
Learning to Plan with Optimistic Action Models

Caris Moses, Leslie Pack Kaelbling, and Tomás Lozano-Pérez

Abstract— Planning for and successfully executing manipula-
tion tasks require accurate dynamics models. Existing methods
for engineering these models often fail to capture the underlying
complex object interactions present in many tasks such as
tool-use. Therefore, in this work we leverage a data-driven
approach to acquiring action models. Data collection on a
robotic platform can be time and cost prohibitive, and randomly
executing actions is unlikely to elicit informative behavior useful
for learning. Therefore, we propose an active learning strategy
which aids the robot in learning action models quickly, with the
ultimate goal of using them within a planner. Additionally, we
supply the robot with initial optimistic action models which
are a relaxation of the underlying unknown action model.
Optimistic models have the added benefit of being easier to
specify than fully accurate action models. In this work, we
present an active learning strategy which leverages optimism
and give results in a tool-use domain.

I. INTRODUCTION

Planning for long-horizon manipulation tasks requires
models which accurately capture the preconditions and ef-
fects of a robot’s actions. This poses a challenge due to
the underlying complexity of the world and robotic system.
Issues such as poorly modeled object properties and inter-
actions can lead to a model mismatch between the planning
model and the real world. To this end, integrating machine
learning (ML) techniques with planning methods has become
an effective approach [1], [2], [3], as ML can be leveraged to
learn accurate models of complex dynamics. By augmenting
a planning system with the ability to learn from data, we can
develop robots capable of overcoming issues associated with
model mismatch.

The space of plans that a robot has available to explore
is prohibitively large, and acquiring data on both real and
simulated platforms can be time and cost prohibitive. We
leverage an active learning strategy which enables an agent
to be intentional in how training data is collected in order
to learn efficiently. We also provide additional structure to
the learning problem in the form of optimistic action models.
Specifically, an optimistic model has the property that the set
of states reachable under an optimistic model is larger than
the set of states reachable under the true unknown action
model. These models can also be thought of as a relaxation
on the true underlying dynamics. For example, an optimistic
pick action model might predict that the robot is able to

Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA, USA

{carism, lpk, tlp}@mit.edu
We gratefully acknowledge the funding support of Accenture and the

Honda Research Institute.
The authors would like to thank Michael Noseworthy for invaluable

discussions relating to the ideas presented.

Fig. 1: Tool-Use Domain – The robot is given a tool to inter-
act with a yellow block, whose weight impacts the robot’s
actions, and a blue block, which begins in an unmodeled
tunnel. Details of the domain are given in Section IV-B.

pick up an object from any location, ignoring kinematic
constraints or object properties such as weight. Optimistic
models are easier to specify than fully accurate transition
models as they allow one to ignore the complex conditions
under which an action can be successfully executed. We pro-
pose to learn feasibility models which predict the probability
that the optimistic model is correct.

In this work we (1) give a formalism of optimistic action
models and how they can be augmented with feasibility mod-
els to generate feasible plans, (2) evaluate an active learning
strategy for learning feasibility models by generating a rich
search space of plans leveraging optimism and goal-directed
planning, and (3) give results in a tool-use domain (shown
in Figure 1).

II. PROBLEM FORMULATION

A robot operates in an observable state space S and can
take actions in action space A. It operates under an unknown
true transition function fT : S × A → S and is given an
optimistic transition function, fO : S ×A → S.

The set of states reachable under a transition function, f ,
from a state si−1 are

S(f, si−1) = {si | ∃a s.t. si = f(si−1, a)}. (1)

When we say that fO is an optimistic version of fT , we
mean that S(fT , s) ⊆ S(fO, s). Intuitively, fO believes that
the robot can transition into more states than it actually can
within a single action step. Planning with fO may allow plans
to be constructed that will not actually be executable under
the true transition dynamics.

We would ultimately like to find a plan, a∗1:N , which
achieves a given goal state, sgoal ∈ S, from an initial state,
s0, using the following objective function,

a∗1:N = argmax
a1:N∈P

1{s=sgoal}(sN). (2)

Generating plan search space P using the optimistic
model, fO, would generate many infeasible plans leading to
likely infeasible solutions. To solve Equation 2 effectively,
we need to know which plans in P are actually feasible.
To do this we need the help of an additional model, a
probabilistic classifier, which indicates the probability that
the optimistic model’s prediction is correct. We refer to this
classifier as a feasibility model, fΘ : S ×A → [0, 1].

