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e An algorithm that simultaneously learns the
switching-rate, «, at optimal discretization

e A stronger bound on regret of new algorithm
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Online Learning Framework

e Typical set-up: receive one (x4, ;) example at a time
— view x; first, to test current predictions
— regression, estimation or classification

e No statistical assumptions about observations
— no stationarity assumptions on generating process
— labels could even be adversarial

e Learner makes prediction on each example, and receives
associated prediction loss.
— loss on all examples counts — no separate “training’ period.



Online Learning Framework

Static—expert algorithm

p, (i) /
Experts i=1 . .. nQ Q

o Algorithm! bases prediction on a set of n experts.
— in this framework, x; is the vector of experts’ predictions

— experts’ prediction mechanisms unknown, can vary
e over time
® over experts

— algorithm maintains a distribution over the experts p(%).

Static-expert due to [Littlestone and Warmuth, 1989]



Online Learning Framework

Static—expert algorithm

p, (1)

Expertsi=1. .. n@

e L(2,t) is non-negative prediction loss of expert ¢ at time ¢
(depends on the true label y; € )).

o Bayesian updates are p,1(7) o< py(i) e~ L1,

e L(p¢,t) is loss of the algorithm.

e Objective: bound prediction loss to that of best expert, or
best sequence of experts, over finite, known, time horizon T'.



Related Work

e Algorithms for universal prediction, with performance
guarantees:
— relative to best expert [Littlestone and Warmuth, 1989]
— relative to best sequence of experts
[Herbster and Warmuth, 1998], [Vovk, 1999]
— proven for many pairings of loss and prediction functions
[Haussler et al., 1998]

e Algorithms with similar guarantees for:
— adaptive game playing [Freund and Schapire, 1999]
— online portfolio management [Helmbold et al., 1996]
— paging [Blum et al., 1999]
— k-armed bandit problem [Auer et al., 1995]

e Other relative performance measures for universal prediction,
e.g. systematic variations [Foster and Vohra, 1999].



Outline
e Online learning framework
— related work
— HMM view of existing algorithms

— our motivation



Algorithms

P (i, lie)
% pt+1(l) =P(:"Iyl""’yt)

( i ) Cffe-L(i,t+1)
PWep !t ¥y ey ' =

e Existing algorithms can be viewed as Bayesian updates in
this graphical model

— identity of current best expert is hidden (state) variable
— p(i¢|i¢—1) defined by transition matrix ©.
_ prediction, P(yt’yh R 7yt—1) — Z?:l pt(z) p(yt|l, Yiy - - - 7yt—1)



Algorithms

P(ig4q1ie)
% Pt+1(l) =P(1|Y1,---,Yt)
. def _1,(i,t+1)
p(Yt+1|l,YI ..... y ) - C

— Set emission probabilities, p(y¢|t,y1,.--,Y:—1) = €
SO L(Zat) — logp(yt‘l, Yiy - - - 7yt—1)-
— Bayesian updates of p;(i):

Zpt Je~ MU 0p(i]; ©)

—L(i,t)

pt—|—1
Zt—|—1

where p1(2) = 1/n. (cf. forward propagation in HMMs)



Algorithms

P(ig411ie)
% e P, (1) = P(ly ,...,¥,)
. def _1,(i,t+1)
p(Yt+1|lIYI .... y ) ) e

— Log-loss of the algorithm

L(p¢,1)

logZpt p(Yelt, Y15 -5 Ye—1)

logzpt —L(z t)

Note: can bound other loss functions [Haussler et al., 1998]
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Transition Dynamics

e Transition probability matrix © is learner's model of non-
stationarity of observation sequence.

e Choosing © according to

0. _ (1—a) i=7
T i#d
yields Fixed-share algorithm of [Herbster and Warmuth, 1998].

