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1 Introduction

A common manipulation task in robotics is peg insertion. In my formulation of the problem force control
is used maneuver a peg into a slot slightly wider than the peg. Figure 1 gives a visual of my domain.
I will give results for various model-free policy search methods which aim to learn the parameters of a
force controller, or policy. Model-free policy search methods provide a generalizable method for learning
parameterized policies.

Figure 1: A successful learned peg insertion task.

2 Policy Formulations

A policy, π, is a mapping from a state, s, to an action, a. A policy can be either deterministic or stochastic.
Using a stochastic policy can be beneficial as it forces a system to both exploit its knowledge as well as
perform some exploration of the action or parameter space in hopes of finding better parameters.

2.1 Linear Stochastic Policy

A parameterized linear stochastic policy takes the following form.

π(a|s;θ) = N (θ(s− g),Σ) (1)

The mean of the policy’s distribution is linear in the state of the peg, s ∈ Rn. The goal state is g ∈ Rn.
Actions are given by a ∈ Rm making θ an m × n matrix. The noise in the policy is ε ∼ N (0,Σ) where Σ
is a m×m covariance matrix.

The following cost function is used with the linear stochastic policy. It is simply the distance from the
goal state at time t.

ct = ||st − g||2 (2)

The cost of a trajectory is therefore

C(τ) =

T∑
t=0

ct (3)

2.2 Dynamic Movement Primitives

Dynamic Movement Primitives [3], or DMPs, give a point attractor policy with an added forcing function.
I will only consider DMPs for a 1-dimensional action, as, which acts on the pose, s, and velocity, vs, of a
1-dimensional system. DMPs are characterized by a parameter θs.
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2.2.1 Deterministic DMP

To begin I will give the deterministic formulation of a DMP.

π(as|s, vs;θs) = −K(s− gs)−Dvs + bTθs (4)

The first 2 terms in the policy characterize a PD controller which is driving the pose of the system, s,
to gs. K is the spring coefficient and D is the damping coefficient.

DMPs also utilize a canonical system. The state of the canonical system, z, is defined by the following
simple dynamics.

żt = −αzt (5)

where α is a time constant and z0 = 1. This system decays exponentially to 0 as t goes to infinity. This
canonical system is used in the forcing term, bTθs of the policy. b is a basis function of p radial basis
function kernels. Therefore b and θ are p× 1 vectors. The jth term of b is as follows

[b]j =
ψj∑p
i=1 ψi

zt|s0 − gs| (6)

ψj = exp(−hj(zt − cj)2) (7)

where cj ∈ [0, 1]. This means that the jth kernel is ”activated” when zt is near cj . These kernels are
then multiplied by the parameter, θs, which acts as a weight on the kernels. For example if we want a large
force to act on the system early on in the trajectory, then we would have a kernel with cj close to 1 and
the jth term of θ with the desired force we want to enforce on our system. |s0− gs| is a spatial scaling term
with s0 being the initial pose of the system.

It is important to notice that without the forcing term (bTθs) the DMP policy is simply a PD controller.
In addition, the affects of the forcing term decay to zero as t goes to infinity. This is due to the zt term in
the basis function, b. This means that as t goes to infinity and zt goes to 0 the policy reverts back to the
PD controller which will drive the system to the goal state.

2.2.2 Parameter Space Exploration

The DMP is converted into a stochastic policy by adding noise to the parameter vector θs. The stochastic
policy takes the following form.

π(as|s, vs;θs) = −K(s− gs)−Dvs + bT (θs + ε) (8)

ε ∼ N (0,Σ) (9)

This stochastic policy is equivalent to the following representation.

π(Fs|s, vs;θs) = N (−K(s− gs)−Dvs + bTθs,b
TΣb) (10)

This method enforces parameter space exploration by adding noise to the parameter vector at each step
in the trajectory. The cost function used for this DMP policy takes the following form.

ct = qt + (θs + εt)
TR(θs + εt) (11)

qt = Q|st − gs| (12)

The cost has a state dependent term, qt as well as a regularization term on the control input from the
forcing function. Q is a scalar constant and R is a p× p matrix. This form of the policy and cost function
is required for a method of policy search (Policy Improvement with Path Integrals) which will be discussed
in Section 3.2.
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2.2.3 Action Space Exploration

The DMP can also be converted into a stochastic policy which enforces action space exploration. The
stochastic policy takes the following form.