With both an optimistic model, fO, and feasibility model,
fΘ, at our disposal, we can weigh plans by their feasibility,
resulting in solutions which are both feasible and achieve the
goal.

a∗1:N = argmax
a1:N∈P

(
N∏
i=1

fΘ(si−1, ai)

)
1{s=sgoal}(sN) (3)

Note that we often reference plan space P made up of
plans of length N . However in our work this space of plans
consists of plans of varying lengths.

A. Learning Problem

We propose to learn an approximation of the feasibility
model, f̂Θ : S × A → [0, 1], by performing supervised
learning. The prediction is probabilistic to account for our
epistemic uncertainty, or the uncertainty we have over our
predictions. We also maintain distributions over the feasi-
bility models’ learnable parameters, Pr(Θ), which comes
in handy when deciding what data to acquire, and will be
discussed in Section III.

During data collection the robot takes an action ai, from
state si−1, resulting in a state, sTi , under the true unknown
dynamics, and receives feasibility label

ϕ =

{
1 if CLOSE(sTi , s

O
i)

0 otherwise.

where sOi s the state which the optimistic model expected to
transition to.

For continuous state spaces such as object poses,
CLOSE(sT , sO) evaluates to True if the states are within some
distance ϵ of each other. For logical states, CLOSE(sT , sO)
evaluates to True if the logical states match, for example
whether or not a robot is holding a given object. The dataset
of samples (s, a, ϕ) are used to train the feasibility model,
f̂Θ, which is then used to weight plans in the search space
as shown in Equation 3.

A limitation of this problem formulation is that f̂Θ is
unable to learn the true resulting state when the optimistic
model’s prediction is incorrect. New action effects not cov-
ered by the optimistic model can never be learned.

III. METHOD

Active learning methods aim to learn an unknown function
with as few labeled data points as possible by selecting what
model inputs to label based on some acquisition function.

A. Bayesian Active Learning by Disagreement (BALD)

Bayesian Active Learning by Disagreement [4], or BALD,
is one such strategy which guides sampling towards parts
of the input space where we have both high uncertainty
over our predictions and high uncertainty over our model
parameters. This requires maintaining a distribution over
both model predictions and model parameters. In our work
these two quantities are Pr(ϕ) and Pr(Θ) respectively. The
BALD strategy finds the action, a, which maximizes the
following objective, given a state, s,

BALD(s, a) =H(ϕ | D, s, a)−
EΘ∼Pr(·|D) [H(ϕ | s, a; Θ)] .

The derivation of this objective function relies on the
underlying problem being submodular [5], or for the infor-
mation gain of specific actions to have diminishing returns.
However, information gain is often not submodular in se-
quential manipulation tasks. For example, in our tool-use
domain (described in Section IV-B), the blue block must be
pushed out of the tunnel before it can be manipulated in any
other way (e.g. picked). Once the robot has learned that it
can feasibly push the blue block out of the tunnel, it can use
that action to set up other experiments, even though it will
no longer gain information from the initial push.

B. Sequential Actions

One potential solution to adapting the BALD objective to
sequential problems which are not submodular would be to
sum the information gain over a sequence of actions given
initial state, s0,

argmax
a1:N∈P

N∑
i=1

BALD(si−1, ai).

However, if all we have access to is the optimistic model
for generating plan space P , then this objective ignores the
fact that some of these actions may never be experienced
due to a subplan being infeasible. In sequential domains
where reaching parts of the state space are dependent on
the successful execution of previous actions, it is important
to consider subplan feasibility. Noseworthy et al. [1] extend
BALD to handle this scenario using the following Sequential
objective,

argmax
a1:N∈P

N∑
i=1

 i∏
j=1

fΘ(sj−1, aj)

 BALD(si−1, ai)

 , (4)

where s0 is given. When P = Pact, we refer to it as the
Sequential Actions objective. Pact consists of plans gen-
erated with random roll-outs under the optimistic transition
model,

Pact = {a1:N |∃s0:N s.t. si = fO(si−1, ai)}. (5)

C. Sequential Goals

In many manipulation domains, executing random roll-
outs to represent the space of potential plans may not provide
enough coverage to elicit interesting training data. Random
roll-outs of actions often lead to a robot mostly moving
around in free space, and rarely in plans which have the robot
making contact with other objects, grasping objects, etc.
Noseworthy et al. [1] are able to generate a rich search space,
Equation 5, with the help of a useful action space abstraction
(a single stack action in a block stacking domain). However
for problems which cannot be reduced to an abstract action
space of a single action, more sophisticated plan space
generation methods are required.

