
Template Matching in Image Colorization

Caris Moses
MIT CSAIL

carism@mit.edu

Abstract

Image colorization is the process of adding color, or
chrominance, to a gray-scale image. User-guided ap-
proaches require a user to provide desired color informa-
tion to influence the output of the colorization process.
Data-driven approaches train on large sets of gray-scale
and corresponding colorized images. They tend to result
in grayish images and need to be retrained to handle im-
ages with new object types. They also do not allow the
user to input desired color information. Therefore, to al-
low the user to influence the resulting colorized image and
to produce vibrant and lifelike images, this paper focuses
on the user-guided approach. We build on user-guided col-
orization work by Levin et al. in which the user draws color
patches on top of regions of the gray-scale image with sim-
ilar intensity values (this typically corresponds to a specific
object). One drawback of this approach is that in regions
with intricate and highly repetitive patterns, hand specify-
ing color information can be very tedious and time inten-
sive. This paper discuses the development of a template
matching algorithm to automatically provide color infor-
mation to patterned regions of gray-scale images given one
template of the pattern. An important step of the algorithm
involves searching the space of affine transformations. The
algorithm is faster than a brute force approach to template
matching and results in realistic colorized images.

1. Introduction
Image colorization is the process of converting a gray-

scale image into one with color. The problem is ill-posed,
meaning that there is no way to recover the true original
color of a given gray-scale image. However, many meth-
ods have been developed to produce colorful images which
are realistic and believable to the human eye. Data-drive ap-
proached use large amounts of naturally colored images and
their gray-scale component to learn a colorization model,
then apply that to future gray-scale images with unknown
color values. User-guided methods involve a user giv-
ing some input to the colorization process. For example,

we will discuss at an approach in which the user supplies
“scribbles” of color over the gray-scale image. Those col-
ors are then propagated throughout the image to colorize the
remaining pixels.

Data-driven approaches are useful in that, once the
model is trained, no user input is required to produce a col-
orized image. However, these trained networks tend to over-
fit to their training data. For example, if a network is trained
on images of places and a user would like to colorize an im-
age of a person, additional training will most likely need to
take place. In addition, if a user would like to colorize an
image of which they do have some ground truth knowledge,
it is impossible (as far as I know) to give a network this data
and have it effect the outcome colorized image.

User-guided approaches are able to overcome both of
these disadvantages of data-driven approaches. The user
is able to input ground truth knowledge, as well as colorize
images of any type. However, a pitfall of this approach is
that it can be time consuming and tedious for users to seed
these colorization algorithms with enough information to
produce realistic results. This issue is especially true when
images have large regions of patterns where the user needs
to supply ground truth color information for each portion of
the patter. Figure 1 gives an example of a gray-scale image
which would be very difficult to provide color information
to by hand. If any part of the plaid shirt is missed, the re-
sulting colorized image will not be colored in those regions.

Template matching is the process of finding regions in an
image that correspond to a given template regardless of any
kind of transformation it may have undergone. In this paper
I will discuss a user-guided approach to image colorization,
and several approaches I took to automate the user input
process in patterned regions through template matching.

2. Related Work

2.1. Data-driven Methods

Iizuka et al. [3] trained a convolutional neural network
(CNN) which was able to learn per-pixel color values, as
well as global and local features of an input image. They
note that, “the main limitation of the method lies in the fact

1



Figure 1. A gray-scale image with a heavily patterned region that
would be very time intensive to color by hand using the current
user-guided approach developed by Levin et al.

that it is data driven and thus will only be able to colorize
images that share common properties with those in the train-
ing set.”

Zhang et al. [7] also uses a CNN, however they include
semantic information in the training process to improve col-
orization. They note that a main issue with colorization net-
works is that the output is an average of many possible col-
ors, resulting in a grayish and desaturated appearance. They
improve this by treating colorization as a color classification
problem, and are able to produce “visually compelling re-
sults.”

Figure 2 (right) gives the output of the CNN developed
by Iizuka et al. on the input image (left). As you can see
it was able to successfully colorize the woman’s face, how-
ever the remainder of the picture does not vary far from the
original gray-scale image. This is most likely due to the
network begin trained on faces, but not on couches, dresses,
polka dot patterns, etc... In addition, if the user wanted the
couch to be a specific color, there is no way for them to
specify this.

2.2. User-guided Methods

Another method of image colorization involves a user
supplying a gray-scale image along with a colorized refer-

Figure 2. The output (right) of the CNN developed by [3] on the
input gray-scale image (left).