π(as|s, vs;θs) = −K(s− gs)−Dvs + bTθs + ε (13)

ε ∼ N (0,Σ) (14)

This stochastic policy is equivalent to the following representation.

π(Fs|s, vs;θs) = N (−K(s− gs)−Dvs + bTθs,Σ) (15)

This method enforces action space exploration by adding noise to the action selected at each step in the
trajectory. The cost function used for this DMP policy takes the following form.

ct = qt + θTs Rθs (16)

qt = Q|st − gs| (17)

This form of the policy and cost function is required for a method of policy search (REINFORCE) which
will be discussed in Section 3.1.2.

3 Model-free Policy Search Methods

Policy search methods aim to find policy parameters, θ, which best performs the task and minimize the
cost. Model-free methods are able to do so without a model of the system dynamics. First, I will give two
methods which minimize the cost via gradient descent; Finite Differences and REINFORCE. Then, I will
give a third method, Policy Improvement with Path Integrals.

3.1 Gradient Descent

A trajectory, τ , is the sequence of states and actions that a system takes for a given time horizon of length
T .

τ = (s0,a0, s1,a1, ..., sT ) (18)

The total accumulated cost over a trajectory is

C(τ) =

T∑
t=0

ct (19)

Gradient descent policy search methods aim to find the policy parameters which minimize the value
function, J(θ), or the expectation of the cost function.

Jθ = Eτ [C(τ)|θ] (20)

For gradient descent methods the parameter update takes the following form.

θ ← θ − η∇θJθ (21)

where η is the learning rate and ∇θJθ is the gradient with respect to parameter, θ.
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3.1.1 Finite Differences

A basic estimate of this gradient is a finite difference. In summary this works by perturbing each dimension
of your parameter by some δ and −δ, and estimating the gradient as the change in your value function. For
a 1-dimensional parameter, θ, the gradient estimate would look like this

∇θJθ ≈
Ĵ(θ + δ)− Ĵ(θ − δ)

2δ
(22)

where we calculate Ĵ(θ) by averaging the cost, C(τ), over several trajectories using the parameter θ [4].
Now we are given a parameter, θ which contains l elements. We generate a matrix ∆Θ which is N × l

where N is the number of trajectories we wish to run to estimate the gradient. The following ∆Θ would be
for N = l. In practice, for stochastic systems N can and should be larger then l to ensure that each element
of the parameter uses more than 2 trajectories to estimate the gradient with respect to the that element of
the parameter.

∆Θ =


2δ 0 . . . 0
0 2δ . . . 0
...

...
. . . 0

0 0 . . . 2δ


T

(23)

For this method we only perturb one element of the parameter vector at a time. Other methods exist
which perturb more than one element of the parameter at a time.

Now we construct ∆Ĵ which is the estimate of the change in the value function between +δ and −δ. ∆Ĵ
is an l× 1 vector where [∆Ĵ ]j is Ĵ(θ+ δj)− Ĵ(θ− δj) and δj is a vector or 0s with the jth element set to δ.

Finally, the gradient estimate takes the following form.

∇θJθ ≈ (∆ΘT∆Θ)−1∆ΘT∆Ĵ (24)

To update the parameter vector, θ, it matrix must be converted into an l × 1 vector.

3.1.2 REINFORCE

REINFORCE [8] is another gradient estimation method of policy search. It uses the log ratio trick to get
the expectation of the gradient of the cost function into something that can be estimated via sampling.