As such, the Sequential Goals method uses a different
plan space, P = Pgoal, in Equation 4. Now we supply the
robot with a space of goals, Sgoal ⊂ S, which it can sample
from and use within a planner to generate a rich optimization
landscape for active learning

Pgoal = {a1:N |∃sgoal ∈ Sgoal. s.t.
a1:N = PLAN(fO, s0, sgoal)}.

(6)

A set of goals are sampled, and the optimistic model is
used in a planner to generate plans which provide the search
space for optimization of the Sequential objective.

IV. IMPLEMENTATION

A. Planning

Due to the limitations of most current planners in coming
up with a set of diverse plans for achieving a given goal,
we use a skeleton-based planner to implement PLAN in
Equation 6. Our skeleton-based planner takes in a transition
model defined in the Planning Domain Description Language
(PDDL), an initial and goal state both represented with
logical predicates, and a plan skeleton. While we do not
directly use PDDLStream [6] for planning, many of its tools
were useful in developing our skeleton-based planner.

B. Tool-Use Domain

We give results in a tool-use domain, implemented in
PyBullet [7], shown in Figure 1. This domain was inspired
by related works in robotic manipulation [8], [9]. The robot
is given a tabletop environment with a hook and a yellow and
blue block. The yellow block is heavy and cannot be picked
up or grasped outside of the green circle. As such, the tool
must be used to interact with the yellow block outside of the
green circle. The blue block begins inside of an unmodeled
tunnel, and the robot must first use the tool to push it out of
the tunnel before it can be directly manipulated.

The robot is given the following optimistically modeled
actions:

• MoveContact allows the robot to manipulate a block
using the tool. The action begins with the tool and block
in contact with each other. Then the robot believes that
the block will move relative to the tool in whichever
direction it attempts to push/pull it, ignoring the friction
cone constraints which enable successful tool-use.

• MoveHolding allows the robot to move between
configurations while holding an object. It assumes that
once an object is held it can be moved anywhere.
While this model does include kinematic constraints,
it does not account for object properties which may
make moving while holding an object infeasible (e.g.
the weight of the yellow block).

• Pick allows the robot to pick an object from the table.
It assumes that an object can be picked from anywhere
which is kinematically within reach. This fails when the
robot attempts to pick up the yellow block outside of
the green circle, and when it attempts to pick the blue
block from its initial position inside of the unmodeled
tunnel.

We learn action feasibility models f̂contact, f̂holding , and
f̂pick for these optimistically modeled actions. We also give
the planner action models for placing (Place) and moving
through free space (MoveFree) and assume that they are
accurately modeled.

For all of our training and evaluation instances the initial
state is the same, with the yellow block in the same position
within the green circle and the blue block in the tunnel. The
goal space, Sgoal, consists of goal poses on the table for
either the yellow or blue block.

The following (abbreviated) plan skeletons are used to
generate plans to achieve goal states sampled from Sgoal.
Ungrounded parameters (beginning with a #) are grounded
at planning time.

• MoveFree -> Pick(Tool) ->
MoveHolding(Tool) -> MoveContact(Tool,
GoalObj, GoalPose)

• MoveFree -> Pick(GoalObj) ->
MoveHolding(GoalObj) -> Place(GoalObj,
GoalPose)

• MoveFree -> Pick(Tool) ->
MoveHolding(Tool) -> MoveContact(Tool,
GoalObj, #p0) -> MoveHolding(Tool) ->
Place(Tool, #p1) -> MoveFree ->
Pick(GoalObj) -> MoveHolding(GoalObj) ->
Place(GoalObj, GoalPose)

The full descriptions of the action models, initial and goal
states, and skeletons are given in the APPENDIX.

C. Learning

The input to f̂contact is the (x, y) position of the intended
final push pose of the pushed block. The input to f̂holding
is the (x, y) position of the intended final pose of the held

Fig. 2: The joint accuracy of all feasibiliy models being
learned. Each line consists of 5 runs. The x-axis is all
actions executed by the robot including ones which were
not modeled optimistically.

block within the robot’s gripper. The input to f̂pick is the
(x, y) position of the picked block’s initial pose.

We learn a separate model for each of the blocks. In
addition, the contact configuration between the pushed block
and the tool, as well as the grasp of the tool in hand can
impact the success of the MoveContact action. As such
we learn a separate model for every combination of block,
contact configuration, and grasp for the MoveContact
actions, and just a single model for each block’s Pick and
MoveHolding action.

