Online Learning of Non-stationary Sequences

Claire Monteleoni MIT CSAIL cmontel@csail.mit.edu

Joint work with Tommi Jaakkola

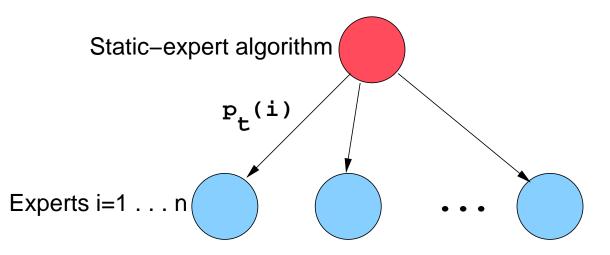
Outline

- Online learning framework
- Upper and lower regret bounds for a class of online learning algorithms
- An algorithm that simultaneously learns the switching-rate, $\alpha,$ at optimal discretization
- A stronger bound on regret of new algorithm
- Application to wireless networks

Online Learning Framework

- Typical set-up: receive one (x_t, y_t) example at a time
 - view x_t first, to test current predictions
 - regression, estimation or classification
- No statistical assumptions about observations
 - no stationarity assumptions on generating process
 - labels could even be adversarial
- Learner makes prediction on each example, and receives associated prediction loss.
 - loss on all examples counts no separate "training" period.

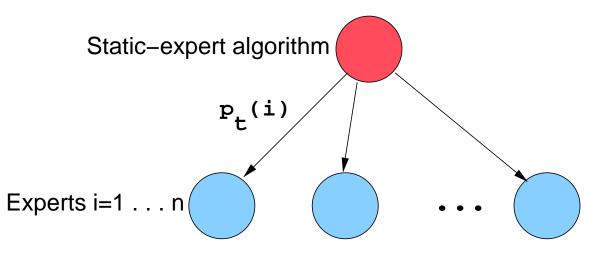
Online Learning Framework



- Algorithm¹ bases prediction on a set of n experts.
 - in this framework, x_t is the vector of experts' predictions
 - experts' prediction mechanisms unknown, can vary
 - over time
 - over experts
 - algorithm maintains a distribution over the experts $p_t(i)$.

¹Static-expert due to [Littlestone and Warmuth, 1989]

Online Learning Framework



- L(i,t) is non-negative prediction loss of expert i at time t (depends on the true label $y_t \in \mathcal{Y}$).
- Bayesian updates are $p_{t+1}(i) \propto p_t(i) e^{-L(i,t)}$.
- $L(p_t, t)$ is loss of the algorithm.
- Objective: bound prediction loss to that of best expert, or best sequence of experts, over finite, known, time horizon T.

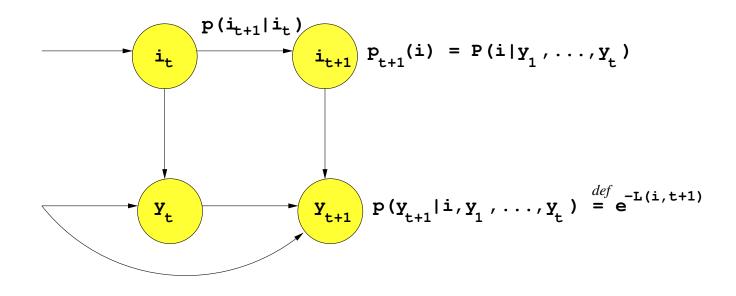
Related Work

- Algorithms for universal prediction, with performance guarantees:
 - relative to best expert [Littlestone and Warmuth, 1989]
 - relative to best sequence of experts
 [Herbster and Warmuth, 1998], [Vovk, 1999]
 - proven for many pairings of loss and prediction functions [Haussler et al., 1998]
- Algorithms with similar guarantees for:
 - adaptive game playing [Freund and Schapire, 1999]
 - online portfolio management [Helmbold et al., 1996]
 - paging [Blum et al., 1999]
 - k-armed bandit problem [Auer et al., 1995]
- Other relative performance measures for universal prediction, e.g. systematic variations [Foster and Vohra, 1999].

