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Abstract—Long horizon sequential manipulation tasks are ef-
fectively addressed hierarchically: at a high level of abstraction a
planner searches over abstract action sequences, and when a plan
is found, lower level motion plans are generated. This approach
hinges on a reliable prediction of Abstract Plan Feasibility (APF),
which is challenging because the outcome of a plan depends
on real-world phenomena that are difficult to model, such as
noise in estimation and execution. We apply an active learning
strategy that leverages an infeasible subsequence property to
prune candidate plans, allowing our system to learn from less
data. We evaluate our method in simulation and on a real
Franka Emika Panda robot in a stacking domain where objects
have non-uniform mass distributions. The robot learns an APF
model in four hundred self-supervised interactions, and uses
the learned model effectively in multiple downstream tasks. An
accompanying video can be seen at https://bit.ly/3bsTYn3.

I. INTRODUCTION

Long horizon sequential manipulation tasks still pose a chal-
lenging problem for robotic systems. Finding a plan to achieve
a task in these domains consists of reasoning over large
spaces that include discrete action plans, as well as low level
continuous motion plans. These problems can be effectively
addressed hierarchically: at the highest level of abstraction the
system searches over plausible abstract action sequences, and
at the lower level it plans for a detailed concrete motion plan
and object interactions. Further computational efficiencies can
be gained if we lazily [13] postpone concrete planning until we
have a complete abstract plan that is likely to succeed, avoiding
the need to query the concrete planner multiple times.

The success of this lazy strategy hinges on our ability to
predict whether an abstract action sequence will be feasible
to execute. In this work, we call an abstract action sequence
feasible if both the concrete planner returns a solution and
this solution is reliably executed in the real world. Fortunately,
even an approximately correct estimator of abstract plan fea-
sibility (APF) can offer huge computational advantages during
planning. In some cases it may be possible to approximate
APF via coarse-grained simulation. However, this strategy still
requires a dynamics model, which may not capture phenomena
needed to accurately predict feasibility in the real world.

Instead, we explore a model learning strategy to predict
APF by exploring the space of real plan executions without a
specific planning problem or task at hand — a form of curious
exploration [21]. However, data efficiency is a primary concern
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Fig. 1: Left: Task block with an internal weight that alters its mass
distribution. Right: The Franka Emika Panda robot constructing a
tower. Blocks are detected using robot mounted and external cameras.

in enabling real robot learning of feasibility models, so we
note that some observations may be more valuable than others.
To determine how informative a plan is with respect to the
learned APF model, we adopt an information-theoretic active
learning approach [20, 15]. To generate candidate plans, we
exploit an important property of abstract action sequences: for
an action sequence (a1, . . . , an), if any prefix (a1, . . . , ai) is
infeasible, then any longer prefix (a1, . . . , aj) for i < j ≤ n
is also infeasible. This infeasible subsequence property gives
us leverage during data acquisition. A complex plan instance
may contain many elements that are highly informative for
model learning, but will never be experienced because early
elements in the plan will fail with high probability.

We apply this active learning strategy to the concrete
problem of stacking blocks with a real robot, where the blocks
are each unique, and have non-uniform mass distributions. The
robot autonomously designs, plans, and executes experiments
to learn a feasibility model using a Franka Emika Panda
robot arm (Figure 1). The robot is also capable of resetting
the world state after each experiment, enabling continuous
autonomous experimentation. The learned feasibility predictor
is later used to build towers with previously unseen blocks
that satisfy several different objective functions, including the
tallest possible tower or the tower with the longest overhang.

In summary, our contributions are:

• A method to learn an Abstract Plan Feasibility model by
synthesizing hypothetical plans;

• A data acquisition approach which leverages the infeasi-
ble subsequence property when sampling potential plans;

• A robotic system which conducts autonomous self-
supervised learning via integrated perception, experimen-

https://bit.ly/3bsTYn3


Fig. 2: The proposed system for learning Abstract Plan Feasibility (APF) operates in two phases. Experimentation Phase (left) The robot
iteratively designs and executes experiments that improve its APF model. (A) Using its current model, the robot selects the abstract action
sequence, a∗, that maximizes information gain over the APF model. (B) The robot then computes and executes a concrete motion plan for
a∗. (C) After observing the true plan feasibility, φ, the robot uses this new labeled data to update its APF model, represented as an ensemble
of neural networks. Execution Phase (right) Once an APF model has been learned, the robot can use it to perform various tasks, such as
build the tower with the longest overhang.

tation, planning, and execution.

