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Abstract

Guiding image segmentation with edge information is
an often employed strategy in low level computer vision.
To improve the trade-off between the sensitivity of homo-
geneous region delineation and the oversegmentation of
the image, we have incorporated a recently proposed edge
magnitude/confidence map into a color image segmenter
based on the mean shift procedure. The new method can
recover regions with weak but sharp boundaries and thus
can provide a more accurate input for high level interpre-
tation modules. The Edge Detection and Image Segmen-
tatiON (EDISON) system, available for download, imple-
mentsthe proposed techniqueand providesa compl etetool -
box for discontinuity preserving filtering, segmentation and
edge detection.

1 Introduction

Two of the most important low level vision operations
are image segmentation and edge detection. In this paper
both are considered to be based on the same, piecewise
constant image structure model. The two operations are
complementary in nature. Image segmentation focuses on
global information and labels the input into homogeneous
regions. Edge detection, on the other hand, focuses on lo-
cal information and |abels the pixelswhich are assumed to
be located at discontinuities. In principle, both operations
should give the same result, the edges corresponding to the
boundaries of the homogeneous regions. In practice, how-
ever, the results differ significantly since local and global
evidence may lead to different conclusions.

Combining the outputs of image segmentation and edge
detection to improve the quality of the segmented image,
isan old idea. In arecent survey paper [5] seven differ-
ent strategies were distinguished for combining similarity
(region) and discontinuity (edge) information. They were
divided into two classes: embedded integration and post-
processing integration. In the former case the discontinuity
information is used during the delineation process, while
in the latter case it is employed only to control the fusion
and/or refinement of already delineated patches. Both ap-
proaches are present in the technique we are proposing,
since the information provided by the edge detector isin-
tegrated differently into the two modules of the image seg-
menter: filtering and fusion.

The discontinuity and homogeneity information were
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associated in many different ways in the literature, here
we only mention a few of the approaches. Region grow-
ing can be guided by the edge map, e.g., [8] [12] for gray
level, and [4] for color images. (Note that the extensive
anisotropic diffusion literature usually targets the issue of
image smoothing and not segmentation.) Boundary infor-
mation can be used in the labeling process by incorporating
it into a vector field derived from a color image, e.g., [9],
[14]. The edge map can be employed to refine the delin-
eated regionboundaries, e.g., [1]. Information about homo-
geneity and discontinuity can be also captured by statistical
measures and fused under Bayesian rules, e.g., [6], [7].

We use two recently proposed techniques which facil-
itate a more versatile combination of edge detection with
image segmentation. The mean shift based image segmen-
tation [2] isreviewed in Section 2. A generalization of the
traditional Canny edge detection procedure which also em-
ploys the confidence in the presence of an edge [11] isre-
viewed in Section 3. The new, combined image segmenta-
tion procedure is described in Section 4 and experimental
results are shown in Section 5. A short description of the
Edge Detection and Image SegmentatiON (EDISON) sys-
tem implementing the proposed technique is given in Sec-
tion 6.

2 I mage Segmentation with Mean Shift

A large class of image segmentation algorithms are
based on feature space analysis. In this paradigm the pix-
els are mapped into a color space and clustered, with each
cluster delineating a homogeneous region in theimage. In
the traditional clustering techniques the feature space is
modeled as a mixture of multivariate normal distributions,

Figure 1. Mode and basin of attraction based classification of a com-
plex feature space. The clusters were shifted apart for better visibility.



Figure 2: Thegray level face image used in the examples.

which can introduce severe artifacts due to the dliptical
shape imposed over the clusters or dueto an error in deter-
mining their number.

The mean shift based nonparametric feature space anal-
ysis eliminates these artifacts. Let f(x) be the (unknown)
probability density function underlying a p-dimensional
feature space, and x; the available datapointsin this space.
Under its simplest formulation, the mean shift property can
be written as

Vfx) ~ (Xig\ggx [xi] - x) @
where S), « isthe p-dimensional hyperspherewith radius i
centered on x. Relation (1) states that the estimate of the
density gradient at location x is proportional to the offset
of the mean vector computed in a window, from the cen-
ter of that window. The mean shift property wasintroduced
in pattern recognition in 1975, and was recently applied to
several computer vision problems. See [3] for a detailed
presentation.

Recursive application of the mean shift property yieldsa
simple mode detection procedure. The modes are the local
maximaof the density, i.e., V f (x) = 0. They can befound
by moving at each iteration the window S, x by the mean
shift vector, until the magnitude of the shifts becomes less
than athreshold. The procedure is guaranteed to converge
[3].

