
Synergism in Low Level Vision

Christopher M. Christoudias
�����

, Bogdan Georgescu
�����

and Peter Meer
���	� ���

(1) Electrical and Computer Engineering; (2) Computer Science Department
Rutgers University, Piscataway, NJ, 08854-8058, USA
cmch, georgesc, meer@caip.rutgers.edu

Abstract
Guiding image segmentation with edge information is

an often employed strategy in low level computer vision.
To improve the trade-off between the sensitivity of homo-
geneous region delineation and the oversegmentation of
the image, we have incorporated a recently proposed edge
magnitude/confidence map into a color image segmenter
based on the mean shift procedure. The new method can
recover regions with weak but sharp boundaries and thus
can provide a more accurate input for high level interpre-
tation modules. The Edge Detection and Image Segmen-
tatiON (EDISON) system, available for download, imple-
ments the proposed technique and provides a complete tool-
box for discontinuity preserving filtering, segmentation and
edge detection.

1 Introduction
Two of the most important low level vision operations

are image segmentation and edge detection. In this paper
both are considered to be based on the same, piecewise
constant image structure model. The two operations are
complementary in nature. Image segmentation focuses on
global information and labels the input into homogeneous
regions. Edge detection, on the other hand, focuses on lo-
cal information and labels the pixels which are assumed to
be located at discontinuities. In principle, both operations
should give the same result, the edges corresponding to the
boundaries of the homogeneous regions. In practice, how-
ever, the results differ significantly since local and global
evidence may lead to different conclusions.

Combining the outputs of image segmentation and edge
detection to improve the quality of the segmented image,
is an old idea. In a recent survey paper [5] seven differ-
ent strategies were distinguished for combining similarity
(region) and discontinuity (edge) information. They were
divided into two classes: embedded integration and post-
processing integration. In the former case the discontinuity
information is used during the delineation process, while
in the latter case it is employed only to control the fusion
and/or refinement of already delineated patches. Both ap-
proaches are present in the technique we are proposing,
since the information provided by the edge detector is in-
tegrated differently into the two modules of the image seg-
menter: filtering and fusion.

The discontinuity and homogeneity information were

associated in many different ways in the literature, here
we only mention a few of the approaches. Region grow-
ing can be guided by the edge map, e.g., [8] [12] for gray
level, and [4] for color images. (Note that the extensive
anisotropic diffusion literature usually targets the issue of
image smoothing and not segmentation.) Boundary infor-
mation can be used in the labeling process by incorporating
it into a vector field derived from a color image, e.g., [9],
[14]. The edge map can be employed to refine the delin-
eated region boundaries, e.g., [1]. Information about homo-
geneity and discontinuity can be also captured by statistical
measures and fused under Bayesian rules, e.g., [6], [7].

We use two recently proposed techniques which facil-
itate a more versatile combination of edge detection with
image segmentation. The mean shift based image segmen-
tation [2] is reviewed in Section 2. A generalization of the
traditional Canny edge detection procedure which also em-
ploys the confidence in the presence of an edge [11] is re-
viewed in Section 3. The new, combined image segmenta-
tion procedure is described in Section 4 and experimental
results are shown in Section 5. A short description of the
Edge Detection and Image SegmentatiON (EDISON) sys-
tem implementing the proposed technique is given in Sec-
tion 6.

2 Image Segmentation with Mean Shift
A large class of image segmentation algorithms are

based on feature space analysis. In this paradigm the pix-
els are mapped into a color space and clustered, with each
cluster delineating a homogeneous region in the image. In
the traditional clustering techniques the feature space is
modeled as a mixture of multivariate normal distributions,

Figure 1: Mode and basin of attraction based classification of a com-
plex feature space. The clusters were shifted apart for better visibility.



Figure 2: The gray level face image used in the examples.

which can introduce severe artifacts due to the elliptical
shape imposed over the clusters or due to an error in deter-
mining their number.