— Static-expert algorithm of [Littlestone and Warmuth, 1989]
when follows by setting o = 0.
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Our Motivation

e Improve online learning in (possibly) non-stationary case.
— remove prior assumptions
— existing algorithms take switching-rate, «, as a parameter.

e Design new algorithm to learn a online, simultaneous to
original learning task.

e Yields algorithm whose regret is upper bounded by O(logT).
— whereas regret of existing algorithms:
e upper bound O(T).
e lower bound can be O(T).

e Regret-optimal discretization requires regret bound WRT
Fixed-share(a™)
— where o™ is hindsight-optimal setting of switching-rate «,
for the sequence observed.
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Outline
e Online learning framework
e Upper and lower regret bounds for a class of online
learning algorithms
— technique for regret bounds
— upper bound

— lower bound
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Regret

e Cumulative loss of the Bayesian algorithm (Fixed-share),
using parameter «, over 1’ training examples is

Lr(@) = 3 L(pia )

e This can be expressed as the negative log-probability of all
the observations, given the model (cf. HMMs):

Lr(a) = — 1og[Zj $(3)p(5; )]

where § = {i1,...,ip}, ¢(5) = [[,_, e L0t and

T

p(s;a) = p1(in) Hp(it\it—l; )

t=2
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e "Regret” for using «, instead of hindsight-optimal, o™ for

that sequence: Lp(a)

A

84

log

log

log

ZQ

e 1)((3) log Z+(1-a(3)) log 5%

>|<2

2Q) and a* summarize the observed sequence.

o > +6(3)p(F:e)
— Lr(a”) = —log &5, tmamy
( ¢ (5)p(5; ) > p(5; )
—~ \2Lro(F)p(7; ) ) p(5;0%)
o) PED | e IS0 )
p(s; o) <

(§) is the empirical fraction of non-self-transitions in §.

Q(s]a*) is the posterior probability over the choices of
experts along the sequence, induced by «
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Technique for Regret Bounds

e Regret WRT hindsight-optimal algorithm can be expressed
as:

Lr(a) — Ly(a*) = —log [E@NQ e(T—l)[D(@Ha*)—D(@na)]}

e Upper and lower bound regret, by finding optimizing () in
Q, the set of all distributions, of this expression.

e Upper bound:

] {E&N (T_1>[D<@||a*>_p<@||a>q}
B\~ 1ow [ Faac

subject to constraint:

(1) (Lr(a) ~ Lr(a"))jaca = 0
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Technique for Regret Bounds
Lower bound:

in {1 {E&N (T—l)[D(&na*)—D(ana)q}
3ig 8 [Favo

subject to constraint (1) and

@) L@ = Lr(@" oo = 2oy

where 5%, is relative quality of regret minimum at o™, defined
as:

a*(1 — a*) d?
T—1 dao?

0" = (Lr(a) = Lr(a”))ja=a-

where normalization guarantees 5* < 1. And 3* > 0 for any
o that minimizes Lp(«).
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Upper Bound on Regret
Theorem 1: For a Bayes learner on the graphical model
above, with arbitrary transition matrix ©, the regret on a
sequence of T observations with respect to the hindsight-
optimal transition matriz O* for that sequence, 1s:

Lp(©) — Lp(©7) < (T'—1) max }D(@E‘H@i)
1e1l,....,n
Corollary: For a Fixed-share(a) algorithm, the regret on
T observations, with respect to the hindsight optimal o™ for
that sequence 1s:

Lr(a) = Lr(a™) < (T' = 1) D(a™||o)

Bound vanishes when o« = o*, and no direct dependence on n
(unlike previous work). The maximizing () is a point mass at

o,
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A Lower Bound on Regret

A non-trivial lower bound using an additional statistic on
observed sequence, 3.

Theorem 2: Define Q(1) — ¢ = [1+ f__ﬁ1*1;3*]_17
Q(E=2) = 1 — q1, when o > o, and Q(0) = qo =

[1+-E ﬁl*lo‘; =1 Q(lg—izo) = 1—qo, when o < ™. Then for a
Fixed-share («) algorithm, the regret on any Il observations
consistent with o™ and (3* 1s

Lr(a) — L(a*) > —log [ Bang e T~ DIP(@la")=D(a]a)

e Bound is non-trivial only when 5* > 0 (sequences for which

o is non-trivial minimizer)
e As 3* — 1, upper and lower bounds agree: (T —1)D(a*||a)
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Outline

e Online learning framework

e Upper and lower regret bounds for a class of online
learning algorithms

e An algorithm that simultaneously learns the
switching-rate, «, at optimal discretization

— Algorithm Learn-a

— Regret-optimal discretization

e A stronger bound on regret of new algorithm
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Regret-Optimal Learning of o

Algorithm Learn—Q

e Algorithm Learn-a: a hierarchical algorithm
simultaneously learns the switching-rate a online
— track the best “a-expert” (Static-expert updates).
— set of m a-experts, i.e. Fixed-share(«) algorithms.
— posterior over switching-rates:
— P — .o Li—1()
pi(a) = P(alyi—1,...,31) =c-e

that
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Regret-Optimal Learning of «

