

1

Localization and Reference Tracking in Mobile Robots

Caris Moses Professor Sonia Martinez Dr. Solmaz Kia Mechanical and Aerospace Engineering UCSD Summer Research Conference, 2012 UCSD STARS

Introduction

Applications

Curiosity Rover Motivation

Unmanned Autonomous Vehicle (UAV)

- •Simultaneous Localization and Mapping (SLAM)
 - •Exploring unknown territories
- Truly autonomous navigation

Localization Kalman Filter (for LINEAR systems) $p(w) \sim N(0, Q)$ **Process:** $x_k = Ax_{k-1} + Bu_{k-1} + w_{k-1}$ Measurement: $z_k = Hx_k + v_k$ $p(v) \sim N(0, R)$ Measurement Update ("Correct") Time Update ("Predict") Compute the Kalman gain Project the state ahead $K_{\nu} = P_{\nu}^{T}H^{T}(HP_{\nu}^{T}H^{T}+R)^{-1}$ $\hat{x}_{k} = A\hat{x}_{k-1} + Bu_{k-1}$ (2) Update estimate with measurement zk (2) Project the error covariance ahead $\hat{x}_{\nu} = \hat{x}_{\nu} + K_{\nu}(z_{\nu} - H\hat{x}_{\nu})$ $P_k^{-} = AP_{k-1}A^T + Q$ (3) Update the error covariance $P_{k} = (I - K_{k}H)P_{k}$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

Localization

Extended Kalman Filter (for NON-LINEAR systems) Process: $x_k = f(x_{k-1}, u_{k-1}, w_{k-1})$ $p(w) \sim N(0, Q)$ Measurement: $z_k = h(x_k, v_k)$ $p(v) \sim N(0, R)$ Measurement Update ("Correct") Time Update ("Predict") Compute the Kalman gain (1) Project the state ahead $K_{\mu} = P_{\mu}^{*} H_{\mu}^{T} (H_{\mu} P_{\mu}^{*} H_{\mu}^{T} + V_{\mu} R_{\mu} V_{\mu}^{T})^{-1}$ $\hat{x}_{k} = f(\hat{x}_{k-1}, u_{k-1}, 0)$ (2) Update estimate with measurement zk (2) Project the error covariance ahead $\hat{x}_{k} = \hat{x}_{k} + K_{k}(z_{k} - h(\hat{x}_{k}, 0))$ $P_{k}^{-} = A_{k}P_{k-1}A_{k}^{T} + W_{k}Q_{k-1}W_{k}^{T}$ (3) Update the error covariance $P_{\mu} = (I - K_{\mu}H_{\mu})P_{\mu}$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

$$v = v_r \cos e_3 + k_1 e_1$$
$$\omega = \omega_r + k_3 e_3$$

Control

Linear Quadratic Regulator

system:
$$\dot{x} = Ax + Bu$$

cost function: $J = \int_{0}^{\infty} [x^{T}Qx + u^{T}Ru]dt, \dots Q \ge 0, R > 0$

feedback: u = -Kx

Simulation Results Kalman Filter and LQR Control

Simulation Results Beacon Placement

Observed changes in the following variables:

- Number of beacons
- Distance from trajectory
- Beacon configurations
- Robot trajectory

TurtleBot

- •Personal mobile robot-kit with open-source software
- •Implemented Robotic Operatic System programs to perform SLAM

TurtleBot

Future Work

- Look further into Lyapunov controller to
- increase scope
- •Create nonlinear LQR controller
- Include mapping in current localization
- algorithms
- Implement new algorithms on Turtlebot