∇θJθ = Eτ [C(τ)]

=

∫
τ

C(τ)∇θpθ(τ)dτ

=

∫
τ

C(τ)∇θlogpθ(τ)pθ(τ)dτ

= Eτ [C(τ)∇θlogpθ(τ)]

(25)

where pθ(τ) is the probability of a trajectory, τ , under parameter θ. The derivation above uses the log
ratio trick, meaning we use the fact that

∇θlogpθ(τ) =
∇θpθ(τ)

pθ(τ)
(26)

Then we must calculate the probability of a trajectory under a stochastic policy.

pθ(τ) = p(τ |s0;θ) = p(s0)

T∏
t=1

p(st|st−1,at−1)π(at−1|st−1;θ) (27)

where p(s0) is the probability of starting the trajectory in state s0. When we calculate ∇θlogpθ(τ) from
the distribution above (in Equation 27). Since only the policy term depends on θ the remaining probability
terms drop out. This is what allows REINFORCE to be model-free. The transition probability does not
need to be known the estimate the gradient on the cost function.

∇θlogpθ(τ) = ∇θlogπ(a|s;θ) (28)
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As you can imagine the trajectories used to estimate the gradient of the cost function are very high
variance. The noise from each step within the trajectory adds up. Often a baseline, b, is used to reduce the
variance of the gradient estimate. The gradient then takes the following form

∇θJθ = Eτ [(C(τ)− b)∇θlogpθ(τ)] (29)

where b ∈ R is the baseline. This does not introduce bias into the gradient estimate calculation as

Eτ [∇θlogpθ(τ)b] = b

∫
τ

∇θlogpθ(τ)pθ(τ)dτ =

∫
τ

∇θpθ(τ) = 0 (30)

Here we use the log ratio trick (Equation 26) again, as well as the fact that
∫
τ
pθ(τ)dτ = 1 [5]. This

proves that for infinite data the baseline will vanish. This baseline estimates the optimal baseline which is
the minimizer of the variance of the gradient estimates with respect to a baseline. See [9] for more details.
The baseline used in my work is as follows [9].

b =
Eτ [C(τ)||

∑T
t=0∇θlogpθ(a|s;θ)||2]

Eτ [||
∑T
t=0∇θlogpθ(a|s;θ)||2]

(31)

Using K trajectories each of length T to estimate the gradient, the update step takes the following form.

θ = θ − η∇θJθ

= θ − ηEτ [(C(τ)− b)∇θlogpθ(τ)]

= θ − η 1

K

K∑
k=0

(C(τk)− b)
T∑
t=0

∇θlogπ(at|st;θ)

(32)

3.2 Policy Improvement Path Integrals

Policy Improvement Path Integrals [2], [7], or PI2, utilizes the path integral approach to optimal control.
Path integrals give an optimal control law for nonlinear systems. This optimal control law is then used
to derive the parameter update for the PI2 algorithm. PI2 is a method of policy search referred to as
probability weighted averaging. It is different from gradient approximation methods as it is not trying to
estimate a gradient, and therefore should not face the same challenged as gradient descent methods (local
minima, noisy estimates of the gradient, etc...).

3.2.1 Nonlinear System

The discrete-time nonlinear continuous system for a state s is defined as follows.

ṡt = f(st) +G(st)(at + ε)

= ft +Gt(at + εt)
(33)

where ft represents the passive dynamics, Gt is the potentially state dependent control matrix, and
ε ∼ N (0,Σ) is noise. The equivalent discrete time system is given by the following

st+dt = st + ftdt+Gt(atdt+ εtdt) (34)

The discrete time transition probability is given by

p(st+dt|st,at) = N (st + ftdt−Gtatdt,Σadt) (35)

where Σa = GtΣG
T
t .

3.2.2 Hamilton Jacobi Bellman Equation

The discrete time Bellman equation for this system (with the cost function given in Equations 16 and 17)
is given by

J(s, t) = rt(stdt) + maxa{−aTt Rtatdt+ Est+dt
[J(st+dt, t+ dt]} (36)

The discrete time Bellman equation can be approximated as a 2nd order Taylor series. Since the cost
function is quadratic, the expectation can be computed analytically. Then, by taking the limit as dt → 0
the Hamilton Jacobi Bellman Equation can be derived

5



−J̇(s, t) = rt(st) + maxa{−aTt Rtat + (ft +Gtat)
T js +

1

2
tr(ΣaJss)} (37)

where ja = ∂
∂sJ(s, t+ dt) and Jss = ∂

∂2sJ(s, t+ dt).