The mean shift based nonparametric feature space anal-
ysis eliminates these artifacts. Let 
����� be the (unknown)
probability density function underlying a � -dimensional
feature space, and �� the available data points in this space.
Under its simplest formulation, the mean shift property can
be written as �� 
������� � ave�������� "! #�$ ���%'&(�) (1)

where *�+�, � is the � -dimensional hypersphere with radius -
centered on  . Relation (1) states that the estimate of the
density gradient at location  is proportional to the offset
of the mean vector computed in a window, from the cen-
ter of that window. The mean shift property was introduced
in pattern recognition in 1975, and was recently applied to
several computer vision problems. See [3] for a detailed
presentation.

Recursive application of the mean shift property yields a
simple mode detection procedure. The modes are the local
maxima of the density, i.e.,

� 
������.0/ . They can be found
by moving at each iteration the window *�+�, � by the mean
shift vector, until the magnitude of the shifts becomes less
than a threshold. The procedure is guaranteed to converge
[3].

When the mean shift procedure is applied to every point
in the feature space, the points of convergence aggregate
in groups which can be merged. These are the detected
modes, and the associated data points define their basin of
attraction. The clusters are delineated by the boundaries of
the basins, and thus can have arbitrary shapes. The number
of significant clusters present in the feature space is auto-
matically determined by the number of significant modes
detected. See the example in Figure 1 for the decomposi-
tion of a complex 2D feature space which was represented
through its underlying density function.

In the color image segmentation algorithm proposed in
[2] a five-dimensional feature space was used. The 132�4�2	562
color space was employed since its metric is a satisfactory
approximation to Euclidean, thus allowing the use of spher-
ical windows. The remaining two dimensions were the lat-
tice coordinates. A cluster in this 5D feature space thus

(a) (b)
Figure 3: Mean shift segmentation of the face image. (a) The input
with the region boundaries overlayed. (b) Segmented image.

(a) (b)
Figure 4: Segmentation at a higher resolution than in Figure 3.

contains pixels which are not only similar in color but also
contiguous in the image.

The quality of segmentation is controlled by the spa-
tial -87 , and the color -'9 , resolution parameters defining the
radii of the (3D/2D) windows in the respective domains.
The segmentation algorithm has two major steps. First,
the image is filtered using mean shift in 5D, replacing the
value of each pixel with the 3D (color) component of the
5D mode it is associated to. Note that the filtering is discon-
tinuity preserving. In the second step, the basins of attrac-
tion of the modes, located within -'9;:�< in the color space
are recursively fused until convergence. The resulting large
basins of attraction are the delineated regions, and the value
of all the pixels within are set to their average. See [2] and
[3] for a complete description and numerous examples of
the segmentation algorithm. It is important to emphasize
that the segmenter processes gray level and color images in
the same way. The only difference is that in the former case
the feature space has three dimensions, the gray value and
the lattice coordinates.

The mean shift based color image segmentation is al-
ready popular in the computer vision community and sev-
eral implementations exist. To optimize performance we
have reimplemented the technique. In the filtering step, a
speed-up of about five times relative to the original seg-
menter was obtained by not applying the mean shift pro-
cedure to the pixels which are on the mean shift trajectory
of another (already processed) pixel. These pixels were
directly associated with the mode to which the path con-
verged. The approximation does not yield a visible change
in the filtered image.

In the fusion step, extensive use was made of region ad-
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jacency graphs (RAG) and graph contraction with a union-
find algorithm [13, pp.441–449]. The initial RAG was
built from the filtered image, the modes being the vertices
of the graph and the edges were defined based on four-
connectivity on the lattice. The fusion was performed as a
transitive closure operation on the graph, under the condi-
tion that the color difference between two adjacent nodes
should not exceed -'9;:�< . At convergence, the color of
the regions was recomputed and the transitive closure was
again performed. After at most three iterations the final la-
beling of the image (segmentation) was obtained. Small re-
gions (the minimum size, = is defined by the user) were
then allocated to the nearest neighbor in the color space.
Note that this postprocessing step can be refined by em-
ploying a look-up table which captures the relation between
the smallest significant color difference and the minimum
region size.