Outline

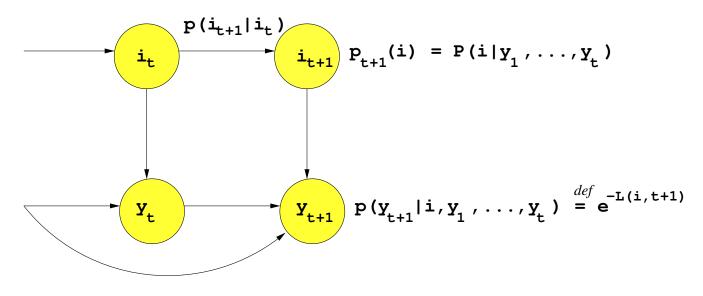
- Online learning framework
 - related work
 - HMM view of existing algorithms
 - our motivation

Algorithms



- Existing algorithms can be viewed as Bayesian updates in this graphical model
 - identity of current best expert is hidden (state) variable
 - $p(i_t|i_{t-1})$ defined by transition matrix Θ .
 - prediction, $P(y_t|y_1, \dots, y_{t-1}) = \sum_{i=1}^n p_t(i) p(y_t|i, y_1, \dots, y_{t-1})$

Algorithms

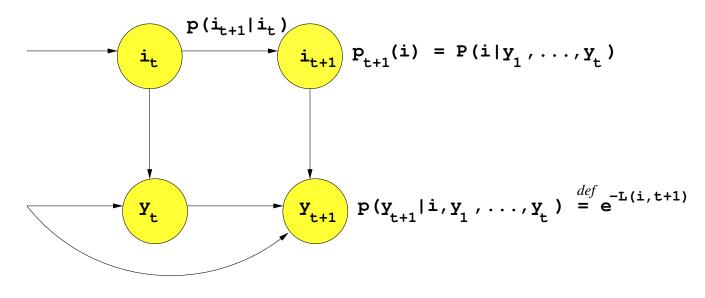


- Set emission probabilities, $p(y_t|i, y_1, \dots, y_{t-1}) = e^{-L(i,t)}$, so $L(i,t) = -\log p(y_t|i, y_1, \dots, y_{t-1})$.
- Bayesian updates of $p_t(i)$:

$$p_{t+1}(i) = \frac{1}{Z_{t+1}} \sum_{j=1}^{n} p_t(j) e^{-L(j,t)} p(i|j;\Theta)$$

where $p_1(i) = 1/n$. (cf. forward propagation in HMMs)

Algorithms



- Log-loss of the algorithm

$$L(p_t, t) = -\log \sum_{i=1}^{n} p_t(i) p(y_t | i, y_1, \dots, y_{t-1})$$

= $-\log \sum_{i=1}^{n} p_t(i) e^{-L(i,t)}$

Note: can bound other loss functions [Haussler et al., 1998]

Transition Dynamics

- Transition probability matrix Θ is learner's model of nonstationarity of observation sequence.
- Choosing Θ according to

$$\theta_{ij} = \begin{cases} (1-\alpha) & i=j\\ \frac{\alpha}{n-1} & i\neq j \end{cases}$$

yields Fixed-share algorithm of [Herbster and Warmuth, 1998].

- Static-expert algorithm of [Littlestone and Warmuth, 1989] when follows by setting $\alpha = 0$.

Our Motivation

- Improve online learning in (possibly) non-stationary case.
 - remove prior assumptions
 - existing algorithms take switching-rate, α , as a parameter.
- \bullet Design new algorithm to learn α online, simultaneous to original learning task.
- Yields algorithm whose regret is upper bounded by $\mathcal{O}(\log T)$.
 - whereas regret of existing algorithms:
 - upper bound $\mathcal{O}(T)$.
 - lower bound can be $\mathcal{O}(T)$.
- Regret-optimal discretization requires regret bound WRT Fixed-share($\alpha^*)$
 - where α^* is hindsight-optimal setting of switching-rate α , for the sequence observed.

