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ABSTRACT
We present a method for using real world mobility traces
to identify tractable theoretical models for the study of dis-
tributed algorithms in mobile networks. We validate the
method by deriving a vehicular ad hoc network model from
a large corpus of position data generated by Boston-area
taxicabs. Unlike previous work, our model does not assume
global connectivity or eventual stability; it instead assumes
only that some subset of processes are connected through
transient paths (e.g., paths that exist over time). We use this
model to study the problem of prioritized gossip, in which
processes attempt to disseminate messages of different pri-
ority. Specifically, we present CabChat, a distributed pri-
oritized gossip algorithm that leverages an interesting con-
nection to the classic Tower of Hanoi problem to schedule
the broadcast of packets of different priorities. Whereas pre-
vious studies of gossip leverage strong connectivity or stabi-
lization assumptions to prove the time complexity of global
termination, in our model, with its weak assumptions, we
instead analyze CabChat with respect to its ability to de-
liver a high proportion of high priority messages over the
transient paths that happen to exist in a given execution.

Categories and Subject Descriptors
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Systems; F.2 [Theory of Computation]: Analysis of Al-
gorithms and Problem Complexity
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1. INTRODUCTION
A difficulty in studying distributed algorithms for mobile

networks is defining realistic mobility. A common solution
to this difficulty is to use position traces from real mobile
network deployments. In recent work, for example, Liu
et al. [13] use traces of San Francisco-area taxicabs to study
the performance of their VMesh strategy for local informa-
tion storage, and Sarafijanovic-Djukic et al. [16] use traces
from cabs in Warsaw to study an island hopping strategy for
routing. In these two papers, as in most other data-driven
analyses of mobile network algorithms, the position traces
are used to support simulation studies. In this paper, by
contrast, we propose using traces to derive models suitable
for generating theoretical results.

Restricted Dynamic Graphs. Specifically, we begin
with the dynamic graph model of [12], which describes the
connectivity of processes in a mobile network as a graph
in which the edge set can change arbitrarily from round to
round. (An edge between two nodes in a given round indi-
cates the ability for the associated processes to communicate
in that round.) We then propose using position traces from
real mobile networks to identify properties of these graphs
that arise in practice. These properties define a restricted
dynamic graph model. The goal is to identify properties
that allow a theoretician to generate better algorithms and
bounds than what is possible with the unrestricted dynamic
graph model, while at the same time maintaining the results’
applicability in practice.

For example: imagine that the study of buses traveling on
a fixed bus route reveals a small amount of connectivity at
any one time step, but a high probability that an arbitrary
pair of buses will eventually be connected (e.g., as they pass
each other on the route). This might inspire the dynamic
graph property that a given pair of nodes are expected to be
connected in the graph, for at least x rounds every T rounds,
with high probability, where x is a small constant and T is
a large constant, both derived from the bus traces. When
analyzing a distributed algorithm to be deployed on buses,
this data-derived property can be used to tame the otherwise
arbitrary edge changes in the graph. A result proved in this
model is likely to hold in the real world network from which
the property was derived.

A Data-Derived Dynamic Graph Property. To val-
idate the usefulness of this modeling approach, we study
vehicular ad hoc networks (VANETs) comprised of taxicabs
in an urban setting. The source of our experimental observa-
tions is a large corpus of position traces gathered from GPS-
equipped embedded computers deployed by the MIT CarTel



project [6] in a fleet of taxicabs in the Boston metropolitan
area. We present a framework for combining these traces
into VANET networks of varying size (in this study, we ex-
amine networks of 25 and 100 vehicles), and varying traffic
conditions (we examine morning and evening rush hour, and
the midday lull).

We next examine the properties of the connectivity graphs
induced by these networks, first showing that there is never
global connectivity: in our 100 vehicle networks, for exam-
ple, the largest connected component observed in any round
contained no more than 35 vehicles. What we instead ob-
serve is a large amount of transient connectivity between
vehicles—e.g., paths over time—with over a quarter of the
vehicles in the 100 vehicle networks having transient connec-
tivity to a majority of the network. We also observe mod-
erately stable pairwise links, with a median link duration
of 16 seconds. We combine these observations of transient
connectivity and pairwise link stability into what we call the
`-stable transient path property, which describes a transient
path between two vehicles such that each hop in the path
exists for at least ` consecutive rounds.1 In this paper, when
we analyze the performance of distributed algorithms, we do
so in the dynamic graph model under the assumption that
such paths exist; e.g., given an `-stable path between nodes
u and v in the dynamic graph, starting at round r, we prove
the following performance result...

The Prioritized Gossip Problem. With our data-
driven model defined, we turn our attention to solving a
specific problem. A commonly-cited use for vehicular net-
works is the dissemination of timely information between
vehicles [4, 22], for example: an observation about traffic,
the location of a road-side access point, or an accident alert.
This problem can be cast as a form of gossip, in which ve-
hicles occasionally generate messages of different priorities
that need to be disseminated. Presumably, an accident alert,
for example, would have higher priority than an observation
of a traffic jam. We refer to this problem as prioritized gos-
sip, and we study it, in this paper, in the context of the
dynamic graph model with the assumption of `-stable tran-
sient paths.

