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Outline

• Online learning framework

• Upper and lower regret bounds for a class of online

learning algorithms

• An algorithm that simultaneously learns the

switching-rate, α, at optimal discretization

• A stronger bound on regret of new algorithm

• Application to wireless networks
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Online Learning Framework

• Typical set-up: receive one (xt, yt) example at a time

– view xt first, to test current predictions

– regression, estimation or classification

• No statistical assumptions about observations

– no stationarity assumptions on generating process

– labels could even be adversarial

• Learner makes prediction on each example, and receives

associated prediction loss.

– loss on all examples counts – no separate “training” period.
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Online Learning Framework

t

...

p (i)

Static−expert algorithm 

Experts i=1 . . . n 

• Algorithm1 bases prediction on a set of n experts.

– in this framework, xt is the vector of experts’ predictions

– experts’ prediction mechanisms unknown, can vary

• over time

• over experts

– algorithm maintains a distribution over the experts pt(i).

1Static-expert due to [Littlestone and Warmuth, 1989]
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Online Learning Framework

t

...

p (i)

Static−expert algorithm 

Experts i=1 . . . n 

• L(i, t) is non-negative prediction loss of expert i at time t

(depends on the true label yt ∈ Y).

• Bayesian updates are pt+1(i) ∝ pt(i) e−L(i,t).

• L(pt, t) is loss of the algorithm.

• Objective: bound prediction loss to that of best expert, or

best sequence of experts, over finite, known, time horizon T .

5



Related Work

• Algorithms for universal prediction, with performance

guarantees:

– relative to best expert [Littlestone and Warmuth, 1989]

– relative to best sequence of experts

[Herbster and Warmuth, 1998], [Vovk, 1999]

– proven for many pairings of loss and prediction functions

[Haussler et al., 1998]

• Algorithms with similar guarantees for:

– adaptive game playing [Freund and Schapire, 1999]

– online portfolio management [Helmbold et al., 1996]

– paging [Blum et al., 1999]

– k-armed bandit problem [Auer et al., 1995]

• Other relative performance measures for universal prediction,

e.g. systematic variations [Foster and Vohra, 1999].
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Outline

• Online learning framework

– related work

– HMM view of existing algorithms

– our motivation
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Algorithms
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t+1 1 t

p(i  |i )tt+1

p(y  |i,y ,...,y ) = e
1t+1

−L(i,t+1)
t

def

t+1it

• Existing algorithms can be viewed as Bayesian updates in

this graphical model

– identity of current best expert is hidden (state) variable

– p(it|it−1) defined by transition matrix Θ.

– prediction, P (yt|y1, . . . , yt−1) =
∑n
i=1 pt(i) p(yt|i, y1, . . . , yt−1)
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Algorithms
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– Set emission probabilities, p(yt|i, y1, . . . , yt−1) = e−L(i,t),

so L(i, t) = − log p(yt|i, y1, . . . , yt−1).

– Bayesian updates of pt(i):

pt+1(i) =
1

Zt+1

n∑
j=1

pt(j)e−L(j,t)p(i|j; Θ)

where p1(i) = 1/n. (cf. forward propagation in HMMs)
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Algorithms
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– Log-loss of the algorithm

L(pt, t) = − log
n∑
i=1

pt(i) p(yt|i, y1, . . . , yt−1)

= − log
n∑
i=1

pt(i)e−L(i,t)

Note: can bound other loss functions [Haussler et al., 1998]
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Transition Dynamics

• Transition probability matrix Θ is learner’s model of non-

stationarity of observation sequence.

• Choosing Θ according to

θij =

{
(1− α) i = j
α
n−1 i 6= j

yields Fixed-share algorithm of [Herbster and Warmuth, 1998].

– Static-expert algorithm of [Littlestone and Warmuth, 1989]

when follows by setting α = 0.
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Our Motivation
• Improve online learning in (possibly) non-stationary case.

– remove prior assumptions

– existing algorithms take switching-rate, α, as a parameter.

• Design new algorithm to learn α online, simultaneous to

original learning task.

• Yields algorithm whose regret is upper bounded by O(log T ).

– whereas regret of existing algorithms:

• upper bound O(T ).

• lower bound can be O(T ).