Outline

- Online learning framework
- Upper and lower regret bounds for a class of online learning algorithms
 - technique for regret bounds
 - upper bound
 - lower bound

Regret

• Cumulative loss of the Bayesian algorithm (Fixed-share), using parameter α , over T training examples is

$$L_T(\alpha) = \sum_{t=1}^T L(p_{t;\alpha}, t)$$

• This can be expressed as the negative log-probability of all the observations, given the model (cf. HMMs):

$$L_T(\alpha) = -\log\left[\sum_{\vec{s}} \phi(\vec{s})p(\vec{s};\alpha)\right]$$

where $\vec{s} = \{i_1, \dots, i_T\}$, $\phi(\vec{s}) = \prod_{t=1}^T e^{-L(i_t, t)}$, and

$$p(\vec{s}; \alpha) = p_1(i_1) \prod_{t=2}^T p(i_t | i_{t-1}; \alpha)$$

• "Regret" for using α , instead of hindsight-optimal, α^* for that sequence: $L_T(\alpha) - L_T(\alpha^*) = -\log \frac{\sum_{\vec{s}} \phi(\vec{s}) p(\vec{s};\alpha)}{\sum_{\vec{r}} \phi(\vec{r}) p(\vec{r};\alpha^*)}$

$$= - \log \left[\sum_{\vec{s}} \left(\frac{\phi(\vec{s})p(\vec{s};\alpha^*)}{\sum_{\vec{r}}\phi(\vec{r})p(\vec{r};\alpha^*)} \right) \frac{p(\vec{s};\alpha)}{p(\vec{s};\alpha^*)} \right]$$
$$= - \log \left[\sum_{\vec{s}} Q(\vec{s};\alpha^*) \frac{p(\vec{s};\alpha)}{p(\vec{s};\alpha^*)} \right] = - \log \left[\sum_{\vec{s}} Q(\vec{s};\alpha^*) e^{\log \frac{p(\vec{s};\alpha)}{p(\vec{s};\alpha^*)}} \right]$$
$$= - \log \left[\sum_{\vec{s}} Q(\vec{s};\alpha^*) e^{(T-1)\left(\hat{\alpha}(\vec{s})\log\frac{\alpha}{\alpha^*} + (1-\hat{\alpha}(\vec{s}))\log\frac{1-\alpha}{1-\alpha^*}\right)} \right]$$

- $Q(\vec{s}|\alpha^*)$ is the posterior probability over the choices of experts along the sequence, induced by α^* .²
- $\hat{\alpha}(\vec{s})$ is the empirical fraction of non-self-transitions in \vec{s} .

 $^{^{2}}Q$ and $lpha^{*}$ summarize the observed sequence.

Technique for Regret Bounds

 Regret WRT hindsight-optimal algorithm can be expressed as:

$$L_T(\alpha) - L_T(\alpha^*) = -\log\left[E_{\hat{\alpha}\sim Q} e^{(T-1)[D(\hat{\alpha}\|\alpha^*) - D(\hat{\alpha}\|\alpha)]}\right]$$

- Upper and lower bound regret, by finding optimizing Q in $\mathcal{Q},$ the set of all distributions, of this expression.
- Upper bound:

$$\max_{Q \in \mathcal{Q}} \left\{ -\log \left[E_{\hat{\alpha} \sim Q} e^{(T-1)[D(\hat{\alpha} \| \alpha^*) - D(\hat{\alpha} \| \alpha)]} \right] \right\}$$

subject to constraint:

