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Abstract

Wireless ad hoc networks are becoming an increasingly common platform for bringing
computation to environments with minimal infrastructure. Increasingly, applications re-
quire robust fault-tolerance guarantees, despite a challenging network environment. In this
paper, we introduce a new middleware framework for wireless ad hoc networks to aid the
development of robust algorithms. Our framework is based on the following three compo-
nents: (1) receiver-side collision detection, used for identifying inconsistencies caused by
unreliable communication; (2) robust round synchronization, used for emulating a strictly
synchronized multi-hop network using only basic timeliness assumptions about the envi-
ronment; and (3) contention management, used for reducing message collision and sup-
porting eventually reliable message delivery. We demonstrate the utility of our framework
by showing how it can be used to implement a simple fault-tolerant broadcast protocol,
and discuss algorithms to implement each of the components.

1 Introduction

The uses for wireless ad hoc networks are expanding. Most current applications focus on data
collection and aggregation. However, the ongoing proliferation of radio-equipped devices is
likely to motivate interesting new directions as this technology evolves.

One such new direction is reliable coordination. For example, actuator-equipped devices
coordinated by a wireless network could be used to control industrial regulator valves. Simi-
larly, in a military scenario, wireless ad hoc networks could be used to guide precision weapon
strikes. Or, unmanned missions to Mars could deploy a multitude of sensors to examine the
local topology, and then safely navigate an expensive rover over dangerous terrain.

Reliability is crucial for each of these examples. If the devices coordinating regulator
valves malfunction due to faulty communication, a pipe may burst and flood the factory. If
two battlefield sensors provide inconsistent guidance information, the attack may fail or inno-
cent civilians may be killed. For unmanned space exploration, reliability is similarly critical.
An occasional missed warning about a dangerous topology feature could lead to a destroyed
rover. In short, these uses require robust applications that always operate correctly, even under
unpredictable conditions.
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Figure 1: Middleware framework architecture diagram. The framework consists of three components,
the round synchronizer, the collision detector, and the contention manager.

Although these applications are exciting, their development is impeded by several signifi-
cant challenges. First and foremost is the need to cope with communication that is inherently
unreliable. Devices communicate using wireless radios, which use a shared spectrum that is
subject to message collisions and other forms of electromagnetic interference.

Second, the devices are deployed in an ad hoc manner. There may be no convenient central-
ized servers (due to logistical or cost-related concerns), and devices have no a priori knowledge
of which other devices may be nearby. Moreover, devices may be unreliable: the devices may
be mobile and leave the computation; users may turn off devices or obstruct their antennas;
devices may exhaust their batteries; and the hardware itself may fail.

Prior research has attempted to mitigate these difficulties by designing component services
to tame the unpredictability of wireless networks. Examples of such services include clock
synchronization, TDMA schedulers, and reliable MAC layers.

Our goal in this paper is to identify a coherent set of services that is sufficient to simplify the
development of robust applications. Moreover, we aim to identify services that can themselves
be built directly on an unpredictable, unreliable wireless network (rather than relying on more
basic network services). Accordingly, in this paper, we describe a middleware framework
consisting of three basic, modular services. Together, these services are powerful enough to
simplify the development of a wide variety of protocols. At the same time, they are simple
enough that they can be implemented in realistic—and unreliable—wireless networks.

Specifically, our framework offers the following three components: (1) a round synchro-
nizer, used for emulating a strictly synchronized multi-hop network using only basic timeliness
assumptions about the environment; (2) collision detectors, used for identifying inconsistencies
caused by unreliable communication; and (3) contention managers, used for reducing message
collisions and supporting eventual message delivery.

In the sections that follow, we describe these components in more detail. In Section 3, we
present a simple broadcast protocol, using this framework, to demonstrate how these compo-
nents are used in the context of building a robust application. Next, in Section 4, we present
solutions for implementing each of the components.



2 Framework Overview

Our proposed framework consists of three components: the round synchronizer, the collision
detector, and the contention manager. (See Figure 1.) The round synchronizer mediates the
client’s access to the wireless medium through the use of synchronized rounds; the collision
detector offers indications of when messages may have been lost; the contention manager
provides backoff suggestions that reduce contention on the wireless channel.