A challenge for gossip in our setting is the lack of strong
connectivity assumptions. In contrast to previous work [12],
we do not assume global connectivity (or even that every
pair has transient connectivity), and this prevents us from
proving the time complexity of global termination (e.g., the
gossip problem terminates in O(n2) rounds). Instead, we
only assume that some pairs are connected by an `-stable
transient path, for varying ` values, leaving the designer of
prioritized gossip algorithms to prove their algorithms lever-
age such paths, when they arise, to deliver as much high
priority information as possible. Such results are weaker
than those guaranteeing global termination, but because
they make less connectivity assumptions they are applica-
ble in a wider variety of practical settings.

Another challenge of solving gossip in our model is the
presence of priorities. Without priorities, it is sufficient for
processes to work through their message queue in round
robin order, broadcasting a new message in each round: this

1Notice, capturing the stability of the hops is important
as it bounds the total amount of information that can flow
through the path. An `-stable path between u and v allows u
to transmit ` messages to v, assuming a rate of one message
per round.

behavior guarantees that over any `-stable transient path, `
different messages are delivered. Priorities, however, com-
plicate this approach, as we not only desire to send unique
messages, but we also want to send high priority messages.
Imagine, for example, a process u with an `-stable transient
path to v, and a message queue of size much larger than
`. The round robin approach might lead u to deliver ` low
priority messages during the ` rounds it participates in the
path. A good prioritized gossip aglorithm, therefore, must
be careful in how it schedules its messages for broadcast.

The t-Latency Metric. To capture the effectiveness of
a given gossip algorithm’s priority scheduling scheme, we in-
troduce the t-latency metric, which upper bounds the num-
ber of rounds required for a process to broadcast its t highest
priority messages, over all rounds in which it has at least t
messages, over all executions. An algorithm that guaran-
tees a small t-latency with respect to t, for all t values, will
deliver a high proportion of high priority messages at each
hop of an `-stable transient path. Our main performance
theorems, summarized below, will leverage t-latency results
proved with respect to our algorithm, CabChat, to bound
the amount of high priority information the algorithm guar-
antees to be sent over a given `-stable transient path.

Our Results. We present CabChat, a distributed prior-
itized gossip algorithm that leverages properties of a slight
variation of the binary carry sequence [1], which also de-
scribes an optimal solution the classic Towers of Hanoi prob-
lem [18, 11].2 To aid the proof of our main performance
theorems, we start by bounding the algorithm’s t-latency.
In the general case, we show that the algorithm guarantees
a t-latency of 2t+1, for all t, and in the case where the t
highest priority values span only k < t distinct priorities, it
guarantees a t-latency of (t−k+2)2k+1. Using these results,
we prove two main performance theorems:

(1) If at round r process u knows t messages of priority
at most p (assume smaller values are higher priority), and
there is an `-stable transient path from u to v starting at r
and ending at r′, then Ω(min(log(`), t)) messages of priority
at most p eventually reach v by r′. This result indicates
that as the bandwidth available on a path grows (i.e., as `
increases), so does the total amount of high priority infor-
mation guaranteed to be delivered over this path (i.e., u’s
log (`) highest priority values).

(2) If in addition to the assumptions of the first perfor-
mance result, the t highest priority messages at process u
span a constant number of priorities (for example, if u has
a collection of t accident alerts, all sharing the same high
priority), then Ω(min(`, t)) messages of this priority eventu-
ally reach v by r′. Notice, because ` messages is the max-
imum number that can be communicated over an `-stable
transient path, this second result indicates that CabChat
behaves optimally when delivering many messages from a
small number of priorities. This result is important as in
practice we would like the very highest priority messages to
take precedence over other communication.

Related Work.
Though the global properties of dynamic graphs—i.e., graphs

with edge sets that can change over time—have been studied
from a complexity perspective for many years (see [17] for

2This versatile sequence has also been used to identify
Hamiltonian paths in hypercube graphs and generate binary
reflected codes, also known as Gray codes.)



a good overview), in the last decade, models based on such
graphs have been increasingly used to study the performance
of distributed algorithms. This direction gained momentum
with the stabilizing dynamic graph model—c.f., [7, 20, 21,
14]—which describes device connectivity as a dynamic graph
with an edge set that can change arbitrarily from round to
round. Most results in this model assume that changes to
edge set eventually stop, and therefore prove properties with
respect to these stabilization points.

To avoid the assumption of stabilizing connectivity, the
authors in [12] introduce the non-stabilizing dynamic graph
model (which we refer to in this paper as simply the dy-
namic graph model). In this model, the edge set never stops
changing, but some properties on the graph are assumed
to hold. In [12], for example, the authors assume that a
connected backbone exists in every round. In our work, we
use position traces from real mobile network deployments to
identify suitable connectivity properties which hold in prac-
tice. (As mentioned, for example, we found that in VANETs
comprised of Boston-area taxicabs, the global connectivity
assumption of [12] never holds.) We are not the first to use
data from mobile networks to derive theory models. Chain-
treau et al. [3], for example, use network logs to derive a
distribution on the time before two processes meet in a mo-
bile network; they then use this distribution to prove per-
formance theorems.