Algorithm Learn-o

e Bayesian updates (cf. Static-expert):

1 Lo t)
pelai)e js
Zt—|—1 t( ])

Pr+1(aj) =

where p1(a;) = 1/m, and L(aj,t) = L(pt.a;,t).

e Loss of algorithm is thus

LtOp(pt,t) _ —IOgZpt(aj)e_L(aj’t)
j=1

—logy > pe(0;)pea, (i)Y

j=1i=1

as is appropriate for a hierarchical Bayesian method.

22



Regret-Optimal Learning of «

e Optimal discretization: Find a regret-optimal discrete set of
switching rates {aq, ..., }

e Optimize tradeoff between loss due to exploration (too many
a;'s), and loss of a;+ WRT a* (too few).

o Choose the minimal set s.t. loss of aj+ WRT o™ is bounded.

— for any o™ we require that there is a; s.t. the cumulative
regret is upper bounded by (T — 1)4.

— by regret bound LT(O{j*) — LT(Oé*) S (T — 1) D(Oé*HO{j*)

— SO we require:

max min  D(a”||a;) =90
a*€l0,1] j=1,...,m(5)

— m(d) is also computed by discretization algorithm.
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Regret-Optimal Learning of «
Discretization algorithm:

e Set oy s.t.

m[ax ]D(oz*||041) = D0|lay) =6 = a;=1—¢e°
a*€l0,01

o Set o (iteratively) s.t.

max min{D(a"||a;-1), D(a||a;)} =0

a”Ela_1,0]

e Maximizing a* has closed form solution, which is increasing
function of «;.

e Using this a*, solve for a; in D(a*||a;j—1) = 6, e.g. via
bisection search.

e Assign aj > = by symmetry of D(:||-) on [0, 1].
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Upper Bound on Regret of Learn-o
Theorem 3: The regret of Learn-a on a Ssequence
of T observations, with respect to the hindsight-optimal
Fixed-share (a™) algorithm for that sequence is

LY — Lp(a®) < (T—1)  min__ D(a*|lay) + log(m(s))

j=1,...,m(d)
Proof:
LY? < _min o Lr(c;) + log(m(d))
< Lr(a”)+(T'—1) min D(a[ay)+ log(m())

j=1,....m(d)

by applying relative loss bound on Static-expert, and then
new relative loss bound on Fixed-share.

[]

3[Littlestone and Warmuth, 1989]
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Upper Bound on Regret of Learn-o

e By discretization method, bound is
L7P — Lp(a®) < (T —1)8 +logm(d)
e 0 is a free parameter so we can optimize the bound, without

knowledge of the observation sequence.

— since logm(d) ~ —1/2logé for small §, regret bound
becomes

1
LP — Ly(a*) =~ (T = 1)6 — 5 log?

— optimize to attain 6* = 1/(2T'), and m(6*) = v2T.

— thus require O(v/T) settings of a.
e independent of n.
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Upper Bound on Regret of Learn-o

Optimized regret bound:

1
§logT—|—c

e Upper bound on regret of Learn-« is thus O(logT).

e cf. lower bound on regret of Fixed-share

— can be O(T).

Algorithmic complexity:
e time O(nm), or O(n+m) time and O(m) space (in parallel).

e in optimized version: O(nv/T), or O(n + /T) with space
OWT).
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Outline

e Online learning framework

e Upper and lower regret bounds for a class of online
learning algorithms

e An algorithm that simultaneously learns the
switching-rate, «, at optimal discretization

e A stronger bound on regret of new algorithm

e Application to wireless networks
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Application to Wireless Networks
IEEE 802.11 Energy/Performance Tradeoff

e Energy: 802.11 wireless nodes consume more energy in
AWAKE than SLEEP

e Performance: node cannot receive packets while sleeping —
introduces latency

e |IEEE 802.11 Power Saving Mode:
— Base station can buffer packets while node is sleeping

— Use of a fixed polling time (100ms) at which to WAKE,
receive buffered packets, and then go back to sleep.

e Related work:
— Adaptive control [Krashinsky and Balakrishnan, 2002]
— Reinforcement Learning [Steinbach, 2002]
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Algorithm Formulation for Application

e Problem is apt for online learning, specifically Learn-«

— network conditions vary over time, and location, thus
cannot set o beforehand.

e n experts: constant settings of polling time, T;.

e Run Learn-a, using m(d*) a-experts, or sub-algorithms
running Fixed-share (o).

e Observe/update at epochs, t, only upon awakening. Define:
— I;: number of bytes buffered since last wake-up.