2.1 Round Synchronization

The goal of the round synchronizer is to coordinate nodes into a shared round structure. In
each round, clients notify the synchronizer of messages to be broadcast in that round. The syn-
chronizer then delivers to each node all the messages “successfully broadcast” by its neighbors
in that round (with neighbors defined by geographic proximity). Notice, however, that some
messages may not be successfully broadcast: the wireless medium is inherently unreliable,
and some messages may be lost. The goal of the round synchronizer is not to provide reli-
able communication, but simply to provide a synchronous framework on which to build robust
protocols.

2.2 Collision Detectors

In order to compensate for messages lost due to unreliable communication, we augment the
framework with a collision detector. This component notifies a node when a collision seems
to have occurred, indicating that message loss has occurred. In particular, if a neighbor of
node p broadcast a message in round r, and yet node p did not receive this message, then in a
perfect world, p would detect a collision. Notice that this is receiver-side collision detection;
the transmitter learns nothing about collisions.

In an important break from previous work, we investigate collision detection that is less
than perfect. As we demonstrate in a recent theoretical study [4], “weak” collision detectors
are often sufficient for solving difficult problems. And as we discuss in Section 4, these weaker
collision detectors are much simpler to implement in real world systems. For example, here
are three of the collision detection classes we considered in [4]:

Complete (Perfect): For any round r, if node p loses one or more messages broadcast by its
neighbors during round r, then p receives a collision notification in its round r receive set.

Majority Complete: For any round r, if node p loses a majority of the messages broadcast
by its neighbors during round r, then p receives a collision notification in its round r receive set.

Zero Complete: For any round r, if node p loses all of the messages broadcast by its neigh-
bors during round r, then p receives a collision notification in its round r receive set.

Notice that in all three cases, a collision notification is simply a single-bit indicator; it con-
tains no information regarding the number of messages lost, their content, or their senders.

For many applications, even a zero-complete collision detector is sufficient to allow robust
coordination. In particular, in a round where no messages are received, a node can be entirely
certain that no message was broadcast; on the other hand, if a node performs a broadcast, it
can be certain that every neighbor will receive that message—or a collision notification. These



basic assurances allow enough information transmission to coordinate, even when communi-
cation reliability is minimal.

2.3 Contention Managers

The goal of the contention manager is to manage—and reduce—the contention on the wire-
less medium. When a node suspects that the contention is high (for example, due to a large
number of collisions), it passes this information along to the contention manager. Similarly,
if the channel seems available, the node notifies the contention manager. In return, the con-
tention manager provides the node advice on whether or not it should attempt to gain access
to the medium in the near future. The contention manager offers a well-defined, probabilistic
guarantee about when the channel will become free. For example: any node i that follows the
advice of its contention manager will successfully gain solo access to the medium within log n
rounds, with high probability.

Reducing contention on a shared medium is, of course, a well-studied problem. Many
solutions take the form of backoff protocols, where nodes that want access to the medium back
away from trying for increasing periods of time until contention is low enough for some node
to proceed by itself.

Much recent algorithmic work for wireless ad hoc networks has focused on this issue. This
is especially true of work on the broadcast problem (e.g. [1–3, 8, 9]). In most of these papers,
the authors start with a (well-behaved) collision model (see [2]), and propose algorithms that
integrate complicated backoff protocols designed to reduce the broadcast contention. We ex-
pect that much of the complexity in these protocols—and their analysis—can be reduced by
compartmentalizing the backoff protocols, separating the safety and liveness issues.

3 A Simple Example

To demonstrate the advantages of our framework, in terms of reduction to both code complex-
ity and proof complexity, we present a simple solution to the well-known reliable broadcast
problem. This problem has been well-studied, and there exist a plethora of solutions, both the-
oretical (e.g., [1–3]) and practical (e.g., [10, 11]). We begin with a description of the problem
and the features of our solution. We then offer a closer examination of how the algorithm works
in the context of the various components of our framework.

3.1 The Reliable Broadcast Problem

The reliable broadcast problem requires a single distinguished source to disseminate a message
to all other processes. Any solution must guarantee that every node eventually receives the
message, and each node must eventually halt. The performance of the algorithm is measured
with respect to the last node to halt.