II. PROBLEM FORMULATION

Our objective is to learn a model that predicts the success of
an abstract action sequence when it is executed by the robot.
That is, to learn the parameters Θ ∈ Rd that predict

Pr(φ | a; Θ),

where φ ∈ {0, 1} is the success of the sequence of abstract
actions, a = (a1, . . . , an). Furthermore, we wish to learn Θ
using as few labeled action sequences (a, φ) as possible.

To learn this APF model, our system operates in two phases
as illustrated in Figure 2. In the experimentation phase, the
robot curiously explores the space of possible plans, learning
the parameters of the APF model; in the execution phase, the
robot is given specific goals to achieve, and uses the learned
APF model to efficiently plan over abstract action sequences.

III. ACTIVE LEARNING OF ABSTRACT PLAN FEASIBILITY

Collecting data on real robot platforms is both time and
cost-intensive. In order to minimize the amount of data needed
to learn the APF model, we take an information theoretic
approach to active learning [15]. Efficient active learning
requires: (1) a model class that captures uncertainty over
model parameters, (2) a way to score unlabeled plans based on
how informative they may be, and (3) a method of generating
potentially informative plans. We discuss each of these in turn.

Abstract Plan Feasibility Model Our APF model, Pr(φ |
a; Θ), aims to capture the uncertainty in the underlying
stochastic process of predicting the feasibility of abstract
action sequences. This uncertainty can be attributed to phe-
nomena such as the robot’s motor capabilities, errors in
perception, or unmodeled behaviors of the planning process,
and is referred to as aleatoric uncertainty. Our goal is to
learn parameters Θ such that this uncertainty is adequately
captured and our model can be leveraged, along with a low
level planner, to achieve a goal.

We take a Bayesian approach to learning the model param-
eters, and maintain a distribution over the parameter space,

Pr(Θ). This distribution aims to capture the uncertainty we
have regarding the accuracy of our predictions, referred to as
epistemic uncertainty. In general, for complex model classes
such as neural network classifiers, an explicit representation of
Pr(Θ | D) for training data D is difficult to construct or update
with new data. We therefore follow the strategy of Beluch
et al. [1] and represent this uncertainty with an ensemble of
N models, (θ1, . . . , θN ), where θi ∈ Rd. Initial parameters are
drawn independently at random and are updated to incorporate
new data via gradient descent.

We use graph neural networks (GNNs), which exploit pa-
rameter sharing to model global properties of plans of arbitrary
size using a fixed-dimensional parameterization, Θ.

Entropy Reduction Following [20, 3], we guide our active
learning by picking a sequence of data D that maximally
reduces the entropy of Pr(Θ | D). The general problem of
designing a sequence of experiments to minimize entropy is
a difficult sequential decision-making problem. Fortunately,
due to sub-modularity, a myopic approach that considers only
the next experiment to conduct can be shown to be a good
approximation [6].

Estimating the entropy over a high-dimensional parameter
space is expensive, so we follow the approach of Houlsby et al.
[15] to reformulate the objective as:

a∗ = argmax
a∈A

I(Φ : Θ | D,a) (1)

= argmax
a∈A

H(Φ | D,a)− EΘ∼Pr(·|D) [H(Φ | a; Θ)] , (2)

allowing the computation of entropies to take place in the
lower-dimensional label space, Φ. This is known as Bayesian
Active Learning by Disagreement, or BALD.

The BALD objective invites an appealing interpretation:
maximizing the first term encourages selecting an a that
our model is overall uncertain about, and minimizing the
second term encourages selecting an a for which the individual
models in (θ1, . . . , θN ) can make confident predictions about
the outcome φ. If we think of the overall uncertainty as a
combination of epistemic and aleatoric uncertainty, then this
objective seeks an experiment with high overall uncertainty



and low aleatoric uncertainty, which therefore has high epis-
temic uncertainty.