• Regret-optimal discretization requires regret bound WRT

Fixed-share(α∗)
– where α∗ is hindsight-optimal setting of switching-rate α,

for the sequence observed.
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Outline

• Online learning framework

• Upper and lower regret bounds for a class of online

learning algorithms

– technique for regret bounds

– upper bound

– lower bound
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Regret
• Cumulative loss of the Bayesian algorithm (Fixed-share),

using parameter α, over T training examples is

LT (α) =
T∑
t=1

L(pt;α, t)

• This can be expressed as the negative log-probability of all

the observations, given the model (cf. HMMs):

LT (α) = − log[
∑
~s

φ(~s)p(~s;α)]

where ~s = {i1, . . . , iT}, φ(~s) =
∏T
t=1 e

−L(it,t), and

p(~s;α) = p1(i1)
T∏
t=2

p(it|it−1;α)
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• “Regret” for using α, instead of hindsight-optimal, α∗ for

that sequence: LT (α)− LT (α∗) = − log
∑
~s φ(~s)p(~s;α)∑
~r φ(~r)p(~r;α∗)

= − log

[∑
~s

(
φ(~s)p(~s;α∗)∑
~r φ(~r)p(~r;α∗)

)
p(~s;α)
p(~s;α∗)

]

= − log

[∑
~s

Q(~s;α∗)
p(~s;α)
p(~s;α∗)

]
= − log

[∑
~s

Q(~s;α∗)elog
p(~s;α)
p(~s;α∗)

]

= − log

[∑
~s

Q(~s;α∗)e(T−1)
(
α̂(~s) log α

α∗+(1−α̂(~s)) log 1−α
1−α∗

)]

• Q(~s|α∗) is the posterior probability over the choices of

experts along the sequence, induced by α∗.2

• α̂(~s) is the empirical fraction of non-self-transitions in ~s.

2Q and α∗ summarize the observed sequence.
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Technique for Regret Bounds
• Regret WRT hindsight-optimal algorithm can be expressed

as:

LT (α)− LT (α∗) = − log
[
Eα̂∼Q e

(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]

• Upper and lower bound regret, by finding optimizing Q in

Q, the set of all distributions, of this expression.

• Upper bound:

max
Q∈Q

{
− log

[
Eα̂∼Q e

(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]}

subject to constraint:

(1)
d

dα
(LT (α)− LT (α∗))|α=α∗ = 0
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Technique for Regret Bounds
• Lower bound:

min
Q∈Q

{
− log

[
Eα̂∼Q e

(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]}

subject to constraint (1) and

(2)
d2

dα2
(LT (α)− LT (α∗))|α=α∗ =

β∗(T − 1)
α∗(1− α∗)

where β∗, is relative quality of regret minimum at α∗, defined

as:

β∗ =
α∗(1− α∗)
T − 1

d2

dα2
(LT (α)− LT (α∗))|α=α∗

where normalization guarantees β∗ ≤ 1. And β∗ ≥ 0 for any

α∗ that minimizes LT (α).
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Upper Bound on Regret
Theorem 1: For a Bayes learner on the graphical model
above, with arbitrary transition matrix Θ, the regret on a
sequence of T observations with respect to the hindsight-
optimal transition matrix Θ∗ for that sequence, is:

LT (Θ)− LT (Θ∗) ≤ (T − 1) max
i∈{1,...,n}

D(Θ∗i‖Θi)

Corollary: For a Fixed-share(α) algorithm, the regret on
T observations, with respect to the hindsight optimal α∗ for
that sequence is:

LT (α)− LT (α∗) ≤ (T − 1)D(α∗‖α)

Bound vanishes when α = α∗, and no direct dependence on n

(unlike previous work). The maximizing Q is a point mass at

α∗.
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A Lower Bound on Regret
A non-trivial lower bound using an additional statistic on

observed sequence, β∗.

Theorem 2: Define Q(1) = q1 = [1 + T−1
1−β∗

1−α∗
α∗ ]−1,

Q(α
∗−q1

1−q1
) = 1 − q1, when α ≥ α∗, and Q(0) = q0 =

[1+ T−1
1−β∗

α∗

1−α∗]
−1, Q( α∗

1−q0
) = 1−q0, when α < α∗. Then for a

Fixed-share(α) algorithm, the regret on any T observations
consistent with α∗ and β∗ is:

LT (α)− LT (α∗) ≥ − log
[
Eα̂∼Q e

(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]

• Bound is non-trivial only when β∗ > 0 (sequences for which

α∗ is non-trivial minimizer)

• As β∗→ 1, upper and lower bounds agree: (T − 1)D(α∗‖α)
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Outline

• Online learning framework

• Upper and lower regret bounds for a class of online

learning algorithms

• An algorithm that simultaneously learns the

switching-rate, α, at optimal discretization

– Algorithm Learn-α

– Regret-optimal discretization

• A stronger bound on regret of new algorithm
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Regret-Optimal Learning of α

t;
p   (i)

Algorithm Learn−α

α

p ( )α
t

...