Figure 3. A visual of image colorization using a reference image.
As you can see features common to both the reference and target
image are colorized as such in the colorized result (Image courtesy
of [1]).

ence image [1]. In this method the two supplied images
must have similar semantic information. The algorithm
works by finding correspondences between the two images
and color matching these corresponding super pixels. The
authors note that this method gives better results than col-
orization techniques that work on a per-pixel basis. Figure
3 gives an example of using this method.

Levin et al. [6] also takes a user-guided approach to the
colorization problem. A user “scribbles” color patches over
a gray scale image, and an optimization is performed which
propagates the color throughout the image. The optimiza-
tion uses the fact that regions with similar intensity values
should also have similar color values. Figure 4 gives an ex-
ample of what to supply the optimization problem (left) and
the resulting colorized image (right). This method produces
very realistic results, but certain images can be very user

2



Figure 4. A visual of image colorization using the user-guided ap-
proach developed by [6]. The left image is provided by the user,
and the right image is the output of the colorization optimization
problem (Image courtesy of [6]).

demanding.
A common issue with the colorization optimization

problem posed by Levin et al. is color bleeding at the edges
of objects. This is due to the fact that the chrominance val-
ues vary linearly with the input images’ intensity values.
Huang et al. [2] improved upon Levin et al.’s work regard-
ing this issue by incorporating an edge detector into the col-
orization process. First, the user supplies color “scribbles”
as seen in Figure 4. Then, object edges are detected in this
image. The provided colors and edge information is used
to color the edges of the objects in the image. Finally, this
image with the original user’s “scribbles” as well as the col-
ored edges are put into the colorization optimization algo-
rithm to colorize the rest of the image.

2.3. Template Matching

This work focuses on the problem of template matching.
Given a gray-scale template, how can we find image regions
matching the template regardless of translational, rotational,
scale, and affine transformations?

The simplest and most obvious approach is to perform a
brute force search of the transformation space and look for
matches. Kim et al. [4] proposed the Ciratefi algorithm to
improve upon the speed of a brute force algorithm. They
claim that their algorithm produces the same results as a
brute force approach and executes 400 times faster. The
Ciratefi algorithm uses several cascading filters to eliminate
non matching pixels over three iterations. The first filter
calculates “probable scale factors” and eliminates unlikely
pixels based on this criteria. The second filter calculates
“probably rotation angles” and eliminates unlikely pixels
based on this criteria. Finally, a third filter performs the
brute force template matching algorithm on the remaining
pixels.

While Kim et al.’s approach to template matching is
quick and effective, translation, rotation, and scale differ-
ences do not cover all of the possible transformations one
might encounter in a natural image. Pixels corresponding
to a template may be under an affine transformation. Kor-
man et al. [5] developed the FasT-Match algorithm to han-

dle these situations. Their approach to template matching
under affine transformations works by sampling the affine
transformation space. It takes advantage of the fact that
the space of affine transformations can be bounded under
the assumption that images are smooth, which implies that
the measure of similarity between a template and an image
will vary smoothly over an image. They take a branch-and-
bound approach to sampling the space of affine transforma-
tions.

3. Approach
This work on template matching is a combination of ap-

proaches taken by Kim et al. and Korman et al. A user
supplies a template, or one section of a pattern, from the
gray-scale image. They also supply a colored template (the
same template with the desired color “scribbled” over it).
An initial pass of a filter is used to eliminate unlikely can-
didates for template matches. Then, we sample the space
of affine transformations to find template matches for the
remaining candidates. These transformations are applied to
the colored template and overlaid with the original gray-
scale image. Finally this image is run through Levin et al.’s
colorization algorithm to produce a colorized image.

Throughout this paper the similarity function will corre-
spond to the following normalized SAD (sum of absolute
differences) function:

SAD(T,R) =

∑n
i=1 |T (i)−R(i)|

n
(1)

where T is the gray-scale template, R is the region of
the gray-scale image currently being tested, and n is the
number of pixels in both T an d R. These images are typi-
cally converted into a column vector before math operations
are performed. The template matching algorithm takes in
a gray-scale image which is used to extract the template as
well as to find matches to the template. The template match-
ing algorithm is also supplied a user-colored image in which
all regions are “scribbled” aside from the patterned region.
However, one section of the patterned region must be col-
ored (colored template) as it is used to automatically color
the rest of the user-colored image after the template match-
ing algorithm. The output of the template matching algo-
rithm will be referred to as the auto-colored image. This is
put into the colorization process, and the output of that will
be referred to as the colorized image.