The gossip problem, of course, has been studied in numer-
ous models (see [5] for a survey of classical results and [9, 8,
2] for a sampling of more recent work). The results most rel-
evant to ours come from the aforementioned study by Kuhn
et al. [12], which examines all-to-all gossip in a dynamic
graph under the assumption of global connectivity. This
strong assumption allows them to prove the time complex-
ity of global termination. As mentioned above, due to weak
connectivity assumptions of our model, we cannot prove re-
sults regarding global termination. Instead, we study the
amount of information, and its priority, that is delivered
through transient paths that happen to exist in an execu-
tion. Though the notion of a transient path has been studied
previously—c.f., [10], which calls such paths time-respecting,
and analyzes the computational complexity of finding such
paths in a dynamic graph—our work is the first, that we
know of, to combine the notion with stability and generate
performance results for distributed gossip. Accordingly, we
have no points of comparison for our results.

Road Map.
We continue, in Section 2, by analyzing the connectivity

of real vehicular networks. In Section 3, we use these obser-
vations to help define our formal model. Then, in Section 4
we define the prioritized gossip problem, present CabChat,
our distributed prioritized gossip algorithm, and prove a pair
of performance theorems. We conclude in Section 5 with a
discussion of future work.

2. BEHAVIOR OF REAL WORLD VEHIC-
ULAR NETWORKS

We begin by studying the connectivity properties of ve-
hicular networks comprised of taxicabs in the Boston area.
In Section 3, we use these observations when formalizing our
mobile network model. The source of our data is MIT’s Car-
Tel [6] project, which over the past four years has maintained

GPS-equipped embedded computers in a fleet of 20 - 40
taxicabs that service the Boston metropolitan area. These
computers report the cabs’ changing GPS coordinates to
a central server, which uses a rigorous map-matching pro-
cess [19] to transform the raw data into error-corrected po-
sition traces. For the purposes of this study, we developed
a framework for combining traces from different days while
preserving the traffic conditions of a specific hour of a spe-
cific day. (In vehicular network research, the traffic con-
ditions are considered an important feature of the network
behavior, making it bad practice to combine traces from
different days without normalization of traffic conditions.)
This framework allows us to study large networks (i.e., net-
works larger than the number of cabs from which we have
data) while maintaining consistent traffic behavior.

In more detail, we studied 15 different traffic conditions—
5 drawn from morning rush hour, 5 from midday, and 5 from
evening rush hour—and for each traffic condition we studied
two network sizes—25 vehicles and 100 vehicles—for a total
of 30 different experiment scenarios. In each scenario, we
divided time into rounds of length 1 second, and for each
round calculated the communication graph of the network
at that round by using a simple 100 meter threshold to de-
termine whether a given pair of vehicles is connected.3 The
result was 30 evolving communication graphs, representing a
variety of traffic conditions and network sizes. We analyzed
these graphs to identify commonly occurring connectivity
properties in real world vehicular networks. We summarize
the results of this analysis below.
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Figure 1: Cumulative distribution function plot of
the maximum component sizes for both the 100 ve-
hicle and 25 vehicle graphs.

Global Connectivity.
A common assumption in the study of mobile networks is

that the communication graph is connected; e.g., [12]. To
test this hypothesis we calculated for each round, over all
30 experiment scenarios, the largest connected component

3The choice of the 100 meter threshold was derived from
a series of vehicle tests conducted in the Boston-area us-
ing dashboard-mounted wireless laptops communicating us-
ing 802.11g [15]. Although the distance threshold is only a
rough approximation of the real network connectivity, it is
sufficient for studying high-level connectivity traits.
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Figure 2: Cumulative distribution function plot of
the reach over all vehicles for both the 100 vehicle
and 25 vehicle graphs.

in the communication graph at that round. In Figure 1
we plot the cumulative distribution function (CDF) of these
maximum component sizes, split by network size. (In this
CDF, a point f(x) describes the fraction of rounds with a
maximum component size less than or equal to x.) Notice,
in the 100 vehicle graphs the maximum component is always
of size less than 35, and in the 25 vehicle graphs, the max-
imum component is always of size less than or equal to 10.
Put another way, the network is never connected, though
small connected components are common. This yields the
following observation:

Observation #1: The networks are never connected but
usually do contain connected components of non-trivial size.

Transient Connectivity.
The lack of global connectivity does not rule out the exis-

tence of transient connectivity; that is, paths that exist over
time. For example, imagine a dynamic graph defined over
two rounds with three nodes a, b and c, and the following
time varying edge set: In the first round, a is connected to
b, and in the second round b is connected c. In this example,
a is transiently connected to c, even though there is no path
from a and c present in either of the two rounds for which
the graph is defined.

To measure transient connectivity we use the reach met-
ric. The reach of a vehicle a in a given graph is the total
number of vehicles—excluding a—to which a is transiently
connected. For each graph we calculated the reach of each
vehicle. In Figure 2 we plot the cumulative distribution
function of these reach values, split by network size. (In
this CDF, a point f(x) describes the fraction of vehicles
with a reach value less than or equal to x.) The plot re-
veals significant transient connectivity. In the 100 vehicle
experiments, for example, around 60% of the vehicles had a
reach of at least 20 vehicles, around a fourth of the vehicles
had a reach of at least 50 vehicles, and around 10% were
super-connectors, with a reach including at least 75% of the
vehicles. We summarize these results as follows:

Observation #2: Most vehicles have transient connec-
tivity to a non-trivial fraction of the network, while a non-

trivial fraction of the vehicles have transient connectivity to
most of the network.
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Figure 3: Cumulative distribution function plot of
link duration over all links observed in the graphs.