When the mean shift procedureis applied to every point
in the feature space, the points of convergence aggregate
in groups which can be merged. These are the detected
modes, and the associated data points define their basin of
attraction. The clustersare delineated by the boundaries of
the basins, and thus can have arbitrary shapes. The number
of significant clusters present in the feature space is auto-
matically determined by the number of significant modes
detected. See the example in Figure 1 for the decomposi-
tion of a complex 2D feature space which was represented
through its underlying density function.

In the color image segmentation algorithm proposed in
[2] afive-dimensional feature spacewasused. The L*u*v*
color space was employed since its metric is a satisfactory
approximationto Euclidean, thusallowing the use of spher-
ical windows. The remaining two dimensions were the |at-
tice coordinates. A cluster in this 5D feature space thus

@ (b)
Figure 3: Mean shift segmentation of the face image. (a) The input
with the region boundaries overlayed. (b) Segmented image.

(b)

Figure 4: Segmentation at a higher resolution than in Figure 3.

contains pixels which are not only similar in color but also
contiguous in the image.

The quality of segmentation is controlled by the spa-
tial h,, and the color h,., resolution parameters defining the
radii of the (3D/2D) windows in the respective domains.
The segmentation algorithm has two major steps. First,
the image is filtered using mean shift in 5D, replacing the
value of each pixel with the 3D (color) component of the
5D modeit isassociated to. Notethat thefilteringisdiscon-
tinuity preserving. In the second step, the basins of attrac-
tion of the modes, located within &,./2 in the color space
arerecursively fused until convergence. Theresultinglarge
basins of attraction arethe delineated regions, and the value
of all the pixels within are set to their average. See[2] and
[3] for a complete description and numerous examples of
the segmentation algorithm. It is important to emphasize
that the segmenter processesgray level and color imagesin
thesameway. Theonly differenceisthat intheformer case
the feature space has three dimensions, the gray value and
the lattice coordinates.

The mean shift based color image segmentation is al-
ready popular in the computer vision community and sev-
era implementations exist. To optimize performance we
have reimplemented the technique. In the filtering step, a
speed-up of about five times relative to the original seg-
menter was obtained by not applying the mean shift pro-
cedure to the pixels which are on the mean shift trgjectory
of another (already processed) pixel. These pixels were
directly associated with the mode to which the path con-
verged. The approximation does not yield avisible change
in the filtered image.

In the fusion step, extensive use was made of region ad-



jacency graphs (RAG) and graph contraction with a union-
find algorithm [13, pp.441—449]. The initiad RAG was
built from the filtered image, the modes being the vertices
of the graph and the edges were defined based on four-
connectivity on the lattice. The fusion was performed as a
transitive closure operation on the graph, under the condi-
tion that the color difference between two adjacent nodes
should not exceed h,/2. At convergence, the color of
the regions was recomputed and the transitive closure was
again performed. After at most threeiterationsthefinal la-
beling of theimage (segmentation) was obtained. Small re-
gions (the minimum size, M is defined by the user) were
then alocated to the nearest neighbor in the color space.
Note that this postprocessing step can be refined by em-
ploying alook-up table which capturestherel ation between
the smallest significant color difference and the minimum
region size.

The new implementation of the color image segmenter
was also tested for equivariance under 90° rotations on the
lattice. That is, when the input image is rotated the seg-
mented image rotates accordingly. This property assures
that the output of the processing does not depend on the or-
der in which the pixelsin the image are processed.

The 320 x 240 gray level faceimage (Figure 2) istypical
for the class of images used in face recognition/tracking ap-
plications. The relative small dynamic range, the presence
of highlights on the face, the shadows around the chin, etc.,
make feature extraction from such gray level images chal-
lenging.

Indeed, when the image is segmented at alower resolu-
tion (hs = 7,h, = 4.5,M = 20) only very few facia
features are recovered (Figure 3), which may not be satis-
factory in atracking application. On the other hand, when
theresolutionisdlightly increased (hs = 7, h, = 4.0, M =
20) a significant clutter (nonsalient regions) appears, but
important features such asthe chin or thefull contour of the
mouth are still missed (Figure4). Notethe sensitivity of the
gray level image segmentation to the value of h,..

3 Edge Detection with Embedded Confidence

Edge detection is maybe the most investigated low level
vision operation. While alarge number of techniqueswere
proposed, today the gradient based edge detectors are the
ones most frequently used. They have three processing
stepsapplied in sequence: gradient estimation, nonmaxima
suppression and hysteresis thresholding. The edge map is
derived from the input based on two gradient magnitude
thresholds. However, using the gradient magnitude for de-
cisions causes a well known deficiency, sharp edges with
small magnitudes can be detected only at the expense of al-
lowing alarge amount of edge clutter. A recently proposed
generalization of the gradient based edge detection proce-
dure eliminates this trade-off [11].