The new implementation of the color image segmenter
was also tested for equivariance under >?/�@ rotations on the
lattice. That is, when the input image is rotated the seg-
mented image rotates accordingly. This property assures
that the output of the processing does not depend on the or-
der in which the pixels in the image are processed.

The A�<�/�BC<ED�/ gray level face image (Figure 2) is typical
for the class of images used in face recognition/tracking ap-
plications. The relative small dynamic range, the presence
of highlights on the face, the shadows around the chin, etc.,
make feature extraction from such gray level images chal-
lenging.

Indeed, when the image is segmented at a lower resolu-
tion ( -87F.HGJI�-'9K.LD'M NOI�=P.Q<�/ ) only very few facial
features are recovered (Figure 3), which may not be satis-
factory in a tracking application. On the other hand, when
the resolution is slightly increased ( -873.RGJI�-'9C.SD'M /6I�=T.<�/ ) a significant clutter (nonsalient regions) appears, but
important features such as the chin or the full contour of the
mouth are still missed (Figure 4). Note the sensitivity of the
gray level image segmentation to the value of -'9 .
3 Edge Detection with Embedded Confidence

Edge detection is maybe the most investigated low level
vision operation. While a large number of techniques were
proposed, today the gradient based edge detectors are the
ones most frequently used. They have three processing
steps applied in sequence: gradient estimation, nonmaxima
suppression and hysteresis thresholding. The edge map is
derived from the input based on two gradient magnitude
thresholds. However, using the gradient magnitude for de-
cisions causes a well known deficiency, sharp edges with
small magnitudes can be detected only at the expense of al-
lowing a large amount of edge clutter. A recently proposed
generalization of the gradient based edge detection proce-
dure eliminates this trade-off [11].

The idea behind the new method is illustrated in Figure
5. Assume that the two differentiation masks employed by
the gradient operator are defined in an UVB3U window. These
masks, together with the data in the window, can be rep-
resented as three vectors in WYX�Z . The two vectors corre-
sponding to the masks define the gradient subspace (a hy-
perplane), while the data is an arbitrary vector in WYX�Z .

Computation of the gradient vector is equivalent to pro-
jecting the data into the subspace, its orientation [ being the
angle between the projected data and one of the mask vec-
tors. Note that only the part of the data in the gradient sub-
space is employed when computing the gradient vector.

The parameter [ can be used to generate an ideal edge
prototype, i.e., a unit step-edge passing through the center
of the U\B]U window and oriented at [ . The value of a pixel
of the prototype is obtained by integrating across its cross-
section. The edge prototype is also a vector in WYX�Z and in
general will not be located in the gradient subspace, though,
by definition must be in the plane of the projection and the
data. The prototype is the template of the normalized pat-
tern which would be present in the optimal case. Thus, ^
the cosine of the angle between the data and the template,
measures the confidence in the presence of an edge obey-
ing the assumed model. The critical observation is that ^ is
computed in WYX�Z , thus including new information from the��U�_`&a<�� -dimensional orthogonal complement of the gradi-
ent subspace. Therefore, ^ is a measure independent of the
gradient magnitude.

Let /cbLdFegf be the normalized ranks of the gradi-
ent magnitude values, i.e., the percentiles of their cumula-
tive distribution. For each pixel two values are now avail-
able: d and the confidence ^ . Since they are independent,
a d�^ –diagram can defined. In Figure 6a the d�^ –diagram of
the face image is shown. Note the presence of many weak
(small d ) but accurate step-edges (large ^ ).