Link Stability.
We conclude our analysis by looking at the stability of

pairwise links. In Figure 3 we plot the cumulative distri-
bution function of the link durations of all links observed
in our networks. (In this CDF, a point f(x) describes the
fraction of links with a duration less than or equal to x.)
Notice that fleeting links are rare—less than 2% of the links
are of the minimum length of 1 second—and long links are
common—around 20% of links have a duration of at least
a minute. The median link duration was 16 seconds. We
summarize these results as follows:

Observation #3: Extremely short-lived links are rare.

3. MODEL
In this paper, we use the dynamic graph model of [12],

combined with a connectivity property inspired by the ex-
perimental analysis of Section 2. Formally, the dynamic
graph model describes a synchronous radio broadcast net-
work with a dynamic graph G = (V,E), where V is a static
set of nodes, and E : N → {{u, v}|u, v ∈ V } is a function
mapping each round number r ∈ N to a set of undirected
edges E(r), describing the connectivity in the round. (In
this paper we assume the natural numbers N start from 1).
Notice, this model is worst-case, in that it allows the connec-
tivity to change, perhaps significantly, from round to round.

An algorithm A is a collection of |V | processes, one for
each node in the graph. In this paper, when discussing an
algorithm, we use the notation process u, for some u ∈ V ,
to reference the process associated with node u.

An execution of a given algorithm in a given dynamic
graph proceeds as follows. In each round r, each process
u receives a set (potentially empty) of input values. (The
type of these values depends on the problem being stud-
ied.) Next, each process chooses a message to broadcast (if
any). Each process then receives all messages sent during
that round from a neighbor in E(r). That is, communica-
tion is reliable, and each process can only broadcast a single
message per round. We assume each process has a unique



identifier but no advance knowledge of the size of the net-
work or their neighbors in a given round.

As described in [12], to prove useful results in the dynamic
graph model it is often necessary to assume some additional
properties on the graph. In [12], for example, the authors
assume the graph is connected in every round. In this paper,
we use the analysis of real vehicular networks, described in
Section 2, to identify such a property. Specifically, we know
from Observation 1 that the graph is not globally connected.
However, from Observation 2 we know that many nodes have
transient paths, and Observation 3 tells us that the individ-
ual hops of these transient paths are likely to be stable. We
combine these observations into the concept of an `-stable
transient path, which is a path that exists over time (but
not necessarily all at once), such that each hop is stable for
` consecutive rounds.

We now formally define a transient path:

Definition 1 (Transient Path). Given a dynamic graph, a
transient path in the graph at round r from node u to v is
defined by a sequence of rounds r1 = r, . . . , . . . , rm = r + d
and a sequence of edges e1 = (u, u1), e2 = (u1, u2), . . . , em =
(um−1, v) such that: i) ∀i ∈ [1,m−1], ri < ri+1, and ii) ∀i ∈
[1,m], edge ei exists in the graph at round ri. Here m is the
length of the path and d is its duration.

Notice that the duration of a path can be greater than its
length (but not the other way around), as arbitrarily long
intervals of time can exist between hops.

We now define what it means for a transient path to be
`-stable:

Definition 2 (`-Stable Transient Path). Given a dynamic
graph, a transient path in the graph described by the round
sequence r1, . . . , rm and the edge sequence e1, . . . , em is `-
stable if i) ∀i ∈ [1,m], the edge ei exists in the graph
throughout the interval [ri, ri +`−1], and ii) ∀i ∈ [1,m−1],
ri+1 ≥ ri + `.

In other words, a transient path is `-stable if each hop
exists for ` consecutive rounds, and no two hops’ round in-
tervals overlap.

4. PRIORITIZED GOSSIP
The prioritized gossip problem requires processes to dis-

seminate messages of various priorities, giving precedence
to messages of higher priority. As mentioned in the intro-
duction, due to the weak connectivity assumptions in our
model, we have no notion of solving the prioritized gossip
problem in the traditional sense of completing all-to-all mes-
sage exchange. We instead turn our attention to how well an
algorithm takes advantage of the connectivity that happens
to exist in an execution to deliver messages of high priority.

In more detail, our main performance theorems bound the
number of messages, and their priority, delivered over the `-
stable transient paths that exist in a give execution. To aid
the proof of these results, we introduce the t-latency metric
(formally defined later in this section). This metric upper
bounds the time required for a process to broadcast its t
highest priority messages. A core difficulty of prioritized
gossip in our model is the need to maximize both the total
number of unique messages and their priority, sent over an
`-stable path. The t-latency metric captures an algorithm’s
performance in terms of this goal. For example, an optimal

algorithm, would guarantee a t-latency of t, for all t. This
would ensure that given an `-stable path between some u
and v, starting at round r, v would learn the `-highest pri-
ority values known to u at r (or ` values of the same or
higher priority).4 Unfortunately, no such optimal algorithm
exists. To see why, notice that to satisfy the property for
t = 1, processes must always send their single highest pri-
ority message, but this generates an infinite t-latency for
all t > 1. (A straightforward extension of this argument
demonstrates the impossibility of guaranteeing a t-latency
of ct, for all t and a positive constant c.)

The CabChat algorithm presented in this paper, by con-
trast, guarantees a t-latency of O(2t), for all t. For small
t, this value is small, ensuring that high priority messages
are disseminated on `-stable paths defined with a small `
value. For large t, this value is large but bounded, ensuring
that as bandwidth increases on a path (i.e., ` gets larger), so
does the amount of unique messages that will be delivered.
We also show that in the special case where the t high-
est priority values span only a constant number of priorities
(e.g., if a process has learned a large number of high priority
alerts) the algorithm approximates the optimal throughput
by achieving a t-latency of O(t).

