on finding a complete one because a clus-
ter of any size is unusual enough to suggest further
investigation. Once we have a reason to believe that a
cluster exists, then we can move to the topological
analysis stage to try to figure out why there is a cluster,
and if there are other pieces of information we can de-
rived from the cluster.

3.6 Topological Analysis Stage
The identification of clusters of related flows cer-

tainly suggest further investigation, which is the aim of
this last stage, the topological analysis. The correlation
stage does not prove the existence of a botnet—there is
no test for maliciousness in the filtering, classifying,
and clustering of flows—but given a cluster of flows,
the natural next question is, What structure do these
and other flows form, and does this structure identify a
host that is acting like a botnet controller.

The topological analysis starts by using the IP ad-
dresses in the cluster to look for a common endpoint,
or rendezvous point, as shown in Figure 1. This is the
communications relay that takes the commands from
the controller and distributes them out to the zombie
hosts. (Note that there can be multiple rendezvous
points, and these rendezvous points can be hierarchical,
to support scalability.) A graph of these clustered flows
can be easily generated automatically.

The next step is to expand the cluster of flows dis-
covered by correlation by searching through the traffic
data set for other flows that share this endpoint and are
contemporary to the original cluster.

The final step, one for which we have no automated
algorithm, is to examine the flows for clues as to which
among them, if any, is the flow between the controller
and the rendezvous point. There are several character-
istics that this controller flow may exhibit that the oth-
ers do not. Such characteristics may include differ-
ences in the amount of data, in the timing of the trans-
missions, etc. For instance, the controller-rendezvous
point flow may initiate more frequent and higher vol-
ume transmissions to the rendezvous point than the
flows from the rendezvous point to the zombie hosts.

There may also be causal relationship between the
transmissions from the controller with respect to the
transmissions to the zombies.

4 Discussion
While it has been suggested that botnet controllers

will migrate from IRC as their preferred C2 infrastruc-
ture [25], the abstract model of tight central control
represented by IRC is very efficient and will likely
survive for quite some time. It is important, therefore,
to consider a system that detects very large, high vol-
ume data sets for evidence of tight botnet C2 activity.

 Our system performs gross, simple filtering to re-
duce the amount of data that will be subjected to more
computationally intensive algorithms. Once the data
has been filtered, the flows are classified using ma-
chine learning techniques, then the flows that are in the
“chat” class are correlated to find clusters of flows that
share similar timing and packet size characteristics.
The cluster is then analyzed to try to identify the botnet
controller host.

Our experiment with Dartmouth campus data, start-
ing with nearly 9 million flows augmented with traffic
traces from a benign botnet, shows that the ground
truth botnet C2 flows can indeed survive the data re-
duction and correlation to be identified as a cluster.
These results show that the method is promising.

This method is also nicely suited for real-time
analysis of traffic data. The filtering stage requires very
simple logic to cull the data set down by a factor of 37.
While we may not be able to expect that degree of re-
duction in all cases, there was nothing particularly spe-
cial about the Dartmouth data that contributed to the
reduction factor. The culling of the data, especially
when done in real time, allows much more time for
more complex algorithms later in the pipe, namely the
machine learning classifiers and the correlation.

An important lesson learned from our classification
stage is the importance of both legitimate and mali-
cious training traffic and an accurate manner to label it.
Given such representative training traffic, machine
learning based classifiers can perform well and be very
effective. The trick is the get a good training set.

Our experience with the new correlation algorithm
showed that the algorithm holds promise. The algo-
rithm we used is designed to reduce the computational
complexity of comparing n flows in a pair-wise man-
ner. The resulting cluster, while not a complete set of
flows from the ground truth botnet, was certainly
enough to allow the topological analysis of the flow
endpoints, and the rest of the ground-truth botnet traf-
fic was easily extracted.

Detecting botnet activity is presently labor intensive
and largely ad hoc. Our pipelined botnet C2 detection
system shows that it is possible to comb through

packet traces, even in real time, to extract evidence of
tight command and control activity.

Acknowledgments
We also wish to thank Doug Maughan and Cliff

Wang for their support, Mark Allman for his valuable
insights, and David Kotz for his help with the back-
ground traffic data.

References
[1] “Three charged with Seattle hospital botnet at-

tack,” The Register, February 14, 2006.
[2] National Infrastructure Security Coordination

Center, “Targeted Trojan Email Attacks,” NISCC
Briefing 08/2005, June 16, 2005.

[3] Rob Thormeyer, “Hacker Arrested for Breaching
DoD Systems with ‘Botnets’,” Government
Computer News, November 4, 2005.

[4] Defense Security Service, Memorandum for Fa-
cility Security Officers: Foreign-based Threat to
Defense Contractor Unclassified Networks, Oc-
tober 18, 2005.