— T}: time slept for.
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Algorithm Formulation for Application

e Loss per expert:

_|_

L(i.t) =
(4,1) Yor, T 7

— first term approximates* latency introduced by buffering I
bytes, scaled by how long 7 would have slept.

— second term encodes energy penalty for waking often.
— ~: user specified scaling to quantify preferred tradeoff.

— sum of convex functions = unique minimum.

*Assume uniform arrival rate while sleeping, since cannot observe.
°Or, Lagrange multiplier on latency constraint, in an energy minimization.
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Cumulative loss

Cumulative loss

Results

12000

arbitrary expert (500ms)

10000 -

8000 -

6000 -

4000 -

Fixed—-share(a) alg

best expert (100ms)
IEEE 802.11 Protocol alg

2000

Static—expert alg

Learn—a (6*)

3500

3000

2500

2000

1500

1000

500
0

0.1

0.2

0.3

0.4 05 0.6 07 0.8
a

0.9

best expert (100ms)
IEEE 802.11 Protocol alg

Fixed—-share(a) alg

Static—expert alg

Learn-a (6*)

0.2

0.4

0.6

0.8 1 12 14 16

32



Results®

_| mmm—— | isten
=== Sleep
| s Awake

Energy (J)

Slowdown

% Joint work with Hari Balakrishnan and Nick Feamster. ns2 network simulation.
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Summary and Future Work

e Upper and lower regret bounds for Fixed-share algorithms
— new proof technique, comparison class

e Optimal discretization for learning the switching-rate online
— new algorithm has stronger regret bound

e Application to wireless energy management with performance
gains

e Upper bound for any transition matrix (listed here)
e Lower bound for any transition matrix in progress.

e Extension of optimal discretization to multi-dimensional
simplex, (for learning transition matrix) in progress.
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Some Proof Details

e Proof of Theorem 1: Upper Bound:
Constraint (1) is equivalent to Eg.g{d} = a*.
Take expectation outside of logarithm. [

¢ Proof of Theorem 2: Lower Bound:
(2) equivalent to Eaq [(6 — a*)?) = E=F)alzal) — g
where 7" =T — 1.
Find the form of the minimizing () by inspecting J(Q,X)
given by

Eang [F(60,07) = Mi(a — a") = Xo((& — a”)? = 35)]

where f(é; a, a*) = exp {T’(& log = + (1 — &) log 2=2) }

= () can be non-zero only at two points, where one of the
points is 0 or 1 (convexity argument, see paper for details).
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Solve mean (1) and variance (2) constraints to find
optimizing ) (here a < *, points 0 and a):

O0xgot+a(l—gq) = (1)
. . 1 —-05%)a™ (1 —aF
w00~ 0% + (1 - go)(a —a®)? = LI
. . ] L o 1 . . .
giving: a = 1=-,qo 1+1Té*1a2*. Substitution yields

bound.
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Comparison of Upper Bounds

e [Herbster and Warmuth, 1998] bound loss relative to loss of
the best k-partition of the observation sequence, where:
— the best expert is assigned to each segment.
— bound parameters: k, a™.

Lr(a) — Lp(best k-partition) < (T'— 1)[H(a3) + D(ag||a)]
+ klog(n — 1) + logn

where af = k/(T —1).
e Bounds are comparable, but differ in comparison class.
— Computing regret-optimal discretization for learning «
required a bound with respect to a.
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e Lp(a*) — Ly(best k-partition) =

*

1
= —log— — klog “
n

—— — (I" — k) log(1 — o)

where the terms are the negative log-probability, given the
Fixed-share(a™)'s model of:

1. choosing the start state

2. making the k switches (done by the best k-partition)

3. staying with one expert, during each of the k segments in
the best k-partition.

e Bounds are comparable when a; = «a*. Simplification and
subsitution of k = T"a} yields:

= —T'log(l — aj) +T'ajlog(l — aj) — T'aj log o
+ klog(n — 1) 4+ logn
= T'H(a}) + klog(n —1) +logn
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which is exact form of difference in the bounds.
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