Most currently implemented reliable broadcast protocols fall into one of two categories:
flooding or tree-based. The former approach has processes rebroadcast the message as soon
as they receive it, causing a flood of the information throughout the network. A variety of
schemes have been proposed to reduce the number of messages rebroadcast, while still main-
taining a high probability of full delivery. For example, in [10], which is optimized for the
delivery of large messages broken up into smaller pieces, processes peridocially gossip with
their neighbors; more informed processes can then forward the missing information. See [13]
for a more comprehensive survey of message flood techniques.



The tree-based approach has processes build spanning structures, such as a breadth-first
search tree (as used in [11]), to expedite efficient forwarding of information throughout a
network.

Unfortunately, both of these solutions can be difficult to implement in a collision-prone,
failure-prone wireless network. Flooding, in an environment with collisions, is typically best-
effort. Given enough rebroadcasts and gossiping, the message will probably be successfully
disseminated. Tree-based approaches, on the other hand, are destabilized by both collisions
and faults. The former might prevent a proper structure from being constructed, and the latter
can disconnect (and disrupt) an already constructed structure.

3.2 A Simple Algorithm for Reliable Broadcast

We present a simple algorithm that solves the reliable broadcast problem using the framework
described in Section 2. (See Figure 2.) The new algorithms is much simpler to implement,
while performing competitively with prior theoretical solutions.

The algorithm consists of pairs of rounds. In broadcast rounds, each node that has already
received the message rebroadcasts the message. As a result, some nodes may receive the
message for the first time. Other nodes may receive collisions. In veto rounds, a node performs
a broadcast only if it received a collision in the prior broadcast round.

If no veto messages are received after a veto round, a transmitter can be sure that its
broadcast-round message was received. At this point, the transmitter can safely halt. Safety
is guaranteed by the properties of the zero-complete collision detector: if node p receives no
message or collision, then no neighbor of p broadcast.

The contention manager guarantees liveness. Before sending a message in the broadcast
round, a node requests the advice of the contention manager. The contention manager guaran-
tees that eventually each node will receive a chance to broadcast, and that eventually broadcast
contention will be low, ensuring limited collisions. If all processes follow the advice of the
component, eventually everyone will successfully deliver their message to their neighbors.

In particular, we analyze the performance under the following assumptions: (1) Each node
has a bounded (constant) number of neighbors. (2) If only one neighbor of node p broadcasts
a message in a round, then p receives that message. (3) D is the diameter of the network. The
contention manager guarantees that if a constant number of nodes are competing to broadcast,
they will all succeed within constant time. Since each node has at most a bounded number of
neighbors within two hops, the contention manager guarantees to resolve all collisions.

In this case, the algorithm will terminate in O(D) rounds (with high probability). Notice
how all the probabilistic analysis of the backoff protocols is relegated to the contention manager
component.

3.3 The Framework Interface

The pseudocode in Figure 2 demonstrates how an algorithm can make use of the new frame-
work. The structure of an algorithm in this framework consists of an implementation of the
doRound() function. The round synchronizer calls doRound once for each round. The algo-
rithm is passed the current round number (rnum), the set of messages received during this
round (msgs[]), and a boolean indication of whether or not a collision was detected during this
round (collision). The return value of the procedure is the message to be sent during the next
round (or ∅ to indicate that no message should be sent).



1 init(m)i

2 started← false
3 active← false
4 msg← m
5

6 doRound(rnd, msgs[ ], collision)
7 if rnd mod 2 = 0 then // Receive a message in even rounds.
8 if (not started) and (|msgs| > 0) then
9 started← true

10 msg← msgs[0 ]
11 if collision then
12 return veto // Broadcast a veto if receive failed.
13 else
14 return ∅
15 else if rnd mod 2 = 1 then // Receive a veto in odd rounds.
16 if started then
17 if (not collision) and (|msgs| = 0) and active then
18 halt() // If no vetoes, then done.
19 else if (collision) or (|msgs| > 0) then
20 active← Backoff(eTooMany)
21 else if (not collision) and (|msgs| = 0) and (not active) then
22 active← Backoff(eTooFew)
23 if active then
24 return msg // Broadcast message.
25 else return ∅

Figure 2: Reliable broadcast protocol for node i. The protocol disseminates a single value to every
(correct) node. The protocol works in phases: in even rounds, nodes receive messages and broadcast
vetoes; in odd rounds, nodes receive vetoes and broadcast messages. The algorithm terminates when a
node (a) receives the message and (b) broadcasts the message without receiving any vetoes.