3.2.3 Optimal Control and Path Integral

To determine the optimal control which minimizes the cost of the Hamilton-Jacobi Bellman equation, take
the derivative of 37 with respect to a and set it equal to 0. This gives the following optimal control law

at = R−1GTt js (38)

By plugging this back in to Equation 37 we get the Hamilton-Jacobi Bellman equation under the optimal
control law

−J̇(s, t) = rt(st) + jTs GtR
−1GTt js + jTs ft +

1

2
tr(JssΣa) (39)

Equation 39 is a nonlinear 2nd order partial differential equation. By using the following exponential
transformation of the value function we can get a set of linear partial differential equations.

Ψ(s, t) = exp(
J(s, t)

λ
) (40)

where λ represents the “temperature” of the transformation. With this transformation, the assumption
that R = λΣ−1a , and the use of the Feynman-Kac theorem for solving partial differential equations, a solution
for Ψ is obtained.

Ψ(s, t) = Eτ [− 1

λ

∫ T

0

qtdt] (41)

We define the path integral as the following under the assumption that the control matrix, Gt, is state
independent.

S(τ) =

T∑
t=0

qtdt+
1

2

T−1∑
t=0

||st+1 − st
dt

||2
H−1

t
dt (42)

Ht = GtR
−1GTt (43)

The solution to Ψ becomes

Ψ(s, t) = limdt→0

∫
exp(− 1

λ
S(τ) +

λ

2

T∑
t=0

log|Ht|) (44)

The optimal control law after the exponential transformation takes the following form and can be further
simplified using Equation 44.

at = λR−1GTt
∇sΨ(s, t)

Ψ(s, t)t
=

∫
P (τ)aL(τ)sτ (45)

where

P (τ) =
exp(− 1

λS(τ))∫
exp(− 1

λS(τ))dτ
(46)

The form of aL depends on the system being controlled. The definition of aL will be given below in
Equation 47.
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3.2.4 Policy Improvement Path Integrals

Now that we have the form of the optimal control using path integrals, we will show how to develop a
reinforcement learning algorithm based on this method. We will use the policy given in Equation 8, which
is a DMP with parameter space exploration noise. Notice that this takes the same form as the control
system given in Equation 33 where ft = −K(s− gs)−Dvs, Gt = bT , and at = θ. bT ∈ Rp where p is the
number of basis functions.

For this case (a 1-dimension state being directly controlled, and the control matrix, b, is state indepen-
dent) the optimal control law from Equation 45 takes the following form.

aL =
R−1bt

bTt R
−1bt

(bTt εt) (47)

For this system the path integral for a trajectory starting at time t from Equation 42 takes the following
form

S(τt) =

T∑
t′=t

qt′ +
1

2
(θ + εt′)

TMT
t′RMt′(θ + εt′) (48)

where

Mt =
R−1btb

T
t

bTt R
−1bt

(49)

Next will introduce P (τt) which is the probability of a trajectory τ starting at time t.

P (τt) =
exp(− 1

λS(τt))∑
τ exp(− 1

λS(τt))
(50)

This is a softmax which ensures that the sum over P (τt) over all sampled trajectories at time t sums to
1. Paths with higher path costs with have higher P (τt) values.

Using the optimal control law given by Equations 45 and 47, the update rule for a parameter θ at time
t will take the following form

δθt =
∑
τ

P (τt)Mtεt (51)

However this gives an update for all t. To calculate an update for each dimension, j, of the parameter,
we average over all δθt. This averaging weights early times more heavily as they have a higher influence
over the overall trajectory.

[δθ]j =

∑T
t=0(T − t)ψj,t[δθt]j

(T − t)ψj,t
(52)

Finally, the update to θ occurs as follows

θ ← θ + δθ (53)

By using the following equality you can eliminate the parameter λ from the algorithm all together.

exp(− 1

λ
S(τt)) = exp(−h S(τt)−min S(τt)

max S(τt)−min S(τ)t
) (54)

See [7] for more details.