From these two t-latency results we then derive our two
main performance theorems. From the former result, we can
prove that given an `-stable path between u and v, u will
deliver its Ω(min(log(`), t)) highest priority messages to v in
time proportional to the duration of the path (Theorem 4.6).
Using the latter t-latency result, we improve this bound to
Ω(min(`, t)), under the assumption that the t highest prior-
ity messages at u span no more than a constant number of
priorities (Theorem 4.7).

Below, we start by formally defining the prioritized gossip
problem and the t-latency metric. We then introduce the
CabChat algorithm and analyze its t-latency. We conclude
by using these latency results to prove a pair of performance
theorems.

4.1 Problem Description
The prioritized gossip problem assumes the following. At

the beginning of each round, each process produces a set of
messages (perhaps empty) to disseminate. Each message is
labeled with a priority value from N. We use ρ(m) to denote
the priority of message m. The lower the priority value, the
higher the message’s priority, where 1 is the highest possible
priority. Without loss of generality, we assume all messages
are unique.5 In each round, each process u can choose a
single message, from among those it knows (which were ei-
ther generated by process u, or were received in an earlier
round), to broadcast to its neighbors.

The t-Latency Metric. To characterize the scheduling
behavior of a prioritized gossip algorithm, we introduce the
t-latency metric. Informally speaking, the t-latency captures
the maximum delay incurred by a process when sending its
t highest priority messages. Formally:

4This follows from a simple induction and the observation
that at each hop (w,w′) along the transient path, w has
sufficient time to send its ` highest priority messages to w′.
5This can be accomplished, for example, by having each
process append its id and the current round number to each
message it generates. In the case of more than one message
is generated in the same round, processes can also append a
sequence number.



Definition 3 (t-latency). Fix an execution of an algorithm
A in some dynamic graph. We say A has t-latency T for
process u at round r (where t, r, T ∈ N) if it holds that:

If process u knows at least t messages at round r,
and the t messages of smallest priority value have
priority at most p, then by round r+T process u
broadcasts at least t messages of priority at most
p.

For simplicity, when we omit u and r, the property is as-
sumed to hold for all processes and rounds over all execu-
tions and over all dynamic graphs.

4.2 CabChat Algorithm
In this section we present CabChat, a deterministic dis-

tributed prioritized gossip algorithm. The CabChat algo-
rithm uses a priority scheduling function based upon the
binary carry sequence [1]. This sequence has many useful
properties, one of them being that if cast as a schedule, it
schedules every positive integer i every 2i rounds. It also
guarantees that whenever integer i is scheduled, in a vicin-
ity of size 2i−2 on either side, it contains all positive integers
j < i. These two properties will be useful when proving our
performance results. Before continuing with the description
of CabChat, we describe formally this sequence and its
properties.

Binary Carry Sequence.
The priority scheduling function, schedule, used by CabChat

is exactly the binary carry sequence plus 1. Formally, for ev-
ery round r ∈ N:

schedule(r) = max{i ∈ N : r mod 2i−1 = 0}.

The following is a well known fact regarding the binary
carry sequence that carries over to our scheduling function.

Fact 1. The function schedule returns each value i ∈ N
every 2i rounds.

This sequence also has an interesting connection to the
Tower of Hanoi problem [11, 18]. Specifically, given three
rods and n disks labeled in descending size from 1 to n, the
sequence Sn (defined below) gives an optimal solution to the
three rod Tower of Hanoi problem. It is well know that the
sequence Sn can be defined recursively as follows:

S1 = 1

Sn = Sn−1, n, Sn−1

Perhaps surprisingly, it was shown that the first 2n − 1
numbers of the binary carry sequence plus one (which is
exactly our schedule) equals Sn. The following fact of the
scheduling function follows as a straightforward consequence
of the recursive definition of Sn:

Fact 2. If i = schedule(r) then it holds that:
i) ∀j < i ∃r′ ∈ [r − 2i−2, r) such that j = schedule(r′), and
ii) ∀j < i ∃r′ ∈ (r, r + 2i−2] such that j = schedule(r′).

With our scheduling function and its properties defined,
we now describe the CabChat algorithm which leverages
the properties of this schedule.

Algorithm Description.
We begin with a high-level description of the CabChat

algorithm. The detailed pseudo-code is presented in Algo-
rithm 1. Each process maintains an initially empty linked
list where each node in the list has a non-empty message
queue. Let Qi denote the ith queue in the list. Queues are
only manipulated using the sample and push operations.
Specifically, executing sample(Q) returns the element at
the front of queue Q, while at the same time popping the
element and pushing it at the back of the queue. Execut-
ing push(Q,m) pushes message m into the front of queue
Q. Informally speaking, a queue acts as a ring buffer which
samples most recently added messages, hence implementing
a round robin schedule of sorts. At the beginning of round
r, let i = schedule(r), if the list has at least i queues, a
process retrieves queue Qi and broadcasts the message re-
turned by the operation sample(Qi). If the list does not
contain an ith queue, the process broadcasts nothing. Af-
ter broadcasting a message, a process gets a set (possibly
empty) of incoming messages which were either received
from neighboring processes or generated by the process it-
self. For each message m ∈ incoming, if there exists a queue
Q such that ρ(Q) = ρ(m), the process executes push(Q,m).
Otherwise a new queue is created with message m, and this
queue is subsequently inserted in the correct place in the
list as to maintain the priority ordering. Notice, that at
round r = schedule(i) this algorithm does not necessarily
broadcast a message with priority i. Instead it broadcasts a
message with the ith highest priority from among the mes-
sages a process knows, but the actually priority value can
be arbitrarily large. This is an important distinction, as our
results are stated in terms of the highest priorities a process
knows, not specific priority values.