Using an ensemble of equally weighted parameter vectors
(θ1, . . . , θN ) to represent Pr(Θ | D) allows us to compute a
global feasibility prediction, P̂r(Φ = φ | a; Θ), as well as find
the experiment that optimizes the estimated BALD objective in
the form:

a∗ = argmax
a∈A

H(P̂r(Φ | a; Θ))− 1

N

N∑
i=1

H(Pr(Φ | a; θi)).

(3)
Sampling Strategies Now that we have established an

informational score for experiments, we consider several sam-
pling strategies for optimizing over A, the set of plans up
to a fixed length L. Maximizing the BALD objective over the
entire set A is difficult because we need to consider all discrete
plans up to length L, as well as all possible assignments to
each continuous abstract action parameter.

Incremental: We consider a strategy where we only consider
plans (a1, . . . , an) for which we have already observed the
prefix to be feasible. In other words, the prefix (a1, . . . , an−1)
together with result φ1:n−1 = 1 are in the current data set D.

Greedy: Another strategy requiring fewer samples is a
greedy approach, in which we select the next action an which
maximizes the BALD objective, given that we have already
optimistically constructed a1:n−1. This strategy does not take
into consideration that if a plan fails early, we do not get to
learn from the full plan execution.

Random: We consider a strategy where we consider ran-
domly generated sequences of actions of varying length.

IV. IMPLEMENTATION

Domain We have implemented this framework in a block
stacking domain (see Figure 1). The world consists of a 7-
DOF Franka Emika Panda robot and a set of cuboids with
non-uniform mass distributions with which it can interact.

To detect blocks, we use three RealSense D435 depth
cameras—two mounted on static frames and the third on the
robot wrist for pre-grasp pose refinement. To unambiguously
indicate identity and orientation, each block is patterned with
a unique ArUco marker on each face.

We use PDDLStream [10], which integrates PDDL task-
level planning with lower-level motion planning. The planning
domain describes actions including picking and placing objects
and moving the arm through free space, while a Bidirectional-
RRT [17] in joint configuration space performs collision-aware
motion planning with a surrogate world model in PyBullet [4].

If the state of the world prevents the robot from successfully
planning or executing a plan, for example a block falling off
the table, human intervention may be required. Once such
issues are manually resolved the robot can resume planning.

Learning As discussed in Section III, the distribution over
APF model parameters is represented by an ensemble of
GNNs. The input to the GNN is an abstract action sequence,
a. Each action ai consists of an encoding of the target
block’s parameters and placement pose. In our experiments, 10

networks are used in the ensemble. Each individual network is
randomly initialized and trained using the binary cross entropy
loss function with early stopping according to the loss on a
validation set, which is also collected actively.

Before active experimentation, each model in the ensem-
ble is initialized by training on the same dataset (shuffled
differently for each) of 40 randomly generated towers. At
each iteration of the experimentation phase, the top 10 most
informative towers are chosen and labeled by attempting to
build each with the robot. 20% of the collected data is added
to a validation set and the remainder to the training set.

When evaluating task performance, we randomly select
5 blocks from a set of novel blocks and execute the best
tower found by the Monte-Carlo planner (that uses all 5
blocks), given the task objective and our Learned APF model.
The reward received from executing this tower is used to
calculate normalized regret, which is the difference between
this received reward and the largest reward of a stable tower
considered by the planner (found using an analytical model).
If a tower is unstable, we assign a reward of zero.

We evaluate our method on the following tasks:

1) Tallest Tower: Construct the tallest possible tower.
2) Maximum Unsupported Area: Construct the tower where

each block has as much area possible unsupported by the
block below it.

3) Longest Overhang: Construct the tower with the maxi-
mum distance from the center of geometry of the bottom
block to the furthest vertical side of the top block.

V. EVALUATION

Impact of Sampling Strategy Figure 3 shows the task per-
formance of models trained using the three sampling strategies
described in Section III. Each strategy has results aggregated
from 3 independent training runs and 50 task evaluations per
run. Different sets of blocks are used between training and
evaluation.

The incremental method performs well, successfully min-
imizing regret with minimal variance across runs. The naive
greedy strategy performs poorly, and is only able to achieve
decent performance on the Tallest Tower task after seeing
roughly 800 training towers, likely due to the fact that it is
not considering the feasibility of subtowers when searching
the action space, just greedy single-block placements. This
highlights the importance of considering the infeasible sub-
sequence property when sampling and scoring plans. The
random method is not leveraging active learning, and at each
iteration just trains on randomly generated towers. As a result
it has high variance on all tasks.