First, I took an exhaustive search approach to template
matching. I first counted pixels as matching if their similar-
ity to the template was lower than a threshold value (Section
3.1). Then, I improved upon these results by only counting
pixels corresponding to the minima of the similarity func-
tion (Section 3.2). Finally, I implemented a search of the
affine transformation space at the minima of this similar-
ity function (Section 3.3) to find more accurate and realistic

3



template matches.

3.1. Brute Force Approach with a Threshold (BF-
Thresh)

In the brute force approach, the user supplies a range
of scale and rotation values to transform the template with.
They also supply the desired step size in the translational,
rotational, and scale space with which to perform the
search. The measure of similarity between the template,
T , and the region of the gray-scale, R, is calculated using
the SAD function.

At each pixel the minimum over the scale and rotational
space is stored. Finally, a user-guided threshold is used
to determined what pixels correspond to a match. These
matching pixels are overlaid with the correct rotated and
scaled colored template to produce the auto-colored image.

3.2. Brute Force Approach with Local Minima (BF-
Min)

The approach given in Section 3.1 uses a simple thresh-
old value to determine matching pixels. This results in auto-
colored images where many colored templates are placed
near regions of matching pixels. This is not the desired
auto-colored image. We aim to find a single region that
matches the given template, not overlapping groups of re-
gions that are all similar to the template.

Therefor, we use the minima (as well as a threshold) of
the SAD function to determine matches rather than a simple
cutoff threshold alone. This greatly improved the results.

3.3. Affine Transformation Space Search using
Sampling (Affine-Search)

The issue with the approach given in Section 3.2 is that
some of the matching templates still were not being de-
tected. This is due to the fact that simply rescaling and ro-
tating the template does not find instances where the region
matching the template has undergone an affine transforma-
tion.

In addition, the brute force approaches given in Sections
3.1-3.2 do not scale well. By adding in another transfor-
mation dimension (affine space) this performance will only
worsen.

Therefore, in the final approach two stages are used to
speed up the template matching process. First, a course es-
timate of the SAD function is calculated by passing the un-
tranformed template over the entire gray-scale image with a
translational step size one 1. Then, as in Section 3.2, the first
set of candidate matches are the minima of the SAD func-
tion that are also under a user-specified threshold. Then, a
local search at each of these candidates is performed. The
local search calculates the SAD function for a predefined set
of local homogeneous transformations. If the minimum of
these SAD functions is lower than a second user-specified

threshold value, then it is stored as a match and the colorized
template is transformed to match this found minima.

The BF-Thresh and BF-Min approaches have a runtime
of O(NRS) where N is the number of pixels in the gray-
scale image, and R and S are the number of rotation and
scale values the search is trying. As you can see this quickly
explodes as the user tests more transformations of the im-
age. The Affine-Search approach is able to find template
matches in O(N). The only way that performance would
be worse than this would be if HM > N . If this is ever
the case it is most likely due to user error. H the number
of homogeneous transformations used in the search and M
is the number of matches found after the first pass of the
Affine-Search algorithm. For reference, in our example in
Section 4, N = 706560, H = 10, and M = 76. Clearly
706560 >> 760 which shows what a great improvement
the Affine-Search algorithm is over the BF approached.

4. Experimental Results

All algorithms were tested on the image in Figure 5. This
image shows the color image that the user supplies. The
program then asks the user to draw a rectangle around the
colored template and the region of interest (both shown in
green in Figure 5).

4.1. BF-Thresh Results

The results from using BF-Thresh for three different
threshold values are given in Figure 6. As you can see,
this approach is very sensitive to the threshold value. As
the threshold gets larger we get the benefit of more valid
matches being detected and incorporated into our final auto-
colored image, however there is the negative effect of more
matches being found overall. This leads to large patches of
red outside of the white polka dots. When the auto-colored
image places the colored template outside of the polka dot
it results in color-bleeding in the final colorized image.

4.2. BF-Min Results

The results from using BF-Min for three difference
threshold values are given in Figure 7. This technique of
finding the minima of the similarity function instead of just
including all values below the threshold greatly improves
the resulting scribbled image. As you can see the resulting
auto-colored image is much less sensitive to the threshold.
In addition, as the threshold increases more valid matches
are added without the preexisting matches growing too large
and spreading beyond the boundary of the polka dot. As
you can see there is less color-bleeding with this method
than with the BF-Thresh method.