In [11] the nonlinear processing steps of the the gradi-
ent based edge detection, nonmaxima suppression and hys-
teresis thresholding, were generalized to exploit all the in-
formation available in the d�^ –diagram. Instead of gradient
magnitude thresholds two thresholding curves were used,
and the decisions were taken based on the sign of the alge-
braic distances of a point from these curves. The traditional
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Figure 5: The principle of embedded confidence generation.
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(a) (b)
Figure 6: The edge detection with embedded confidence of the face
image. (a) The �"� –diagram, with the employed hysteresis thresholding
curves. (b) The input with the detected edges overlayed.

procedure which is based exclusively on gradient magni-
tude, i.e. d , then is equivalent to using two vertical lines as
thresholding curves.

The new edge detection technique can retain pixels on
sharp but weak edges which will be located in the upper-
left corner of the d�^ –diagram (Figure 6a). In resulting edge
map of the face image (Figure 6b) the contours of the chin
and the mouth are detected. See [11] for a more detailed
treatment of edge detection with embedded confidence and
numerous examples.

4 Synergetic Image Segmentation
From the previous two sections we can conclude that us-

ing only the gradient magnitude information to guide the
image segmentation is not the optimal strategy. Regions
with sharp but weak boundaries may still remain unde-
tected since their boundaries may not be adequately sup-
ported by the gradient.

Analyzing the d�^ –diagrams of the pixels located on the
boundaries of the delineated regions further strengthens
this conclusion. When the face image is undersegmented
(Figure 3) all the boundary pixels are located in the upper-
right corner (Figure 7a), i.e., have high gradient magni-
tudes. However, once the image is oversegmented (Figure
4) the boundary pixels are nonselectively dispersed every-
where in the d�^ –diagram (Figure 7b).

(a) (b)
Figure 7: The �"� –diagrams of the boundary pixels in the segmented
face images. (a) Undersegmentation, Figure 3a. (b) Oversegmentation,
Figure 4a.

To incorporate all the information available in the d�^ –
diagram, the pixel ����Im�J� is associated with the weight ��� � ,

(a) (b)
Figure 8: Synergetic segmentation of the face image. The same mean
shift segmentation parameters were used as in Figure 3. (a) The input with
the region boundaries overlayed. (b) Segmented image.

Figure 9: The �"� –diagram of the boundary pixels in the synergetic seg-
mentation, Figure 8a.

computed as ��� ��.0�J� ����dJ� �����zf�&��J� �E����^?� � (2)

where /�e��J� ��e f is an attribute which controls the blend-
ing of gradient magnitude d and local pattern ^ information.
For d¡bS/6M /�< the weights are taken 0. In general �J� � should
be derived from top-down processes focused on enhancing
the features of an object sought in the image, or should cap-
ture a priori global information such as ecological statistics
of segmentation [10]. In our examples the same �J� � value
was used for all the pixels in the image. Note that the def-
inition (2) can be replaced with any other expression more
suitable for a specific class of applications.

The synergetic image segmentation integrates the
weights into the mean shift based image segmenter. In
the filtering step a weighted average is then used in (1),
with the weights being f¢&£��� � . Since for pixels close
to an edge these weights are small, the discontinuity
preserving property of the mean shift based filtering is
further enhanced.

To integrate the discontinuity information into the fusion
step, for each edge in the region adjacency graph (RAG) of
the filtered image a boundary strength measure, ¤ is com-
puted by averaging the values ��� � for the pixels on the
boundary shared by two regions. The transitive closure op-
erations are then performed on this weighted graph, with
the additional condition of ¤¥b�¦z§ .

The synergetic segmentation of the face image (Figure
8) employed the same parameters as the undersegmentation
in Figure 3. The size of the gradient window was UR.¨N ,�J� �F.©/6M A and ¦z§(.©/6M > . Most of the important features
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(a) (b)

(c) (d)
Figure 10: The gray level golf-cart image. (a) Input. (b) Synergetic
segmentation. (c) Mean shift segmentation with the same parameters. (d)
Mean shift oversegmentation.

are now recovered, and the segmented image is a satisfac-
tory rendition of the input. The d�^ –diagram of the bound-
ary pixels (Figure 9) is extended toward lower gradient val-
ues but almost exclusively for the pixels which have high
confidence. Compare with Figure 7.