(1)
$$\frac{d}{d\alpha}(L_T(\alpha) - L_T(\alpha^*))|_{\alpha = \alpha^*} = 0$$

Technique for Regret Bounds

• Lower bound:

$$\min_{Q \in \mathcal{Q}} \left\{ -\log \left[E_{\hat{\alpha} \sim Q} e^{(T-1)[D(\hat{\alpha} \| \alpha^*) - D(\hat{\alpha} \| \alpha)]} \right] \right\}$$

subject to constraint (1) and

(2)
$$\frac{d^2}{d\alpha^2} (L_T(\alpha) - L_T(\alpha^*))|_{\alpha = \alpha^*} = \frac{\beta^*(T-1)}{\alpha^*(1-\alpha^*)}$$

where β^* , is relative quality of regret minimum at α^* , defined as:

$$\beta^* = \frac{\alpha^* (1 - \alpha^*)}{T - 1} \frac{d^2}{d\alpha^2} (L_T(\alpha) - L_T(\alpha^*))|_{\alpha = \alpha^*}$$

where normalization guarantees $\beta^* \leq 1$. And $\beta^* \geq 0$ for any α^* that minimizes $L_T(\alpha)$.

Upper Bound on Regret

Theorem 1: For a Bayes learner on the graphical model above, with arbitrary transition matrix Θ , the regret on a sequence of T observations with respect to the hindsightoptimal transition matrix Θ^* for that sequence, is:

$$L_T(\Theta) - L_T(\Theta^*) \le (T-1) \max_{i \in \{1,\dots,n\}} D(\Theta_i^* \| \Theta_i)$$

Corollary: For a Fixed-share(α) algorithm, the regret on T observations, with respect to the hindsight optimal α^* for that sequence is:

$$L_T(\alpha) - L_T(\alpha^*) \le (T-1) D(\alpha^* \| \alpha)$$

Bound vanishes when $\alpha = \alpha^*$, and no direct dependence on n (unlike previous work). The maximizing Q is a point mass at α^* .

A Lower Bound on Regret

A non-trivial lower bound using an additional statistic on observed sequence, $\beta^*.$

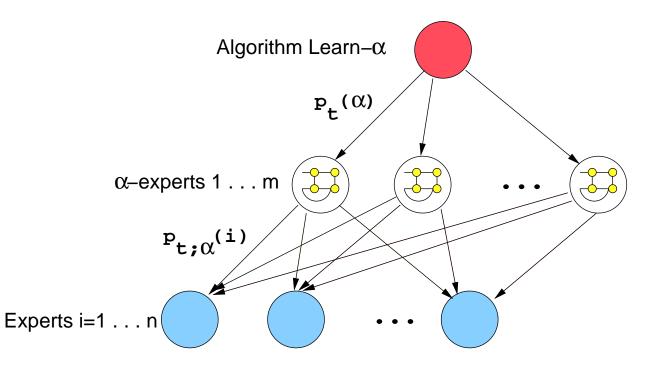
Theorem 2: Define $\underline{Q}(1) = q_1 = [1 + \frac{T-1}{1-\beta^*} \frac{1-\alpha^*}{\alpha^*}]^{-1}$, $\underline{Q}(\frac{\alpha^*-q_1}{1-q_1}) = 1 - q_1$, when $\alpha \ge \alpha^*$, and $\underline{Q}(0) = q_0 = [1 + \frac{T-1}{1-\beta^*} \frac{\alpha^*}{1-\alpha^*}]^{-1}$, $Q(\frac{\alpha^*}{1-q_0}) = 1 - q_0$, when $\alpha < \alpha^*$. Then for a **Fixed-share**(α) algorithm, the regret on any T observations consistent with α^* and β^* is:

$$L_T(\alpha) - L_T(\alpha^*) \ge -\log\left[E_{\hat{\alpha} \sim \underline{Q}} e^{(T-1)[D(\hat{\alpha} \| \alpha^*) - D(\hat{\alpha} \| \alpha)]}\right]$$

- Bound is non-trivial only when $\beta^* > 0$ (sequences for which α^* is non-trivial minimizer)
- As $\beta^* \to 1$, upper and lower bounds agree: $(T-1)D(\alpha^* \| \alpha)$

