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Is active learning a useful model?

Does AL (the PAC-like selective sampling) model help?
→ By help we mean: yield label-complexity savings beyond PAC 

sample complexity.

Pose the simplest problem such that if AL is a useful model, it 
should be solvable.
→ By useful we mean: studying the model yields (efficient) 
algorithms (with label-complexity bounds less than PAC).

To simplify problem: remove what could be solved via 
unsupervised learning. 

- pinpoint AL problem only, to determine difficulty.



Selective sampling [CAL92]:
Given: pool (or stream) of unlabeled examples, x∈X, drawn 

i.i.d. from input distribution, D over X.
Learner may request labels on examples in the pool/stream.

(Noiseless) oracle access to correct labels, y∈Y.
Constant cost per label

The error of any classifier v is measured on distribution D:
err(h) = Px~D[v(x) ≠ y]

Goal: minimize label-complexity to learn the concept to a 
fixed error ε.

Non-Bayesian model: no prior on hypotheses assumed.

PAC-like selective sampling framework



Open problem: efficient, general AL
Efficient algorithms for active learning under general 

input distributions, D.
→ Current label-complexity upper bounds for general 
distributions are based on intractable schemes!

Provide an algorithm such that w.h.p.:
1. After L label queries, algorithm's hypothesis v obeys:

Px ∼ D[v(x) ≠ u(x)] < ε.

2. L is at most the PAC sample complexity, and for a general 
class of input distributions, L is significantly lower.

3. Running time is at most poly(d, 1/ε).

u is target, or best in class.



Open problem: specific variant
Efficient algorithms for active learning under general input 

distributions, D.

Specific variant: homogeneous linear separators, realizable case, 
D known to learner. 

There exists a target

D known:
Approximately, via an initial unsupervised learning phase, or
Exactly, in a new model: 

Infinite unlabeled data for computing D;
Only have oracle access to labels on a finite subset 

(cf. semi-supervised).



Open problem: specific variant
Efficient algorithms for active learning under general input 

distributions, D.

Specific variant: homogeneous linear separators, realizable case, 
D known to learner. 

Standard PAC bound: Õ(d/ε log 1/ε).

Lower bound on label-complexity: Ω(1/ε) [D04].
→ However, a pathological distribution yields bound.

If distribution is uniform:  PAC complexity: Θ(d/ε) [L95,L03].
Label-complexity: Õ(d log 1/ε) [DKM05].

→ What is a suitably “general class of input distributions”?



Open problem: other open variants
Efficient algorithms for active learning under general 

input distributions, D.

Other open variants:
Input distribution, D, is unknown to learner.
Agnostic case, certain scenarios.
Add the online constraint: memory and time complexity 

(of the online update) must not scale with number 
of seen labels or mistakes.

Same goal, other concept classes, or a general concept 
learner.



Related work: theory
Negative results:

Homogenous linear separators under arbitrary distributions and 
non-homogeneous under uniform: Ω(1/ε) [D04]. 

Perceptron algorithm under any AL rule uses Ω(1/ε2) [DKM05].
Arbitrary (concept, distribution)-pairs that are “ρ-splittable”:

Ω(1/ρ) [D05].
Agnostic setting where best in class has generalization error β:

Ω(β2/ε2) [K05].

Upper bounds on label-complexity not yet shown achievable by an 
(efficient) algorithm:
General concepts and input distributions, realizable: 

e.g. Õ(log(1/λ) d log2(1/ε))  for linear separators, under λ−similar to
uniform [D05]. λ · U(A)/PD(A) · 1/λ    ∀ A ⊆ X

Linear separators under uniform, an agnostic scenario: 
Õ(d2 log 1/ε) [BBL06].



Related work: algorithms
Algorithms analyzed in other frameworks:

Individual sequence prediction, regret analysis: [C-BGZ05].
Bayesian assumption: linear separators, realizable case, 

using QBC algorithm [SOS92], label-complexity upper 
bounds: Uniform Õ(d log 1/ε) [FSST97].

λ−similar to uniform Õ((1/λ) d log 1/ε) [FSST97].

Label-complexity upper bounds when the input 
distribution is uniform:
Linear separators, realizable case, Õ(d log 1/ε) [DKM05].
Linear separators, realizable case, using [CAL92]. 

algorithm, Õ(d2 log 1/ε) [BBL06].

Linear separators, realizable case, λ−similar to uniform, using 
[DKM05] algorithm, Õ(poly(1/λ) d log 1/ε) [M].



Thank you!

And thanks to:
Sanjoy Dasgupta
Matti Kääriäinen
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