5 Experimental Results
The performance of the synergetic segmentation was

also assessed with three images of different natures. The
548 B 509 gray level golf-cart image has many fine details
and a textured background (Figure 10a). Using the param-
eters -87ª.¨GJI�-'9¡.«D'M NOI�=¬.N�/ the mean shift segmen-
tation yields the boundaries in Figure 10c. The synergetic
segmentation, with U�.«G , �®����Im�J��.¯/6M N and ¦z§°.£/6M ± re-
covers much more details (Figure 10b), like the contiguous
contour of the road, or the hood and front wheel of the cart.
These features cannot be extracted even when mean shift
oversegmentation ( -87¢.©GJI�-'9c.²A6M NOI�=³.²N�/ ) is used,
which introduces a large amount of clutter (Figure 10d).

The 256 B 256 color jelly-beans image (Figure 11a) is
very challenging since the objects are small and many of
them have highlights. The segmentation parameters were-87�.gGJI�-'9S.´±6I�=µ.gN�/ , U¶.gN , �®����Im�J�(.´/6M A and¦z§0.·/6M N?N . The synergetic segmentation correctly sepa-
rates most of the objects, and also delineates the weak bor-
ders in the background (Figure 11b). Undersegmentation
(Figure 11c) joins several objects, while oversegmentation
( -87Y.¨D'I�-'9¸.D'I�=¹.ºN�/ ) introduces significant clutter
(Figure 11d).

In the 575 B 437 color museum image (Figure 12a) note
the strong illumination gradient along the side wall and the

(a) (b)

(c) (d)
Figure 11: The color jelly-beans image. (a) Input. (b) Synergetic seg-
mentation. (c) Mean shift segmentation with the same parameters. (d)
Mean shift oversegmentation.

fine details on the back wall. The employed segmentation
parameters were -87».¼GJI�-'9¯.½±6I�=¾.¿N�/ , UQ.¿< ,�®����Im�J�À.T/6M A and ¦z§R.Á/6M N . The fusion module of the
mean shift segmenter successfully handles the presence of
illumination gradient and the wall is delineated as a sin-
gle structure (Figure 12c). To recover the details bounded
by weak edges synergetic segmentation is needed (Figure
12b), where these edges are well represented in the the em-
ployed weight map (Figure 12d). Note also the improved
delineation of the cubes in the foreground. Using strong
oversegmentations also failed to detect any of these fea-
tures before the clutter becomes dominant.

6 The EDISON System
The processing modules described in this paper were in-

tegrated into the Edge Detection and Image SegmentatiON
(EDISON) system. The system is implemented in C++, and
its source code is available on the web at

www.caip.rutgers.edu/riul/
EDISON provides a versatile graphic interface (Figure

13) to perform any of the three basic low-level vision op-
erations: discontinuity preserving filtering, segmentation,
edge detection; both separately and synergistically. The
user has control over any of the parameters, can display the
original, the filtered or the segmented image with or with-
out overlaying the boundaries of the delineated regions.
The gradient, confidence and weight maps are shown in
separate windows. All these images and maps can be saved
for future processing. The edge detection module can be
run separately. Employing vertical thresholding curves it
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(a) (b)

(c) (d)
Figure 12: The color museum image. (a) Input. (b) Synergetic seg-
mentation. (c) Mean shift segmentation with the same parameters. (d) The
employed weight map.

defaults to the traditional “Canny” technique.
The EDISON system can also be run in command line

mode. Both the GUI and the command line implemen-
tation is available for the Windows environment, and the
command line implementation for the UNIX/Linux envi-
ronment.

We have succinctly described two recently developed
computational modules performing fundamental low-level
computer vision operations: segmentation and edge detec-
tion. Their strengths can be combined into a synergetic
technique which extracts weak but significant features from
images.
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