4 Problem Description

The state consists of the pose and velocity of the peg, s = [x, y, θ, vx, vy, vθ]
T . Note that the bold θ refers

to the parameter and the unbolded θ refers to the θ-position of the peg in s. The agent can act on the peg
by applying forces in the x and y-directions as well as a torque in the θ-direction, making the output of the
policy a = [Fx, Fy, Fθ]

T . The goal state of the peg is specified as a vector of desired values for each of the
peg states, g = [gx, gy, gθ, 0, 0, 0]T .

To simulate realistic agent movements and the interaction between the peg and the hole I used pybox2d
[1] as a physics engine. I used pygame [6] to render the objects in a simulation environment. Both pygame
and pybox2d are typically used for game development in python, but I found them well suited for this
simplified robotics simulation.
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4.1 Policies Implemented

In the following section I will compare the performance of Finite Differences, REINFORCE, and PI2. First
I would like to note which policies were used in these implementations. PI2 required the policy to be
parameterized as a DMP with exploration in the parameter space given in Equation 8. REINFORCE
required the DMP to perform action space exploration, as given in Equation 13. This is due to the fact
that adding time dependent noise to the parameter vector at each time step (Eq 8) introduced too much
variance into the trajectories to be successful in a REINFORCE policy search (even when using an optimal
baseline). In addition I was only able to compare the performance of Finite Differences and REINFORCE
using a linear stochastic policy due to the limitations of PI2.

5 Results & Analysis

5.1 Finite Differences, REINFORCE, and PI2 with DMPs

5.1.1 Parameter Update Visualizations

In order to visualize the parameter space and the updates to the parameters made in that space, I simplified
the problem to only use a parameter, θ ∈ R2. θ = [θy,θθ] where θy,θθ ∈ R. The peg starts at [x, y, z] =
[0, 4, 0] and has to end in the hole at [gx, gy, gθ] = [0,−9, −π2 ]. The policies used for each dimension of the
state are given below

π(Fx|x, vx) = −K(x− gx)−Dvx (55)

π(Fy|y, vy;θy) = N (−K(y − gy)−Dvy + bTθy,b
TΣb) (56)

π(Fθ|θ, vθ;θθ) = N (−K(θ − gθ)−Dvθ + bTθθ,b
TΣb) (57)

Figures 2, 3, and 4 show the update steps each algorithm would take if it used 30 trajectories to estimate
the update step. All parameters used in these runs are give in Table 1. The color plot in the background of
these figures gives a visual of the value function. It is calculated by running a trajectory for each parameter in
the figure with no exploration noise, and making an intensity plot of the costs returned by those trajectories
(using Equations 16 and 17).

As for the arrows in Figures 2 (FD) and 3 (REINFORCE), they represent the estimate of the gradient of
the value function at the parameters corresponding to the root of the arrow. For Figure 4 (PI2) the arrows
represent the δθ update which the PI2 algorithm would make at the parameter setting corresponding to the
root of the arrow. Lastly, the white dot represents the minima of the cost function which corresponds to a
successful peg insertion starting from the initial position with no exploration noise.

Table 1: Parameters Used in Stochastic DMP Trajectories
Steps in a trajectory, T 300
Trajectories per parameter update vector calculation 30 (Fig 2 - 4), 5 (Fig 5[])
Spring Constant, K 1
Damping Constant, D 0.5
RBF params, c0, h0 0.95, 2
Learning Rate, η 1e-8
Exploration noise, Σ 0. (Fig 2 - 4), .001 (Fig 5[])
Final distance from goal to consider task learned 0.5
State dependent cost coefficient, Q 100
Control cost matrix, R 1
FD-specific, δ 1
PI2-specific h 10
Granularity of value function intensity plot 0.2
Granularity of update vector calculation 2