The contention manager component is accessed through the Backoff function. The func-
tion returns true if the caller should attempt to broadcast during the next designated broadcast
round, and it returns false if the caller should remain silent. It accepts as an argument the state
of the channel during the previous designated broadcast round–either eTooMany to indicate
there was contention, or eTooFew to indicate that there was no contention. This information
is enough to allow the component to run a local backoff protocol that eventually guarantees
that all nodes will get a chance to successfully broadcast their message.

4 Implementation

In this section, we describe how to implement the framework presented in Section 2. There is
a significant body of prior work related to each of the components. Our goal in this section
is to provide one possible solution. In some cases, this represents new progress; in others
(particularly, contention management), we draw heavily on existing efforts.



4.1 Collision Detection

We begin by describing a mechanism for implementing collision detection. Our collision detec-
tion implementation employs the following techniques, ordered according to their contribution
towards the cumulative collision detection:

• Carrier sensing
• Cyclic redundancy check (CRC)
• Preamble detection

Receiver-side carrier sensing

Carrier sensing is widely employed in wireless networks with CSMA (Carrier Sense Multi-
ple Access) MAC layers, which includes almost all of the modern wireless network MAC
layers such as IEEE 802.11, IEEE 802.15.4, and all of the wireless sensor network MAC pro-
tocols [6, 14, 15, 18]. Before a transmitter starts it transmission, it senses the medium for any
existing transmission, and only begins transmission if the medium is not already busy. How-
ever, previously carrier sensing was used primarily by transmitters. We adopt this technique
for use by the receiver to detect collisions.

The MAC layer is implemented as a state machine where the states are idle, synchronizing,
receiving, prepare-to-transmit, and transmit. The node is in the idle state most of the time. In
the idle state, when a node detects a preamble byte—a predefined byte signaling that a message
is about to be transmitted—it switches to the synchronizing state, and after receiving the rest
of the preamble bytes and synchronizing with the transmitter, it switches to the receive state.

To detect collisions at the receiver side, we employ carrier sensing in the idle state. The
node detects a collision when its carrier sensing mechanism detects in the idle state that there
is an intense activity on the medium. This is a good indication of a collision—if a message had
been successfully received, a preamble would have been detected and the MAC layer would be
in the receive state.

Due to noise, there is a lot of activity in the transceiver even in the idle state. However, it is
easy to differentiate between noise and a genuine activity, such as a message or collision. The
random noise has significant variance in channel energy (occasional pits below the noise floor)
whereas a genuine activity has fairly constant channel energy (always stays above the noise
floor). Our carrier sensing at the idle state searches for these pits: if for a long period no pit is
found, this is a good indication of genuine activity in the radio.

CRC-based collision detection

In wireless networks, CRC checks are widely adopted for filtering the messages that are re-
ceived with errors. To this end, the receiver calculates a running CRC for the message it re-
ceives and compares this calculated CRC with the CRC appended to the transmitted message.
The messages that fail the test are thrown away. Thus, a failed CRC is a good indication of
collision, since it indicates that the receiver dropped a message. We raise a collision detection
at the MAC layer whenever the CRC test fails for a message.

Preamble-based collision detection

While a node j is receiving a message, if the preambles of a stronger message arrives in the
middle of the first message, the stronger message dominates the first message and renders it



undeliverable. j synchronizes to this latter message and ignores the first message. CRC for the
first message does not even get computed so a collision detection would not be triggered.

This effect is known as the shadowing or capture effect [17]. To be able to detect these
types of collisions we use a preamble based collision detection technique first advocated by
[17]. Note that, in the absence of any collision, the preamble bytes are only heard in the
synchronizing state, and no preamble is heard in the receive state. So, when j receives a
preamble byte in receive state, this is a good indication of a collision, and is reported as such.

4.2 Round Synchronization

The second component of our framework is a round synchronizer. In this section, we present a
simple algorithm to implement a round synchronizer in a partially synchronous network. There
is much prior work in clock synchronization, and if a synchronized clock is available, round
synchronization is trivial. However, it seems unclear whether prior algorithms can work in a
collision-prone, unpredictable environment. To that end, we develop a simple protocol that is
quite robust. It remains an interesting open problem as to whether more powerful algorithms
can be adapted to this environment.