Algorithm 1 CabChat

1: list← ∅
2: for r = 1, 2, . . . do
3: i← schedule(r)
4: if |list| ≥ i then
5: broadcast sample(Qi)
6: end if
7: incoming ← messages received and generated at

round r
8: for m ∈ incoming do
9: if ∃Q ∈ list such that ρ(Q) = ρ(m) then

10: push(Q,m)
11: else
12: insert new queue with message m in list re-

specting the ordering
13: end if
14: end for
15: end for

4.3 Correctness Proof
At the conclusion of this section we prove two main per-

formance theorems. The first, Theorem 4.6, says that if a
process u knows t messages, and an `-stable transient path
exists from u to v, then v will receive u’s Ω(min(log(`), t))
highest priority messages (or a collection of messages of sim-
ilar or better priority) in time proportional to the duration
of the path. The second result, Theorem 4.7, says that in the
special case when the number of priorities spanned by the



t messages with best priority at u is a constant, the bound
improves to Ω(min(`, t)).

To prove these results, we first establish some useful in-
variants that follow from the way queues are manipulated
by our algorithm. Aided by these invariants we then prove
that regardless of the number of arriving messages at ev-
ery round, and the priority distribution of these messages,
CabChat has a t-latency of 2t+1 for every t. We also show
that CabChat has a t-latency of (t − k + 2)2k+1 if the t
messages with smallest priority value span k distinct pri-
orities. We use these t-latency results to derive the main
performance theorems summarized above. In the following
we annotate the results as they are presented in an attempt
to motivate their necessity for establishing our main theo-
rems.

To simplify notation, we assume that the lemmas, corol-
laries, and theorems that follow are all proved with respect
to a fixed execution of CabChat on a fixed dynamic graph.

Proof Details.
Given a queue Q, we say a value is sampled in an interval,

if during that interval the sample(Q) operation returned
that value. In the following lemma we prove a useful conse-
quence of the way the queues are sampled.

Lemma 4.1 (Round Robin). Fix a queue Q and a time in-
terval [t1, t2]. The queue can be expressed as the concatena-
tion of queues F and T (Q = F ·T ), such that every element
in F was not sampled during the interval [t1, t2] and every
element in T was sampled during the interval [t1, t2].

Proof. Let S be the set of operations performed on Q during
the interval [t1, t2]. We proceed by induction on |S|.

Base Case: If |S| = 0 then no operations were performed
during the interval, and the statement holds with the parti-
tion F = Q and T = ∅.

Inductive Step: Let S = S′∪{op} where op ∈ {push, sample}.
By our inductive hypothesis, after applying the operations
in S′ the statement holds for some partition F ′ and T ′. If
op = push(Q,m) then after applying op the statement holds
for F = F ′ ∪ {m} and T = T ′. If op = sample(Q) then we
consider two cases depending on F ′. If |F ′| = 0 then the af-
ter applying op the statement holds for F = F ′ and T = T ′.
Otherwise, we let F ′ = {m} ∪ F , and after applying op the
statement holds with F and T = T ′ ∪m.

The following straightforward corollary follows directly.

Corollary 1. Fix a queue Q and a round interval [r, r′]. If
by the end of the interval the message at the front of Q has
been sampled previously in the interval, then all messages in
the queue Q were sampled in the interval [r, r′].

We say an execution is stable for process u at a round r,
if at and after round r the incoming set at u is empty. It
is easy to show that, as a consequence of fact 1 and Corol-
lary 1, in an execution which is stable for process u at round
r, CabChat has a t-latency of 2t. Unfortunately, this is
not the case for general executions. To see why, consider an
interval of the schedule of length 2t where element t is sched-
uled at the end of the interval (the fact that such intervals
exist follows from fact 1). Assume process u starts at round
r with t (or more) messages, each with different priority,
where the smallest t messages have priority at most p. To
satisfy a t-latency of T process u needs to send t messages

of priority at most p by round r + T . Let the algorithm
run for 2t − 1 rounds without receiving or generating any
new messages. At the end of round 2t − 1 process u has
sent t− 1 messages with priority p or less. Now generate an
incoming message whose priority is such that it is inserted
at position t− 1, thereby displacing the queue which was at
position t− 1 (and had already been sampled) to position t.
At round 2t the algorithm will sample the queue at position
t and no new message will be sent. This already proves that
T > 2t. In fact, it is possible to extend this execution to
show that T ≥ 3 · 2t−1 − 1.

The question remains of exactly how much incoming mes-
sages can hurt the t-latency of our algorithm. In the rest
of this section we answer this question by showing that
CabChat has a t-latency of at most 2t+1. In other words,
the impact of instability in the queues is a factor of 2 in the
t-latency. Before proving this we need some intermediate
results. Informally speaking, the next lemma shows that if
a queue is scheduled to be sampled in the future, either it
is sampled or a newly inserted queue will be sampled “soon”
instead.