Outline

- Online learning framework
- Upper and lower regret bounds for a class of online learning algorithms
- An algorithm that simultaneously learns the switching-rate, α , at optimal discretization
 - Algorithm Learn– α
 - Regret-optimal discretization
- A stronger bound on regret of new algorithm



- Algorithm Learn- α : a hierarchical algorithm that simultaneously learns the switching-rate α online
 - track the best " α -expert" (Static-expert updates).
 - set of $m \alpha$ -experts, i.e. Fixed-share(α) algorithms.

- posterior over switching-rates:

$$p_t(\alpha) = P(\alpha|y_{t-1}, \dots, y_1) = c \cdot e^{-L_{t-1}(\alpha)}$$

Algorithm Learn- α

• Bayesian updates (cf. Static-expert):

$$p_{t+1}(\alpha_j) = \frac{1}{Z_{t+1}} p_t(\alpha_j) e^{-L(\alpha_j, t)}$$

where
$$p_1(\alpha_j) = 1/m$$
, and $L(\alpha_j, t) = L(p_{t;\alpha_j}, t)$.

• Loss of algorithm is thus

$$L^{top}(p_t, t) = -\log \sum_{j=1}^{m} p_t(\alpha_j) e^{-L(\alpha_j, t)}$$
$$= -\log \sum_{j=1}^{m} \sum_{i=1}^{n} p_t(\alpha_j) p_{t;\alpha_j}(i) e^{-L(i, t)}$$

as is appropriate for a hierarchical Bayesian method.

- Optimal discretization: Find a regret-optimal discrete set of switching rates {α₁,..., α_m}
- Optimize tradeoff between loss due to exploration (too many α_j 's), and loss of α_{j^*} WRT α^* (too few).
- Choose the minimal set s.t. loss of α_{j^*} WRT α^* is bounded.
 - for any α^* we require that there is α_j s.t. the cumulative regret is upper bounded by $(T-1)\delta$.
 - by regret bound $L_T(\alpha_{j^*}) L_T(\alpha^*) \le (T-1) D(\alpha^* || \alpha_{j^*})$
 - so we require:

$$\max_{\alpha^* \in [0,1]} \min_{j=1,\dots,m(\delta)} D(\alpha^* \| \alpha_j) = \delta$$

– $m(\delta)$ is also computed by discretization algorithm.

Discretization algorithm:

• Set α_1 s.t.

 $\max_{\alpha^* \in [0,\alpha_1]} D(\alpha^* \| \alpha_1) = D(0 \| \alpha_1) = \delta \implies \alpha_1 = 1 - e^{-\delta}$

• Set α_j (iteratively) s.t.

$$\max_{\alpha^* \in [\alpha_{j-1}, \alpha_j]} \min\{D(\alpha^* \| \alpha_{j-1}), D(\alpha^* \| \alpha_j)\} = \delta$$

- Maximizing α^* has closed form solution, which is increasing function of α_j .
- Using this α^* , solve for α_j in $D(\alpha^* \| \alpha_{j-1}) = \delta$, e.g. via bisection search.
- Assign $\alpha_j \geq \frac{1}{2}$ by symmetry of $D(\cdot \| \cdot)$ on [0, 1].

Upper Bound on Regret of Learn- α

Theorem 3: The regret of Learn- α on a sequence of T observations, with respect to the hindsight-optimal Fixed-share(α^*) algorithm for that sequence is

$$L_T^{top} - L_T(\alpha^*) \le (T-1) \min_{j=1,...,m(\delta)} D(\alpha^* \| \alpha_j) + \log(m(\delta))$$

Proof:

$$L_T^{top} \leq \min_{\substack{j=1,\dots,m(\delta)}} L_T(\alpha_j) + \log(m(\delta))$$

$$\leq L_T(\alpha^*) + (T-1) \min_{\substack{j=1,\dots,m(\delta)}} D(\alpha^* || \alpha_j) + \log(m(\delta))$$

by applying relative loss bound on Static-expert,³ and then new relative loss bound on Fixed-share.