The feasibility models are each represented by an ensem-
ble of Multi-Layer Perceptions (MLPs). We found an ensem-
ble of 20 MLPs to be effective at modeling a distribution over
the predictive space.

V. EVALUATION

A. Random Baselines

We compare the sequential methods to random baselines.
Random Goals randomly samples from Pgoal and Random
Actions randomly samples from Pact.

B. Learning Efficiency

Figure 2 shows the accuracy of the learned feasibility mod-
els for all methods. Sequential Goals is able to quickly learn
the true underlying feasibility of the optimistic models. The
performance of both Sequential Goals and Random Goals
shows the usefulness of Sgoal and using goal-directed plans
to generate the optimization search space. The benefits of
using the Sequential objective to actively acquire trajectories
is evidenced by the jump in performance between Sequential
Goals and Random Goals which randomly samples from
Pgoal. Sequential Actions and Random Actions perform
poorly because the plans in Pact are not goal-directed and
thus consist of many actions which are not useful, such as
repeated MoveFree actions.

Figures 3 and 4 in the APPENDIX give images of the
mean and standard deviation of the predictions made by

some of the feasibility model’s ensembles learned under the
Sequential Actions and Sequential Goals objectives.

C. Plan Success
To evaluate using our learned feasibility models to plan

to achieve goals, we sample a goal state, sgoal ∈ Sgoal, and
optimize Equation 3 with the following plan search space

Pgoal(sgoal) = {a1:N |a1:N = PLAN(fO, s0, sgoal)}.
After executing 2500 actions, each trained feasibility

model was given a set of 19 randomly generated goals
from Sgoal and planned to achieve them using Equation 3.
The success rate of planning is shown in Table I for each
method. While Sequential Goals does not perform perfectly
it is still markedly better than the baselines. Many of the
learned models for Random Goals, Sequential Actions,
and Random Actions were unable to find the small feasibly
subspace for pushing the blue block (shown in Figure 3).
This region opens up the robot to being able to reach a wide
range of goal poses for the blue block. This accounts for the
majority of the differing performance between our method
and the baselines.

Method Plan Success
Sequential Goals 0.73 ±0.44
Random Goals 0.48 ±0.50

Sequential Actions 0.48 ±0.50
Random Actions 0.20 ±0.40

TABLE I: Planning performance of Sequential Goals and
all baselines.

VI. RELATED WORK

Methods for learning symbolic action models which are
either deterministic [10] or noisy [11] have been explored
via various learning strategies such as random goal sampling
[10]. The work of Wang et al. [2] and Noseworthy et al.
[1] are most similar to ours in that they assume a task
and motion planning architecture and learn constraints on
continuous parameters of hybrid action models. Silver et al.
[3] learn full probabilistic hybrid action models by clustering
observed transitions.

A closely related body of work to learning accurate action
models for planning, is learning models to aid in planning
given accurate action models [12], [8]. These methods learn
mappings from action types and goals to successful action
parameterizations to speed up planning. In Xu et al.’s [8]
work this is referred to as an actions’ affordance.

In our work we explore learning from optimsitic action
models, but learning from models which are inaccurate in
other ways has also been explored. Lagrassa et al. [13]
use model-free reinforcement learning (RL) to augment
a given inaccurate planning domain when an unexpected
transition occurs. Other methods have been used to learn
residual controllers on top of inaccurate controllers, where
the inaccuracies stem from either simulation approximations
to the real world [14], or poorly learned RL-base controllers
[15].

REFERENCES

[1] M. Noseworthy, C. Moses, I. Brand, S. Castro, L. Kaelbling,
T. Lozano-Pérez, and N. Roy, “Active learning of abstract plan
feasibility,” in Robotics: Science and Systems (RSS), 2021.

[2] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Active
model learning and diverse action sampling for task and motion
planning,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 4107–4114.

[3] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-
Pérez, “Learning symbolic operators for task and motion planning,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2021, pp. 3182–3189.

[4] N. Houlsby, F. Huszar, Z. Ghahramani, and M. Lengyel, “Bayesian Ac-
tive Learning for Classification and Preference Learning,” in NeurIPS
Workshop on Bayesian optimization, experimental design and bandits:
Theory and applications, 2011.

[5] D. Heckerman, J. S. Breese, and K. Rommelse, “Troubleshooting
under uncertainty,” International Workshop on Principles of Diagnosis,
1994.

[6] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “PDDLStream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in International Conference on Automated Plan-
ning and Scheduling (ICAPS), 2020.