Lemma 4.2. Fix a round r, let i = schedule(r′) for some
r′ ≥ r, and let Q be the queue that occupies the ith position
at round r. Then either queue Q is sampled at round r′, or
a queue Q′, such that ρ(Q′) < ρ(Q) and Q′ did not exist at
round r, is sampled in the interval [r′, r′ + 2i−1].

Proof. Fix a round r, let i = schedule(r′) for some r′ ≥ r,
and let Q be the queue that occupies the ith position at
round r. We proceed by induction on i.

Base case: If i = 1 then at round r′ the first queue
is sampled, and it will contain either the same queue that
existed at round r (queue Q) or a newly inserted queue with
better priority.

Inductive step: If at round r′ either queue Q or a
newly inserted queue that occupies the ith position is sam-
pled, the statement holds. Hence suppose a new queue Q′

was inserted at the jth position, where j < i (and hence
ρ(Q′) < ρ(Q)). Fact 2 implies there exists some round r′′

where j = schedule(r′′) and r′ < r′′ ≤ r′ + 2i−2.
Finally the inductive hypothesis implies queue Q′, or a

newly inserted queue, is sampled by round r′′+ 2j−1 ≤ r′′+
2i−2 ≤ r′ + 2i−2 + 2i−2 ≤ r′ + 2i−1.

In some ways, the following lemma is the complementary
opposite of the previous one (and the proofs are in fact, very
similar). Informally it shows that if element i is scheduled to
be sampled at round r, then all smaller elements (that have
been in the execution for the relevant period) are sampled
“soon” before round r.

Lemma 4.3. Fix a round r, let i = schedule(r) and let
Q be a queue that exists since round r − 2i−1 and occupies
the jth position at round r where j < i. Then queue Q is
sampled in the interval [r − 2i−1, r].

Proof. Fix a round r, let i = schedule(r) and let Q be a
queue that exists since round r − 2i−1 and occupies the
jth position at round r where j < i. We proceed by in-
duction on j.

Base case: Let i = 1, since the first queue is sampled
once every two rounds, it was not sampled at round r (be-
cause schedule(r) > 1), and it existed the round r−1, it has



to be that it was sampled at round r− 1 and the statement
holds.

Inductive step: Fact 2 implies there exists some round
r′ where j = schedule(r′) and r−2i−2 ≤ r′ < r. If at round
r′ queue Q still occupies the jth position the statement holds.
Hence suppose at round r′ queue Q occupies the kth position
where k < j.

Finally the inductive hypothesis implies queue Q is sam-
pled in the interval [r′−2j−1, r′], and since j ≤ i−1 this im-
plies queue Q is sampled in the interval [r−2i−2−2i−2, r] =
[r − 2i−1, r].

Equipped with the previous two lemmas, we are now ready
to bound the t-latency of CabChat.

Theorem 4.4. For every t ∈ N, CabChat has a t-latency
of 2t+1.

Proof. Assume process u knows t messages at round r, and
the smallest t messages have priority at most p. We proceed
by induction on t.

Base case: Suppose at round r process u has no messages
(t = 0), then the t-latency statement is vacuously true.

Inductive step: By the inductive hypothesis, by round
r + 2t process u has sent t − 1 messages with priority at
most p. Let Qi be the first queue at round r + 2t such that
ρ(Qi) ≤ p and there is an unsampled message at the front
of queue Qi. We proceed by cases depending on Qi.
− If Qi is undefined, then all queues with priority at most
p have an element at the front of the queue which has
already been sampled by u. Therefore, by Corollary 1 all
messages with priority at most p have already been sent
by u, and since by assumption there are at least t such
messages the theorem follows.

− If i > t then at least i−1 ≥ t messages of priority at most
p have already been sent by u, and the theorem holds.

− If i ≤ t then at round r+ 2t each of the first i− 1 queues
contain a single sampled message of priority at most p.
By fact 1 the ith element of the list was sampled at some
round r′ ≤ r + 2i but no message of priority less than p
was sent. Therefore, it follows that at round r′ the first
i− 1 < t queues contained t messages of priority at most
p, and hence at least one queue j < i contained more
than two messages. If r′ > r + 2i−1 then Lemma 4.3
would imply the queue j with two messages gets sampled
between [r, r′], which in turn would contradict that i ≤ t.
Therefore, it must be that r′ ≤ r+2i−1, let r′′ = r′+2i ≤
r+2i+2i−1. However, in this case by Fact 1 we know that
for round r′′ > r′ i = schedule(r′′) and by Lemma 4.2
either queue Qi gets sampled at round r′′ or a newly
inserted queueQ′ with better priority gets sampled before
round r′′+2i−1 ≤ r+2i+2i−1+2i−1 = r+2i+1 ≤ r+2t+1

and the theorem holds.

Notice that the t-latency result shown by Theorem 4.4
considers the worst case where the t messages of lowest pri-
ority value span t distinct priorities. However, one would
expect that if the t best messages span a small number of
priorities (say a constant), the time required to disseminate
them should be linear in the number of messages. This in-
tuition is captured formally by the next theorem.

Theorem 4.5. Fix positive integers t, k, r and process u
If at every round in the interval [r, r + (t − k + 2)2k+1] the

t messages with smallest priority value known by process u
span at most k distinct priorities, then CabChat has t-
latency of (t− k + 2)2k+1 for process u at round r.