³[Littlestone and Warmuth, 1989]

Upper Bound on Regret of $\mathtt{Learn}\text{-}\alpha$

• By discretization method, bound is

$$L_T^{top} - L_T(\alpha^*) \leq (T-1)\delta + \log m(\delta)$$

- δ is a free parameter so we can optimize the bound, without knowledge of the observation sequence.
 - since $\log m(\delta)\approx -1/2\log\delta$ for small $\delta,$ regret bound becomes

$$L_T^{top} - L_T(\alpha^*) \approx (T-1)\delta - \frac{1}{2}\log\delta$$

– optimize to attain $\delta^* = 1/(2T)$, and $m(\delta^*) = \sqrt{2T}$.

- thus require $\mathcal{O}(\sqrt{T})$ settings of α .
 - independent of *n*.

Upper Bound on Regret of $\mathtt{Learn}\text{-}\alpha$

Optimized regret bound:

$$\frac{1}{2}\log T + c$$

- Upper bound on regret of Learn- α is thus $\mathcal{O}(\log T)$.
- cf. lower bound on regret of Fixed-share
 - can be $\mathcal{O}(T)$.

Algorithmic complexity:

- time $\mathcal{O}(nm)$, or $\mathcal{O}(n+m)$ time and $\mathcal{O}(m)$ space (in parallel).
- in optimized version: $\mathcal{O}(n\sqrt{T}),$ or $\mathcal{O}(n+\sqrt{T})$ with space $\mathcal{O}(\sqrt{T}).$

Outline

- Online learning framework
- Upper and lower regret bounds for a class of online learning algorithms
- An algorithm that simultaneously learns the switching-rate, α , at optimal discretization
- A stronger bound on regret of new algorithm
- Application to wireless networks

Application to Wireless Networks IEEE 802.11 Energy/Performance Tradeoff

- Energy: 802.11 wireless nodes consume more energy in AWAKE than SLEEP
- Performance: node cannot receive packets while sleeping \rightarrow introduces latency
- IEEE 802.11 Power Saving Mode:
 - Base station can buffer packets while node is sleeping
 - Use of a fixed polling time (100ms) at which to WAKE, receive buffered packets, and then go back to sleep.
- Related work:
 - Adaptive control [Krashinsky and Balakrishnan, 2002]
 - Reinforcement Learning [Steinbach, 2002]

Algorithm Formulation for Application

- Problem is apt for online learning, specifically Learn- α
 - network conditions vary over time, and location, thus cannot set α beforehand.
- n experts: constant settings of polling time, T_i .
- Run Learn- α , using $m(\delta^*)$ α -experts, or sub-algorithms running Fixed-share(α).
- Observe/update at epochs, t, only upon awakening. Define:
 - I_t : number of bytes buffered since last wake-up.
 - T_t : time slept for.

Algorithm Formulation for Application

• Loss per expert:

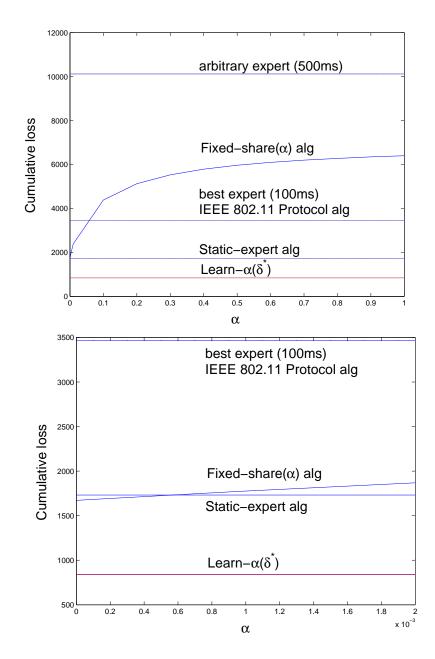
$$L(i,t) = \gamma \frac{I_t T_i^2}{2T_t} + \frac{1}{T_i}$$

- first term approximates⁴ latency introduced by buffering I_t bytes, scaled by how long *i* would have slept.
- second term encodes energy penalty for waking often.
- $\gamma:$ user specified scaling to quantify preferred tradeoff. 5
- sum of convex functions \implies unique minimum.