The Maximum Unsupported Area and Longest Overhang
tasks are more challenging for the agent because they require
deep understanding of the tower stability decision boundary,
while the Tallest Tower task only requires a rough understand-
ing of how to build stable towers with high confidence. These
results show that in spite of the difficulty of the first two tasks,
the active learner is able to improve its understanding of the
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Fig. 3: A comparison of sampling strategies on different tasks. Each evaluation consists of 3 separate APF model-learning runs, and each
point is the Median Normalized Regret of 50 individual planning runs per learned model. The shaded regions show 25% and 75% quantiles.

Tallest Tower Longest Overhang Max Unsupported Area
APF Model Regret Stable Regret # Stable Regret Stable Regret # Stable Regret Stable Regret # Stable
Analytical 0.50 0.00 5/10 0.70 0.00 3/10 0.90 0.00 1/10

Simulation (5mm noise) 0.31 0.01 7/10 0.48 0.35 8/10 0.33 0.16 8/10
Learned 0.14 0.05 9/10 0.33 0.33 10/10 0.24 0.24 10/10

TABLE I: Real robot task performance when using different Abstract Plan Feasibility models. The Learned model was trained with data
collected through active learning on the real Panda robot. The Analytical and Simulation models calculate feasibility using the known
underlying dynamics but use no noise and simple noise models respectively.

decision boundary well enough to perform tasks with very low
regret and low variance.

Real Robot Experiments We give results for executing
our active learning pipeline on a real Panda robot. In total,
the robot built 400 towers while training over a period of
55 hours. We generated candidate experiments using the
incremental strategy and produced stability labels by observing
the outcome with the cameras. During the evaluation phase,
we use a separate set of 10 evaluation blocks. We compare
the learned APF model to two baselines: (1) a hand-engineered
model of plan feasibility that calculates whether a candidate
tower is stable in a noiseless world, and (2) a noisy simulator
model, which predicts a tower is feasible only if the candidate
tower is also stable to 10 normally distributed perturbations
(standard deviation of 5mm for each block placement).

Quantitative results are given in Table I and qualitative
results are shown in Figure 4. From these results, it can be
seen that the Analytical model can build towers with high
reward when the tower is stable, but the towers it chooses
to build are rarely stable across all three tasks. However, the
Simulation and Learned APF models can still build towers with
large overhang while considering the effects of noisy action
execution on a real robot. While our Learned model exhibits
slightly higher stable regret, it outperforms the Simulation
model in stability of constructed towers, and therefore results
in overall lower regret when taking stability into account. This
is due to the fact that the Simulation model makes assumptions
about the type of noise distribution (Gaussian only in the plane
normal to the table) and its parameters (variance). The Learned
model, one other hand, learns a more complex noise model that
more accurately reflects the real world.

VI. RELATED WORK

Hierarchical Planning A common approach to long-
horizon planning problems is to decompose the solution into
high-level reasoning over abstract actions and lower-level

Fig. 4: Towers built for the Longest Overhang task when using
different Abstract Plan Feasibility models. Observe that more towers
built using the Analytical and Simulation models were unstable.

reasoning over concrete actions [19, 24, 26]. Recent works
predict feasibility of an action as a way to reduce the number
of calls to expensive solvers [5, 27].

Active Learning Active learning [20] is a paradigm that
aims to minimize the number of samples needed to learn the
target concept. Recently, Gal et al. [9] have extended BALD
[15] to complex model domains of deep neural networks
using MC-dropout [8]. However, in this work, we follow the
approach of Beluch et al. [1] and use an ensemble of deep
networks for active learning. These ideas have also been used
in model-based reinforcement learning [22, 25].

Stacking Domain Blocks Worlds have a long history in
artificial intelligence [2, 28, 7]. Computer vision researchers
have developed scene understanding algorithms that take into
account known geometries and stability properties of objects
within the scene [12, 16, 23]. Recent work has shown the
ability to predict tower stability from RGB images using deep
learning techniques [11, 18, 14].
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