...

α−experts 1 . . . m

Experts i=1 . . . n

• Algorithm Learn-α: a hierarchical algorithm that

simultaneously learns the switching-rate α online

– track the best “α-expert” (Static-expert updates).

– set of m α-experts, i.e. Fixed-share(α) algorithms.

– posterior over switching-rates:

pt(α) = P (α|yt−1, . . . , y1) = c · e−Lt−1(α)
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Regret-Optimal Learning of α
Algorithm Learn-α

• Bayesian updates (cf. Static-expert):

pt+1(αj) =
1

Zt+1
pt(αj)e−L(αj,t)

where p1(αj) = 1/m, and L(αj, t) = L(pt;αj, t).

• Loss of algorithm is thus

Ltop(pt, t) = − log
m∑
j=1

pt(αj)e−L(αj,t)

= − log
m∑
j=1

n∑
i=1

pt(αj)pt;αj(i)e
−L(i,t)

as is appropriate for a hierarchical Bayesian method.
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Regret-Optimal Learning of α
• Optimal discretization: Find a regret-optimal discrete set of

switching rates {α1, . . . , αm}

• Optimize tradeoff between loss due to exploration (too many

αj’s), and loss of αj∗ WRT α∗ (too few).

• Choose the minimal set s.t. loss of αj∗ WRT α∗ is bounded.

– for any α∗ we require that there is αj s.t. the cumulative

regret is upper bounded by (T − 1)δ.

– by regret bound LT (αj∗)− LT (α∗) ≤ (T − 1)D(α∗‖αj∗)

– so we require:

max
α∗∈[0,1]

min
j=1,...,m(δ)

D(α∗‖αj) = δ

– m(δ) is also computed by discretization algorithm.

23



Regret-Optimal Learning of α
Discretization algorithm:

• Set α1 s.t.

max
α∗∈[0,α1]

D(α∗‖α1) = D(0‖α1) = δ =⇒ α1 = 1− e−δ

• Set αj (iteratively) s.t.

max
α∗∈[αj−1,αj]

min{D(α∗‖αj−1), D(α∗‖αj)} = δ

• Maximizing α∗ has closed form solution, which is increasing

function of αj.

• Using this α∗, solve for αj in D(α∗‖αj−1) = δ, e.g. via

bisection search.

• Assign αj ≥ 1
2 by symmetry of D(·‖·) on [0, 1].
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Upper Bound on Regret of Learn-α
Theorem 3: The regret of Learn-α on a sequence
of T observations, with respect to the hindsight-optimal
Fixed-share(α∗) algorithm for that sequence is

LtopT − LT (α∗) ≤ (T − 1) min
j=1,...,m(δ)

D(α∗‖αj) + log(m(δ))

Proof:

LtopT ≤ min
j=1,...,m(δ)

LT (αj) + log(m(δ))

≤ LT (α∗) + (T − 1) min
j=1,...,m(δ)

D(α∗‖αj) + log(m(δ))

by applying relative loss bound on Static-expert,3 and then

new relative loss bound on Fixed-share.

�
3[Littlestone and Warmuth, 1989]
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Upper Bound on Regret of Learn-α
• By discretization method, bound is

LtopT − LT (α∗) ≤ (T − 1)δ + logm(δ)

• δ is a free parameter so we can optimize the bound, without

knowledge of the observation sequence.

– since logm(δ) ≈ −1/2 log δ for small δ, regret bound

becomes

LtopT − LT (α∗) ≈ (T − 1)δ − 1
2

log δ

– optimize to attain δ∗ = 1/(2T ), and m(δ∗) =
√

2T .

– thus require O(
√
T ) settings of α.

• independent of n.
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Upper Bound on Regret of Learn-α

Optimized regret bound:

1
2

log T + c

• Upper bound on regret of Learn-α is thus O(log T ).

• cf. lower bound on regret of Fixed-share
– can be O(T ).

Algorithmic complexity:

• time O(nm), or O(n+m) time and O(m) space (in parallel).

• in optimized version: O(n
√
T ), or O(n +

√
T ) with space

O(
√
T ).
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Outline

• Online learning framework

• Upper and lower regret bounds for a class of online

learning algorithms

• An algorithm that simultaneously learns the

switching-rate, α, at optimal discretization

• A stronger bound on regret of new algorithm

• Application to wireless networks
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Application to Wireless Networks
IEEE 802.11 Energy/Performance Tradeoff

• Energy: 802.11 wireless nodes consume more energy in

AWAKE than SLEEP

• Performance: node cannot receive packets while sleeping →
introduces latency

• IEEE 802.11 Power Saving Mode:

– Base station can buffer packets while node is sleeping

– Use of a fixed polling time (100ms) at which to WAKE,

receive buffered packets, and then go back to sleep.