Theideabehind the new method isillustrated in Figure
5. Assume that the two differentiation masks employed by
thegradient operator aredefinedin ann x n window. These
masks, together with the data in the window, can be rep-
resented as three vectors in R™". The two vectors corre-
sponding to the masks define the gradient subspace (a hy-
perplane), while the datais an arbitrary vector in R

Compuitation of the gradient vector is equivalent to pro-
jecting the datainto the subspace, its orientation ¢ being the
angle between the projected data and one of the mask vec-
tors. Notethat only the part of the dataiin the gradient sub-
space is employed when computing the gradient vector.

The parameter § can be used to generate an ideal edge
prototype, i.e., a unit step-edge passing through the center
of then x n window and oriented at ¢. The value of apixel
of the prototype is obtained by integrating across its cross-
section. The edge prototypeis also avector in R andin
genera will not belocated in the gradient subspace, though,
by definition must be in the plane of the projection and the
data. The prototype is the template of the normalized pat-
tern which would be present in the optimal case. Thus, n
the cosine of the angle between the data and the template,
measures the confidence in the presence of an edge obey-
ing the assumed model. The critical observationisthat 7 is
computedin R™, thusincludi ng new information from the
(n? — 2)-dimensional orthogonal complement of the gradi-
ent subspace. Therefore, 1 isameasure independent of the
gradient magnitude.

Let 0 < p < 1 bethe normalized ranks of the gradi-
ent magnitude values, i.e., the percentiles of their cumula-
tive distribution. For each pixel two values are now avail-
able: p and the confidence n. Since they are independent,
a pn—diagram can defined. In Figure 6athe pn—diagram of
the face image is shown. Note the presence of many weak
(small p) but accurate step-edges (largen).

In [11] the nonlinear processing steps of the the gradi-
ent based edge detection, nonmaximasuppression and hys-
teresis thresholding, were generalized to exploit all the in-
formation availablein the pn—diagram. Instead of gradient
magnitude thresholds two thresholding curves were used,
and the decisions were taken based on the sign of the alge-
braic distances of apoint from these curves. Thetraditional
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Figure 5: The principle of embedded confidence generation.
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Figure 6: The edge detection with embedded confidence of the face
image. (a) The pn—diagram, with the employed hysteresis thresholding
curves. (b) The input with the detected edges overlayed.

procedure which is based exclusively on gradient magni-
tude, i.e. p, thenisequivalent to using two vertical linesas
thresholding curves.

The new edge detection technique can retain pixels on
sharp but weak edges which will be located in the upper-
left corner of the pn—diagram (Figure 6a). In resulting edge
map of the face image (Figure 6b) the contours of the chin
and the mouth are detected. See [11] for a more detailed
treatment of edge detection with embedded confidence and
numerous exampl es.

4 Synergetic | mage Segmentation

From the previoustwo sectionswe can concludethat us-
ing only the gradient magnitude information to guide the
image segmentation is not the optimal strategy. Regions
with sharp but weak boundaries may still remain unde-
tected since their boundaries may not be adequately sup-
ported by the gradient.

Analyzing the pn—diagrams of the pixelslocated on the
boundaries of the delineated regions further strengthens
this conclusion. When the face image is undersegmented
(Figure 3) all the boundary pixels are located in the upper-
right corner (Figure 7a), i.e., have high gradient magni-
tudes. However, once the image is oversegmented (Figure
4) the boundary pixels are nonselectively dispersed every-
where in the pn—diagram (Figure 7b).
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Figure 7: The pn—diagrams of the boundary pixels in the segmented
face images. (a) Undersegmentation, Figure 3a. (b) Oversegmentation,
Figure 4a.
To incorporate all the information available in the pr—
diagram, the pixel (i, j) is associated with the weight w;;,

@ (b)
Figure 8: Synergetic segmentation of the face image. The same mean
shift segmentation parameterswere used asin Figure 3. (a) Theinput with
the region boundaries overlayed. (b) Segmented image.
1
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Figure9: The pr—diagram of theboundary pixelsin the synergetic seg-
mentation, Figure 8a.

computed as
Wi; = Q45 * Pij + (1 - ai]-) * 1)i5 (2)

where 0 < a,; < 1 isan éttribute which controls the blend-
ing of gradient magnitude p and local pattern» information.
For p < 0.02 theweightsaretaken 0. In general a;; should
be derived from top-down processes focused on enhancing
thefeatures of an object sought in theimage, or should cap-
tureapriori global information such as ecological statistics
of segmentation [10]. In our examples the same a;; value
was used for all the pixelsin the image. Note that the def-
inition (2) can be replaced with any other expression more
suitable for a specific class of applications.