[7] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2019.

[8] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and
L. Fei-Fei, “Deep affordance foresight: Planning through what can
be done in the future,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 6206–6213.

[9] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning,” Robotics: Science and Systems (RSS), 2018.

[10] R. Chitnis, T. Silver, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-
Pérez, “Glib: Efficient exploration for relational model-based rein-
forcement learning via goal-literal babbling,” AAAI Conference on
Artificial Intelligence (AAAI), 2021.

[11] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research, vol. 29, pp. 309–352, 2007.

[12] A. Curtis, M. Xin, D. Arumugam, K. Feigelis, and D. Yamins, “Flex-
ible and efficient long-range planning through curious exploration,”
in International Conference on Machine Learning (ICML), 2020, pp.
2238–2249.

[13] A. Lagrassa, S. Lee, and O. Kroemer, “Learning skills to patch
plans based on inaccurate models,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 9441–9448.

[14] A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum,
and A. Rodriguez, “Augmenting physical simulators with stochastic
neural networks: Case study of planar pushing and bouncing,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 3066–3073.

[15] T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling, “Residual policy
learning,” arXiv preprint arXiv:1812.06298, 2018.

APPENDIX

A. Model Prediction Figures

Figures 3 and 4 give visualizations of the feasibility model
ensembles after learning from 2500 actions generated under
the Sequential Actions and Sequential Goals objectives.

B. Domain Details

1) Predicates: The parameters for our actions and pred-
icates are the following: ?o is an object, ?p is an object
pose, ?g is a grasp, ?q is a robot arm configuration, ?t is
a robot arm trajectory in joint space, ?c is the relative pose
between the tool and an object it is in contact with.

The predicates AtPose, AtConf, and HandEmpty
model the changing pose of objects, configuration of the

robot arm, and state of the robot gripper. When the robot
is holding something, the grasp is modeled with AtGrasp.
Block, Tool, and Table simply mean that the given
object is a block tool, or table, respectively. On indicates
that ?o1 is resting stable on top of ?o2.
PickKin indicates that an object can be picked

up without violating kinematic and collision constraints.
HoldingMotion indicates that a trajectory is collision-free
while the robot has an object in its grasp. ContactMotion
indicates that a pushing action will successfully move the
pushed object from one pose to another. The following
domain description defines the optimistic transition model,
fO.

2) Optimistic Action Models: The optimistically modeled
actions are given here

(:action Pick
:param (?o1 ?p1 ?o2 ?g ?q1 ?q2 ?t)
:pre (and (PickKin ?o1 ?p1 ?g ?q1 ?q2 ?t)

(AtPose ?o1 ?p1)
(On ?o1 ?o2)
(HandEmpty))

:effect (and (AtGrasp ?o1 ?g)
(not (AtConf ?q1))
(not (AtPose ?o1 ?p1))
(not (HandEmpty))
(not (On ?o1 ?o2)))

(:action MoveHolding
:param (?o ?g ?q1 ?q2 ?t)
:pre (and (HoldingMotion ?o ?g ?q1 ?q2 ?t)

(AtGrasp ?o ?g))
(:action MoveContact

:param (?o1 ?c ?o2 ?p1 ?p2 ?g ?q1 ?q2 ?t)
:pre (and (ContactMotion ?o1 ?c ?o2 ?p1

?p2 ?g ?q1 ?q2 ?t)
(AtPose ?o1 ?p1)
(AtGrasp ?o2 ?g)
(Block ?o1))

:effect (and (AtPose ?o1 ?p2)
(not (AtPose ?o1 ?p1)))

These actions have additional preconditions and effects
which state that the robot configuration changes from
(AtConf q1) to (AtConf q2), but we have removed
them for brevity.

3) Problem Specification: A problem is specified by an
initial and goal state. For all of our training and evaluation
instances the following initial state is the same with the
yellow block in the same position within the green circle,
and the blue block in the tunnel,

((AtPose YellowBlock YellowBlockInitPose) ∧
(AtPose BlueBlock BlueBlockInitPose) ∧
(AtPose Tool ToolPose) ∧
(Block YellowBlock) ∧
(Block BlueBlock) ∧
(Tool Tool) ∧
(Table Table)).

The same goal space, Sgoal, is used dur-
ing training and evaluation, and consists of
(AtPose GoalObj GoalPose) predicates where
GoalObj can be either YellowBlock or BlueBlock
and GoalPose is a randomly sampled pose on the table.