The underlying partially synchronous network provides the following guarantees. First,
we assume that messages are delivered in bounded time, d. A message may be lost due to a
collision, but within some bounded period of time after a message is sent, either the receiver
delivers a message, or a collision is delivered (as per the completeness guarantee of the collision
detector). Second, we assume that the nodes have access to clocks with bounded drift. In other
words, a duration x can take anywhere between x(1− ε) and x(1 + ε) time to elapse on a local
clock.

The round synchronizer measures out some constant number of constant-time rounds, fol-
lowed by a linear-time resynchronization delay. The pseudocode for the round synchronization
protocol is presented in Figure 3. When the node is initialized, it calculates certain constants,
and then begins synchronization (line 8). Similarly, if a node receives a message or a colli-
sion, it begins synchronization (lines 12 and 18). When synchronization begins, it propagates
the start message, and begins simulating rounds. The node then relies solely on its timer to
simulate a certain number of rounds, before resynchronization is necessary.

In particular, as time passes, the node’s clock may drift continually further away from its
neighbors, limiting the “safe” interval in which a message can be broadcast in a round. The
delay function calculates the beginning of the safe broadcast window. Once the safe broadcast
window has become too small, the nodes must resynchronize.

Notice that this protocol tolerates collisions and asynchronous initialization. If many nodes
begin at the same moment, eventually their start messages propagate to each other, ensuring
synchronization. If collisions obscure some message, again the resulting rounds are synchro-
nized.

The key observation is that round synchronization requires only “gradient” synchroniza-
tion, rather than global synchronization. As long as neighboring nodes are (nearly) synchro-
nized, it is possible to emulate rounds.

4.3 Contention Manager

There are a variety of well-studied backoff protocols that can be used to implement a con-
tention manager. The most common of these is exponential backoff, which guarantees that n



1 init(m,r)i

2 rndLength← desired round length

3 delay(k) = d+2ε(k−1)·rndLength

1−ε

4 round-offset← r
5 rcv-msgs← ∅
6 collisions← false
7 msg← m
8 start-synch()
9

10 recv(m)i

11 if (not started) then
12 startSynch()
13 else
14 rcv-msgs← rcv-msgs ∪ {m}
15

16 collision()i

17 if (not started) then
18 startSynch()
19 else
20 collisions← true
21

22 rndLimit(k)
23 left← rndLength(1-ε)
24 right← 2delay(k) + d
25 return left > right

1startSynch()i

2cancelTimer(restart)
3started← true
4rnd← 1
5setTimer(round, rndLength)
6setTimer(bcast, delay(rnd))
7bcast(start)
8

9timerFired(bcast)i

10bcast(msg)
11

12timerFired(round)i

13r← rnd + round-offset
14msg← doRound(r, rcv-msgs, collisions)
15rcv-msgs← ∅
16collisions← false
17rnd← rnd + 1
18if (not rndLimit(rnd)) then
19setTimer(round, rndLength)
20setTimer(bcast, delay(rnd))
21else
22initi(msg,rnd)
23setTimer(restart,O(diameter))
24

25timerFired(restart)i

26startSynch()

Figure 3: Round synchronization algorithm for node i. The protocol receives inputs from the network
(recv) and the collision detector (collision), and produces the doRound output. It uses a timer with drift
bounded by ε.

competing nodes will achieve reduced contention in O(log n) rounds: that is, there will be only
1 active node.

In previous work [4], we have used an even simpler variant, approximating a well-known
back-off strategy [5, 7, 12, 16]: (1) If a node indicates that too many devices are active, then
with probability 1/2, it recommends becoming passive; (2) If a node indicates that too few
devices are active, it recommends becoming active with probability 1/2. This simple strategy
guarantees that within O(log2 n) rounds (with high probability) there is only one active node.

5 Conclusion

In this paper, we have presented a basic new middleware framework for wireless ad hoc net-
works. By providing a small number of fundamental services, we believe that the develop-
ment of algorithms can be significantly simplified. Round synchronization helps algorithms
to overcome hardware failures and unknown deployment topologies; collision detection helps
algorithms to overcome lost messages and unreliable communication; and a contention man-
ager compartmentalizes the backoff protocols, necessary to reduce contention on the wireless



medium. Together, these three components allow the simple development of powerful proto-
cols.
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