The synergetic image segmentation integrates the
weights into the mean shift based image segmenter. In
the filtering step a weighted average is then used in (1),
with the weights being 1 — w;;. Since for pixels close
to an edge these weights are small, the discontinuity
preserving property of the mean shift based filtering is
further enhanced.

Tointegrate the discontinuity informationinto thefusion
step, for each edge in the region adjacency graph (RAG) of
the filtered image a boundary strength measure, e is com-
puted by averaging the values w;; for the pixels on the
boundary shared by two regions. The transitive closure op-
erations are then performed on this weighted graph, with
the additional condition of e < ¢..

The synergetic segmentation of the face image (Figure
8) employed the same parameters asthe undersegmentation
in Figure 3. The size of the gradient window wasn = 5,
ai; = 0.3 andt. = 0.9. Most of the important features



Figure 10: Thegray level golf-cart image. (a) Input. (b) Synergetic
segmentation. (¢) Mean shift segmentation with the same parameters. (d)
Mean shift oversegmentation.

are now recovered, and the segmented image is a satisfac-
tory rendition of the input. The pn—diagram of the bound-
ary pixels (Figure 9) is extended toward lower gradient val-
ues but almost exclusively for the pixels which have high
confidence. Compare with Figure 7.

5 Experimental Results

The performance of the synergetic segmentation was
also assessed with three images of different natures. The
548x 509 gray level golf-cart image has many fine details
and atextured background (Figure 10a). Using the param-
gersh, = 7,h, = 4.5, M = 50 the mean shift segmen-
tation yields the boundaries in Figure 10c. The synergetic
segmentation, withn = 7, a(i,j) = 0.5 andt. = 0.6 re-
covers much more details (Figure 10b), like the contiguous
contour of the road, or the hood and front wheel of the cart.
These features cannot be extracted even when mean shift
oversegmentation (hs = 7,h, = 3.5, M = 50) is used,
which introduces a large amount of clutter (Figure 10d).

The 256x 256 color jelly-beans image (Figure 11a) is
very challenging since the objects are small and many of
them have highlights. The segmentation parameters were
hy = 7,h, = 6,M = 50,n = 5, a(i,j) = 0.3 and
te = 0.55. The synergetic segmentation correctly sepa-
rates most of the objects, and also delineates the weak bor-
ders in the background (Figure 11b). Undersegmentation
(Figure 11c) joins several objects, while oversegmentation
(hs = 4,h, = 4, M = 50) introduces significant clutter
(Figure 11d).

In the 575x 437 color museum image (Figure 12a) note
the strong illumination gradient along the side wall and the

(©) (d)
Figure 11: Thecolor jelly-beansimage. (a) Input. (b) Synergetic seg-
mentation. (c) Mean shift segmentation with the same parameters. (d)
Mean shift oversegmentation.

fine details on the back wall. The employed segmentation
parameters were hy, = 7,h, = 6,M = 50, n = 2,
a(i,j) = 0.3 andt, = 0.5. The fusion module of the
mean shift segmenter successfully handles the presence of
illumination gradient and the wall is delineated as a sin-
gle structure (Figure 12c). To recover the details bounded
by weak edges synergetic segmentation is needed (Figure
12b), where these edges are well represented in the the em-
ployed weight map (Figure 12d). Note also the improved
delineation of the cubes in the foreground. Using strong
oversegmentations also failed to detect any of these fea-
tures before the clutter becomes dominant.

6 TheEDISON System

The processing modules described in this paper werein-
tegrated into the Edge Detection and |mage Segmentati ON
(EDISON) system. Thesystemisimplementedin C++, and
its source code is available on the web at

WWW. cai p. rutgers.edu/riul/

EDISON provides a versatile graphic interface (Figure
13) to perform any of the three basic low-level vision op-
erations. discontinuity preserving filtering, segmentation,
edge detection; both separately and synergistically. The
user has control over any of the parameters, can display the
original, the filtered or the segmented image with or with-
out overlaying the boundaries of the delineated regions.
The gradient, confidence and weight maps are shown in
separatewindows. All theseimages and maps can be saved
for future processing. The edge detection module can be
run separately. Employing vertical thresholding curves it
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Figure 12:  The color museumimage. (a) Input. (b) Synergetic seg-
mentation. (¢) Mean shift ssgmentation with the same parameters. (d) The
employed weight map.

defaults to the traditional “Canny” technique.

The EDISON system can also be run in command line
mode. Both the GUI and the command line implemen-
tation is available for the Windows environment, and the
command line implementation for the UNIX/Linux envi-
ronment.

We have succinctly described two recently developed
computational modules performing fundamental low-level
computer vision operations. segmentation and edge detec-
tion. Their strengths can be combined into a synergetic
techniquewhich extractsweak but significant featuresfrom
images.
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