(a) Blue Block f̂pick (b) Yellow Block f̂holding (c) Yellow Block f̂pick

Fig. 3: These plots show the ensemble predictions of the feasibility models learned from a single run of the Sequential
Actions strategy. The grayscale color indicates the model’s prediction for the given (x, y) input (see Section IV-C for
the model inputs). In the top mean prediction plots, a value of 1.0 indicates feasible action parameters, and 0.0 indicates
infeasible action parameters. In the bottom standard deviation plots the value indicates the standard deviation of the ensemble’s
prediction for a given feasibility model input. The plotted points are the action parameters which were executed by the learning
strategy and were found to be either feasible (green) or infeasible (red). Only the actions that were used to train the feasibility
models are visualized. Many other actions (such as MoveFree) were executed, but not used to learn an feasibility model
and thus are not visualized here. For the blue block, the robot attempts to pick it from its initial position, but finds that that
action is infeasible. It never explores plans to first push the blue block out of the tunnel, therefore no other pick actions are
ever successful. For the yellow block the robot is able to successfully pick it up from its initial position. It is then able to
learn that some MoveHolding actions are feasible while others are not. The Sequential Actions strategy leads the robot to
execute a plan which involve picking, placing, then picking up the yellow block again. This is shown by the Pick attempts
which do not correspond to the yellow block’s initial position. No MoveContact actions are ever attempted due to the
difficulty of randomly sampling a successful tool use plan when generating Pact.

4) Skeletons: A plan skeleton is a sequence of actions
where some parameters are ungrounded (denoted with a #
symbol). The ungrounded variables are grounded at planning
time. In the tool-use domain, the following plan skeletons are
used to generate plans to achieve goal states sampled from
Sgoal

• MoveFree -> Pick(Tool, ToolPose, Table,
#g) -> MoveHolding(Tool, #g) ->
MoveContact(Tool, #c, GoalObj,
GoalObjInitPose, GoalPose, #g)

• MoveFree -> Pick(GoalObj, GoalObjInitPose,
Table, #g) -> MoveHolding(GoalObj, #g) ->
Place(GoalObj, GoalPose, Table, #g)

• MoveFree -> Pick(Tool, ToolPose, Table,
#g1) -> MoveHolding(Tool, #g1) ->
MoveContact(Tool, #c, GoalObj,
GoalObjInitPose, #p1, #g1) ->
MoveHolding(Tool, #g1) -> Place(Tool,
#p2, Table, #g1) -> MoveFree ->
Pick(GoalObj, #p1, Table, #g2) ->

MoveHolding(GoalObj, #g2) ->
Place(GoalObj, GoalPose, Table, #g2).

We omit the configuration and trajectory parameters of
each action for readability, but these parameters are also
grounded at planning time.

(a) Blue Block f̂contact (b) Blue Block f̂contact (c) Blue Block f̂pick

(d) Blue Block f̂holding (e) Yellow Block f̂contact (f) Yellow Block f̂contact

(g) Yellow Block f̂pick (h) Yellow Block f̂holding

Fig. 4: These plots show the ensemble predictions of the feasibility models learned from a single run of the Sequential Goals
strategy. The grayscale color indicates the model’s prediction for the given (x, y) input (see Section IV-C for the model
inputs). In the top mean prediction plots, a value of 1.0 indicates feasible action parameters, and 0.0 indicates infeasible action
parameters. In the bottom standard deviation plots the value indicates the standard deviation of the ensemble’s prediction for
a given feasibility model input. The plotted points are the action parameters which were executed by the learning strategy
and were found to be either feasible (green) or infeasible (red). For the f̂contact feasibility models we also visualize the
contact configuration between the tool, shown in black, and the block, shown in its color in its initial position. From this
contact configuration the robot attempts to move it to the different (x, y) positions in the plot. For the blue block f̂contact
feasibility model shown in (a), the robot is able to explore feasible pushes which move the block out of the tunnel (past
x = 0.4). Now, when it attempts picking the blue block, it is occasionally successful. These pick attempts are shown in
(c). The f̂contact feasibility model shown in (b) is never feasible due to the tool colliding with the tunnel before it is ever
able to reach the desired contact configuration. Once the robot has successfully picked up the blue block, all attempted
MoveHolding actions are feasible, as shown in (d). For the yellow block the robot is able to see some positive labels for
both f̂contact feasibility models shown in (a) and (b). Finally, both f̂pick and f̂holding learn how the weight of the yellow
block impacts the success of the Pick and MoveHolding actions.