[5] CNN.com, “Expert: Botnets No. 1 Emerging In-
ternet Threat,” January 31, 2006.

[6] The Honeynet Project, Know Your Enemy:
Learning about Security Threats, 2nd Edition,
Addison-Wesley, 2004.

[7] S. Kandula, D. Katabi, M. Jacob, and A. Berger,
“Botz-4-Sale: Surviving Organized DDoS At-
tacks that Mimic Flash Crowds,” Proc. 2nd Sym-
posium on Networked Systems Design and Im-
plementation, Boston, MA, May 2-4, 2005.

[8] R. Naraine, “Botnet Hunters Search for ‘Com-
mand and Control’ Servers,” eWeek, June 17,
2005.

[9] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E.
Jones, F. Tchakountio, S. T. Kent, and W. T.
Strayer, “Single-IP Packet Traceback,”
IEEE/ACM Transactions on Networking (ToN),
Volume 10, Number 6, December 2002.

[10] Y. Zhang and V. Paxson, “Detecting Stepping
Stones,” Proc. 9th USENIX Security Symposium,
August 2000.

[11] A. Householder, Art Manion, Linda Pesante,
George M. Weaver, and Rob Thomas, “Manag-
ing the Threat of Denial-of-Service Attacks,”
CERT Coordination Center, October 2001.

[12] P. Barford and V. Yegneswaran, “An Inside
Look at Botnets,” Special Workshop on Malware
Detection, Advances in Information Security,
Springer Verlag, 2006.

[13] C. Livadas, R. Walsh, D. Lapsley, and T. Strayer,
“Using Machine Learning Techniques to Identify
Botnet Traffic,” Submitted to 2nd IEEE LCN
Workshop on Network Security, 2006.

[14] D. Kotz and T. Henderson, “CRAWDAD: A
Community Resource for Archiving Wireless
Data at Dartmouth,” IEEE Pervasive Computing,
Volume 4, Issue 4, October-December 2005.

[15] C. Dewes, A. Wichmann, and A. Feldmann, “An
Analysis of Internet Chat Systems,” Proc. 3rd
ACM SIGCOMM Conf. on Internet Measure-
ment, Miami Beach, FL, 2003.

[16] S. Sen, O. Spatscheck, and D. Wang, “Accurate,
Scalable In-Network Identification of P2P Traffic
Using Application Signatures,” Proc. 13th Inter-
national Conf. on World Wide Web, New York,
NY, 2004.

[17] M. Roughan, S. Sen, O. Spatscheck, and N. Duf-
field, “Class-of-Service Mapping for QoS: A Sta-
tistical Signature-Based Approach to IP Traffic
Classification,” Proc. 4th ACM SIGCOMM Conf.
on Internet Measurement, Taormina, Sicily,
2004.

[18] A. W. Moore and D. Zuev, “Internet Traffic
Classification using Bayesian Analysis Tech-
niques,” Proc. 2005 ACM SIGMETRICS Interna-
tional Conf. on Measurement and Modeling of
Computer Systems, Banff, Alberta, Canada, 2005.

[19] T. Karagiannis, A. Broido, M. Faloutsos, and kc
claffy, “Transport Layer Identification of P2P
Traffic,” Proc. 4th ACM SIGCOMM Conf. on In-
ternet Measurement, Taormina, Sicily, 2004.

[20] I. H. Witten and E. Frank, Data Mining: Practi-
cal Machine Learning Tools and Techniques,
2nd Edition, Morgan Kaufmann, 2005.

[21] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern
Classification, 2nd Edition, John Wiley & Sons,
Inc., 2001.

[22] D. L. Donoho, A. G. Flesia, U. Shankar, V. Pax-
son, J. Coit, and S. Staniford, “Multiscale Step-
ping-Stone Detection: Detecting Pairs of Jittered
Interactive Streams by Exploiting Maximum Tol-
erable Delay,” Proc. International Symposium on
Recent Advances in Intrusion Detection (RAID),
Zurich, Switzerland, October 2002.

[23] K. Yoda and H. Etoh, “Finding a Connection
Chain for Tracing Intruders,” Proc. European
Symposium on Research in Computer Security,
Toulouse, France, October 2000.

[24] W. T. Strayer, C. E. Jones, B. Schwartz, J. Mik-
kelson, and C. Livadas, “Architecture for Multi-
Stage Network Attack Traceback,” First IEEE
LCN Workshop on Network Security, Sydney,
Australia, 15-17 November 2005.

[25] E. Cooke, F. Jahanian, and D. McPherson, “The
Zombie Roundup: Understanding, Detecting, and
Disrupting Botnets,” USENIX SRUTI Workshop,
July 7, 2005.