Just by observation, Figures 2 - 4 all show that in the steeper areas of the value function (the green
portions), all methods are able to give updates in the correct direction towards the minima. The areas in
which all methods seem to have trouble is when the cost function flattens out (the purple portions). It
appears that PI2 has the noisiest updates in terms of the δθ vectors not consistently pointing towards the
minima of the cost function.
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Figure 2: The intensity plot in the background is the empirical value function generated by running trajec-
tories with no exploration noise. The white dot represents the minima of this value function. The vectors
are estimates of the gradient using Finite Differences. All parameters used to generate this plot are given
in Table 1.
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Figure 3: The intensity plot in the background is the empirical value function generated by running trajec-
tories with no exploration noise. The white dot represents the minima of this value function.The vectors
are estimates of the gradient using REINFORCE. All parameters used to generate this plot are given in
Table 1.

5.1.2 Parameter Learning

Figure 5 shows how each algorithm performed with the same initial parameter. As you can see REINFORCE
outperformed PI2 which outperformed Finite Differences. The algorithms all end when the task is learned.
You can see that REINFORCE converges on a small cost quickly, as well as learns the task before the other
two methods. The parameters used during these runs are also given in Table 1.

The number of trajectories needed to learn the insertion task is 5 × the number of iterations given in
Figure 5[left] as each step averaged over 5 trajectories.

5.2 Finite Differences and REINFORCE with Linear Stochastic Policy

As mentioned earlier, I could only compare FD and REINFORCE with the linear stochastic policy as PI2

is restricted to using the DMP policy parameterization. The linear stochastic policy in given in Equation
1, and uses the following representations.

F =

FxFy
Fθ

 , s =


x
y
θ
vx
vy
vθ

 ,g =


gx
gy
gθ
0
0
0

 (58)

Figure 5[right] shows the performance of FD and REINFORCE gradient descent with this policy param-
eterization. The parameters used for these runs are given in Table 2. As you can see REINFORCE is able
to find a low cost region quicker, which FD learns the task first (the descent ends earlier for FD). However,
since this is a stochastic system, I don’t believe that the fact that FD converged first is significant. There
are instances when REINFORCE learns the task first, but it consistently converges quicker than FD.
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Figure 4: The intensity plot in the background is the empirical value function generated by running trajec-
tories with no exploration noise. The white dot represents the minima of this value function. The vectors
are update vectors, δθ generate by the PI2 algorithm.All parameters used to generate this plot are given in
Table 1.

Figure 5: The figure on the shows the performance of the algorithms (FD, REINFORCE, and PI2) using
a stochastic DMP policy. The plot on the right shows the performance of FD and REINFORCE using a
linear stochastic policy.
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Table 2: Parameters Used in Linear Stochastic Policy Trajectories
Steps in a trajectory, T 500
Learning Rate, η 1e-5
Exploration noise, Σ 10 × Im×m
Final distance from goal to consider task learned 0.5
FD-specific δ 1
PI2-specific h 10

6 Analysis & Conclusion

The policies learned by these algorithms are very unstable. By only using p = 1 basis function kernel, the
learned policy has only “one chance” during a trajectory to apply a force which will result in a successful
insertion. In addition, since I selected c0 = .95, this applied force occurs very early on in the trajectory.
For highly stochastic systems this is unlikely to be successful as errors in the controls and system dynamics
accumulate over time and will must likely deviate from the predicted trajectory.

I planned on testing out these methods with higher dimensional parameter vectors however I found they
they were very sensitive to the initial parameters. The higher dimensional the parameter is, the more local
minima induced on your value function. Therefore I was unable to learn high dimensional parameters to
perform a peg insertion.

In addition, DMPs are parameterized in a time-dependent manner. The RBF kernels are activated as
a function of time. Therefore if an outside or unpredicted force acts on the system, the learned policy will
not be able to correct for this. I believe that the fact that these methods are so sensitive to parameter
initializations and the time dependence DMPs induce make them ill-fitted for the peg insertion task. I
think that the linear stochastic policy is much better suited for the task as the learned parameters are state
dependent and not time dependent. Therefore they can perform reasonable actions (if learned correctly)
anywhere in the state space at any time no matter what outside forces interact with the system.
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