Proof. Fix positive integers t, k, r and process u, and as-
sume at every round in the interval [r, r + (t − k + 2)2k+1]
the t smallest messages known by process u span at most k
distinct priorities. We proceed by induction on k.

Base case: If k = 0 then it must be that t = 0, and the
t-latency statement is vacuously true.

Inductive step: Let t′ be the largest integer such that:
1. Node u knows at least t′ messages of priority at most
p at the beginning of round r. 2. Throughout the interval
[r, r + t2k−1] the t′ smallest messages known by process u
span at most k − 1 distinct priorities.

If t′ ≥ t then by inductive hypothesis by round r + (t −
k + 3)2k < r + (t − k + 2)2k+1 process u sends at least
t′ ≥ t messages with priority at most p, and the theorem
holds. If t′ < t, then by inductive hypothesis by round
r′ ≤ r + (t − k + 3)2k process u sends t′ messages with
priority at most p. By assumption, the remaining t − t′

unsent messages will remain in the first k queues of the list
until round r+ (t− k+ 2)2k+1. Moreover, from Lemma 4.1
all the unsent messages are always at the top of the queues.

Therefore, by Fact 1 after an additional (t− t′)2k rounds,
the t − t′ missing messages would have been sent. Also
observe that t′ ≥ k−1, and hence t−t′ ≤ t−k+1. Therefore,
by round r′+(t−k+1)2k = r+(t−k+3)2k +(t−k+1)2k ≤
r+ (t− k+ 2)2k+1 the missing messages have been sent and
the theorem holds.

Observe that Theorem 4.5 gives tighter results than The-
orem 4.4 when the number of priorities, k, spanned by the
t smallest messages, is less than t − 1. For the important
case where a process has t messages of the highest possible
priority (say, accident alerts), CabChat sends all t in only
4(t+ 1) rounds.

Main Performance Theorems.
We now state our main results, which bound the number

of messages, and their priority, disseminated along `-stable
transient paths. Informally, if there exists an `-stable tran-
sient path from u to v, and ` is large enough (say ` ≥ 2t+1),
then, assuming that u has t messages of priority at most p,
Theorem 4.4 can be applied inductively along the path to
show that v eventually receives tmessages of priority at most
p. On the other hand, if ` is not large enough, the largest
number of messages that can be successfully delivered to v
is logarithmic in `. In more detail: log ` − 1, is the largest
value of t for which ` ≥ 2t+1, as required by Theorem 4.4.
This is captured by the following theorem statement:

Theorem 4.6. Suppose at round r there exists an `-stable
transient path from u to v of duration d. Fix positive integers
t and p and assume that at round r process u knows t mes-
sages with priority at most p. Then at least min(log(`)−1, t)
messages of priority at most p reach v by round r + d.

For the special case when the t highest priority messages
span only a constant number of priorities, this result can be
improved to Ω(min(`, t)) by using Theorem 4.5 instead of
Theorem 4.4. The intuition is similar to the previous case:
consider an `-stable transient path from u to v, where every
node in this path has its t best messages (with priority at



most p) span no more than k distinct priorities. If ` is large
enough (say ` ≥ (t − k + 2)2k+1) and u has t messages of
priority at most p, then Theorem 4.5 can be applied induc-
tively along the path to show that v eventually receives t
messages of priority at most p. On the other hand, if ` is
not large enough, we can leverage the assumption that k is
constant to show that the number of messages of priority at
most p delivered to v is linear in `.

Theorem 4.7. Suppose at round r there exists an `-stable
transient path from u to v of duration d. Fix positive inte-
gers t and p and assume that at round r process u knows
t messages with priority at most p. Furthermore, assume
that throughout the interval [r, r + d] no process in the path
has its t smallest messages of priority at most p span more
than k distinct priorities for some constant k. Then at least
Ω(min(`, t)) messages of priority at most p reach v by round
r + d.

It is possible to state a stronger version of Theorem 4.7
(at the expense of a more longer theorem statement) that
applies the restriction on priorities at each hop only to the
rounds where that hop is involved in the transient path. We
omit this extension for the sake of clarity.

5. CONCLUSIONS
In this paper, we advocate the use of real world mobility

traces to identify properties for the dynamic graph model.
We validate this approach by identifying the `-stable tran-
sient path property from the study of real vehicular traces.
We then presented CabChat, a prioritized gossip algorithm
with strong performance guarantees in the dynamic graph
model when the identified property holds. Much interesting
work remains in this vehicular model. We note, for exam-
ple, that a proper prioritized gossip protocol should maintain
the invariant that for all t, its t-latency is less than or equal
to its t + 1-latency. With this restriction established, we
can prove that the t-latency bound of 2t+1 for CabChat is
within a factor of 2 of the optimal solution for proper pro-
tocols. Beyond the study of prioritized gossip, other prob-
lems are interesting in this setting. For example, dissemi-
nating information to a small number of highly connected
processes (representing, perhaps, vehicles with Internet ac-
cess), or learning information about nearby geographic loca-
tions. Beyond vehicular networks, our general approach to
connecting theory and practice is applicable to any mobile
network setting in which real mobility traces are available.
As mobile computing becomes more prevalent—e.g., with
the growth in smart phone usage—such data sets will be-
come increasingly common.
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