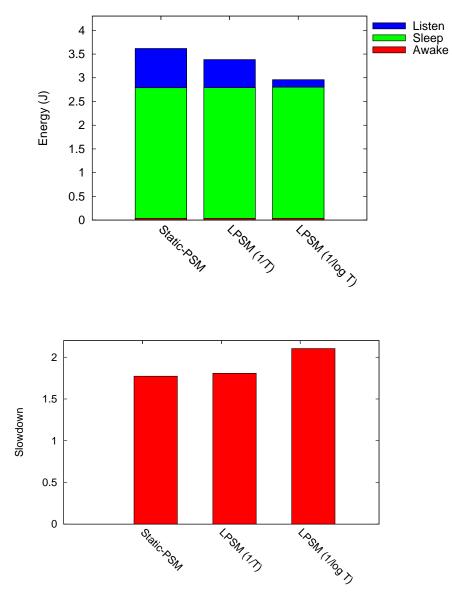
⁴Assume uniform arrival rate while sleeping, since cannot observe.

⁵Or, Lagrange multiplier on latency constraint, in an energy minimization.

Results



Results⁶



⁶Joint work with Hari Balakrishnan and Nick Feamster. ns2 network simulation.

Summary and Future Work

- Upper and lower regret bounds for Fixed-share algorithms
 new proof technique, comparison class
- Optimal discretization for learning the switching-rate online
 new algorithm has stronger regret bound
- Application to wireless energy management with performance gains
- Upper bound for any transition matrix (listed here)
- Lower bound for any transition matrix in progress.
- Extension of optimal discretization to multi-dimensional simplex, (for learning transition matrix) in progress.

Some Proof Details

- Proof of Theorem 1: Upper Bound:
 Constraint (1) is equivalent to E_{â~Q}{â} = α*.
 Take expectation outside of logarithm. □
- Proof of Theorem 2: Lower Bound: (2) equivalent to $E_{\hat{\alpha}\sim Q}\left[(\hat{\alpha} - \alpha^*)^2\right] = \frac{(1-\beta^*)\alpha^*(1-\alpha^*)}{T'} \equiv \beta_2^*$,

where T' = T - 1.

Find the form of the minimizing Q by inspecting $J(Q,\vec{\lambda})$ given by

$$E_{\hat{\alpha}\sim Q}\left[f(\hat{\alpha};\alpha,\alpha^*) - \lambda_1(\hat{\alpha}-\alpha^*) - \lambda_2\left((\hat{\alpha}-\alpha^*)^2 - \beta_2^*\right)\right]$$

where $f(\hat{\alpha}; \alpha, \alpha^*) = \exp\left\{T'\left(\hat{\alpha}\log\frac{\alpha}{\alpha^*} + (1-\hat{\alpha})\log\frac{1-\alpha}{1-\alpha^*}\right)\right\}$. $\Rightarrow Q$ can be non-zero only at two points, where one of the points is 0 or 1 (convexity argument, see paper for details). Solve mean (1) and variance (2) constraints to find optimizing Q (here $\alpha < \alpha^*$, points 0 and a):

$$0 \times q_0 + a(1 - q_0) = \alpha^*$$
 (1)

$$q_0(0-\alpha^*)^2 + (1-q_0)(a-\alpha^*)^2 = \frac{(1-\beta^*)\alpha^*(1-\alpha^*)}{T'}$$
(2)

giving:
$$a = \frac{\alpha^*}{1-q_0}, q_0 = \frac{1}{1+\frac{T'}{1-\beta^*}\frac{\alpha^*}{1-\alpha^*}}$$
. Substitution yields bound.