• Related work:

– Adaptive control [Krashinsky and Balakrishnan, 2002]

– Reinforcement Learning [Steinbach, 2002]
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Algorithm Formulation for Application

• Problem is apt for online learning, specifically Learn-α

– network conditions vary over time, and location, thus

cannot set α beforehand.

• n experts: constant settings of polling time, Ti.

• Run Learn-α, using m(δ∗) α-experts, or sub-algorithms

running Fixed-share(α).

• Observe/update at epochs, t, only upon awakening. Define:

– It: number of bytes buffered since last wake-up.

– Tt: time slept for.
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Algorithm Formulation for Application

• Loss per expert:

L(i, t) = γ
ItT

2
i

2Tt
+

1
Ti

– first term approximates4 latency introduced by buffering It
bytes, scaled by how long i would have slept.

– second term encodes energy penalty for waking often.

– γ: user specified scaling to quantify preferred tradeoff.5

– sum of convex functions =⇒ unique minimum.

4Assume uniform arrival rate while sleeping, since cannot observe.
5Or, Lagrange multiplier on latency constraint, in an energy minimization.
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Results
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Results6
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6Joint work with Hari Balakrishnan and Nick Feamster. ns2 network simulation.
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Summary and Future Work

• Upper and lower regret bounds for Fixed-share algorithms

– new proof technique, comparison class

• Optimal discretization for learning the switching-rate online

– new algorithm has stronger regret bound

• Application to wireless energy management with performance

gains

• Upper bound for any transition matrix (listed here)

• Lower bound for any transition matrix in progress.

• Extension of optimal discretization to multi-dimensional

simplex, (for learning transition matrix) in progress.
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Some Proof Details

• Proof of Theorem 1: Upper Bound:

Constraint (1) is equivalent to Eα̂∼Q{α̂} = α∗.

Take expectation outside of logarithm. �
• Proof of Theorem 2: Lower Bound:

(2) equivalent to Eα̂∼Q [(α̂ − α∗)2] = (1−β∗)α∗(1−α∗)
T ′ ≡ β∗2 ,

where T ′ = T − 1.

Find the form of the minimizing Q by inspecting J(Q,~λ)
given by

Eα̂∼Q
[
f(α̂;α, α∗)− λ1(α̂− α∗)− λ2

(
(α̂− α∗)2 − β∗2

)]
where f(α̂;α, α∗) = exp

{
T ′
(
α̂ log α

α∗ + (1− α̂) log 1−α
1−α∗

)}
.

⇒ Q can be non-zero only at two points, where one of the

points is 0 or 1 (convexity argument, see paper for details).
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Solve mean (1) and variance (2) constraints to find

optimizing Q (here α < α∗, points 0 and a):

0× q0 + a(1− q0) = α∗ (1)

q0(0− α∗)2 + (1− q0)(a− α∗)2 =
(1− β∗)α∗(1− α∗)

T ′
(2)

giving: a = α∗

1−q0
, q0 = 1

1+ T ′
1−β∗

α∗
1−α∗

. Substitution yields

bound.�
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Comparison of Upper Bounds

• [Herbster and Warmuth, 1998] bound loss relative to loss of

the best k-partition of the observation sequence, where:

– the best expert is assigned to each segment.

– bound parameters: k, α∗.

LT (α)− LT (best k-partition) ≤ (T − 1)[H(α∗k) +D(α∗k‖α)]

+ k log(n− 1) + log n

where α∗k = k/(T − 1).

• Bounds are comparable, but differ in comparison class.

– Computing regret-optimal discretization for learning α

required a bound with respect to α∗.
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• LT (α∗)− LT (best k-partition) =

= − log
1
n
− k log

α∗

n− 1
− (T ′ − k) log(1− α∗)

where the terms are the negative log-probability, given the

Fixed-share(α∗)’s model of:

1. choosing the start state

2. making the k switches (done by the best k-partition)

3. staying with one expert, during each of the k segments in

the best k-partition.

• Bounds are comparable when α∗k = α∗. Simplification and

subsitution of k = T ′α∗k yields:

= −T ′ log(1− α∗k) + T ′α∗k log(1− α∗k)− T ′α∗k logα∗k
+ k log(n− 1) + log n

= T ′H(α∗k) + k log(n− 1) + log n
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which is exact form of difference in the bounds.
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