4



Figure 5. The input to the template matching algorithm. The user
is prompted to outline the colored template and the region of in-
terest with rectangles.

Figure 6. Resulting auto-colored (top) and colorized (bottom) im-
ages using the BF-Thresh algorithm. For left to right the threshold
values on the similarity function used are 0.1, 0.15, and 0.2.

4.3. Affine-Search Results

Figure 8 shows the results for the Affine-Search algo-
rithm. As you can see the results are a big improvement

Figure 7. Resulting auto-colored (top) and colorized (bottom) im-
ages using the BF-Min algorithm. For left to right the threshold
values on the similarity function used are 0.1, 0.15, and 0.2. The
minima of the similarity function are restricted to being less than
these threshold values.

Figure 8. Resulting auto-colored (left) and colorized (right) images
using the Affine-Search algorithm. The threshold used to deter-
mine initial template matching candidates was 0.25. The thresh-
old used to determine a final affine transformed matching template
was 0.15.

over the brute force approaches. It is able to detect more of
the polka dots which are nearly perpendicular to the camera.

Figure 9 shows the result of the colorization optimiza-
tion on an image colored by hand. Table 1 gives the time
it takes for the algorithms (or user) to perform the task of
coloring in all of the polka dots. As you can see the affine
transformation technique is vastly faster than the brute force
approaches as well as the coloring by-hand approach. The
Affine-Search technique is not perfect, but I am confident
that improvements would still result in an algorithm much
faster than a by-hand approach to image coloring. I will

5



Figure 9. A gray-scale image colored by hand (left) and the result-
ing colorized image (right).

discuss possible improvements in Section 5.

Method Time (min)
BF-Thresh 60
BF-Min 60
Affine Search 1
By hand 5

Table 1. Times to color in the image given in Figure 5 using dif-
ferent approaches.

5. Conclusion
The final results of the Affine-Search algorithm are

promising, but still lacking. For one, there is still a bit of
color-bleeding due to the fact that the colored templates are
not being perfectly aligned to the underlying gray-scale im-
age. In this approach a discrete set of homogeneous trans-
formations were tried on the underlying image. A more in-
telligent search of this transformation space (perhaps sim-
ilar to Korman et al.’s approach) could be used to ensure
that the final colored template is correctly overlaid with the
image. In the final image many of the polka dots which
were near perpendicular to the camera were missed. Again,
a better search of the affine transformation space would im-
prove this. Another improvement would be to incorporate
a more sophisticated similarity function. The SAD function
is a very simple calculation of the similarity between a tem-
plate and the underlying image. However a new function
could be used that takes into account contrast and bright-
ness differences between the template and the underlying
image.

In this work I was able to show promising preliminary
results in template matching for image colorization. This
process enables users to quickly bring gray-scale images to
life with vibrant colors of their choosing.

My code along with the colorization

code from Levin et al. can be found at
https://github.mit.edu/carism/
colorization.git.

References
[1] R. K. Gupta, A. Y.-S. Chia, D. Rajan, E. S. Ng, and H. Zhiy-

ong. Image colorization using similar images. In Proceed-
ings of the 20th ACM international conference on Multimedia,
pages 369–378. ACM, 2012.

[2] Y.-C. Huang, Y.-S. Tung, J.-C. Chen, S.-W. Wang, and J.-
L. Wu. An adaptive edge detection based colorization algo-
rithm and its applications. In Proceedings of the 13th annual
ACM international conference on Multimedia, pages 351–
354. ACM, 2005.

[3] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color!:
joint end-to-end learning of global and local image priors
for automatic image colorization with simultaneous classifica-
tion. ACM Transactions on Graphics (TOG), 35(4):110, 2016.

[4] H. Y. Kim and S. A. De Araújo. Grayscale template-matching
invariant to rotation, scale, translation, brightness and con-
trast. In Pacific-Rim Symposium on Image and Video Tech-
nology, pages 100–113. Springer, 2007.

[5] S. Korman, D. Reichman, G. Tsur, and S. Avidan. Fast-
match: Fast affine template matching. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2331–2338, 2013.

[6] A. Levin, D. Lischinski, and Y. Weiss. Colorization using op-
timization. In ACM transactions on graphics (tog), volume 23,
pages 689–694. ACM, 2004.

[7] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-
tion. In European Conference on Computer Vision, pages
649–666. Springer, 2016.

6