Comparison of Upper Bounds

- [Herbster and Warmuth, 1998] bound loss relative to loss of the best k-partition of the observation sequence, where:
 - the best expert is assigned to each segment.
 - bound parameters: k, α^* .

$$L_T(\alpha) - L_T(\text{best } k\text{-partition}) \le (T-1)[H(\alpha_k^*) + D(\alpha_k^* \| \alpha)] + k \log(n-1) + \log n$$

where $\alpha_k^* = k/(T-1)$.

- Bounds are comparable, but differ in comparison class.
 - Computing regret-optimal discretization for learning α required a bound with respect to α^* .

• $L_T(\alpha^*) - L_T(\text{best } k\text{-partition}) =$

$$= -\log\frac{1}{n} - k\log\frac{\alpha^{*}}{n-1} - (T'-k)\log(1-\alpha^{*})$$

where the terms are the negative log-probability, given the Fixed-share(α^*)'s model of:

- 1. choosing the start state
- 2. making the k switches (done by the best k-partition)
- 3. staying with one expert, during each of the k segments in the best k-partition.
- Bounds are comparable when $\alpha_k^* = \alpha^*$. Simplification and subsitution of $k = T' \alpha_k^*$ yields:

$$= -T' \log(1 - \alpha_k^*) + T' \alpha_k^* \log(1 - \alpha_k^*) - T' \alpha_k^* \log \alpha_k^* + k \log(n - 1) + \log n = T' H(\alpha_k^*) + k \log(n - 1) + \log n$$

which is exact form of difference in the bounds.

References

[Auer et al., 1995] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (1995). Gambling in a rigged casino: the adversarial multi-armed bandit problem. In *Proc. of the 36th Annual Symposium on Foundations of Computer Science*, pages 322–331.

[Blum et al., 1999] Blum, A., Burch, C., and Kalai, A. (1999). Finely-competitive paging. In *IEEE 40th Annual Symposium* on Foundations of Computer Science, page 450, New York, New York.

[Foster and Vohra, 1999] Foster, D. P. and Vohra, R. (1999). Regret in the on-line decision problem. *Games and Economic* Behavior, 29:7-35.

[Freund and Schapire, 1999] Freund, Y. and Schapire, R. (1999). Adaptive game playing using multiplicative weights. *Games and Economic Behavior*, 29:79–103.

 [Haussler et al., 1998] Haussler, D., Kivinen, J., and Warmuth,
 M. K. (1998). Sequential prediction of individual sequences under general loss functions. *IEEE Transactions on Information Theory*, 44(5):1906–1925.

[Helmbold et al., 1996] Helmbold, D. P., Schapire, R. E., Singer, Y., and Warmuth, M. K. (1996). On-line portfolio selection using multiplicative updates. In *International Conference on Machine Learning*, pages 243–251.

[Herbster and Warmuth, 1998] Herbster, M. and Warmuth,

M. K. (1998). Tracking the best expert. *Machine Learning*, 32:151–178.

[Krashinsky and Balakrishnan, 2002] Krashinsky, R. and Balakrishnan, H. (2002). Minimizing energy for wireless web access with bounded slowdown. In *MobiCom 2002*, Atlanta, GA.

[Littlestone and Warmuth, 1989] Littlestone, N. and Warmuth, M. K. (1989). The weighted majority algorithm. In *IEEE Symposium on Foundations of Computer Science*, pages 256–261.

[Steinbach, 2002] Steinbach, C. (2002). A reinforcementlearning approach to power management. In *AI Technical Report, M.Eng Thesis*, Artificial Intelligence Laboratory, Massachusetts Institute of Technology. [Vovk, 1999] Vovk, V. (1999). Derandomizing stochastic prediction strategies. *Machine Learning*, 35:247–282.