
Collusion-Resistant Group Key Management
Using Attribute-Based Encryption? ??

Ling Cheung1, Joseph A. Cooley2, Roger Khazan2, and Calvin Newport1

1 MIT Computer Science and Artificial Intelligence Laboratory
{lcheung,cnewport}@theory.csail.mit.edu

2 MIT Lincoln Laboratory

Abstract. This paper illustrates the use of ciphertext-policy attribute-
based encryption (CP-ABE), a recently proposed primitive, in the set-
ting of group key management. Specifically, we use the CP-ABE scheme
of Bethencourt, Sahai and Waters to implement flat table group key
management. Unlike past implementations of flat table, our proposal is
resistant to collusion attacks. We also provide efficient mechanisms to
refresh user secret keys (for perfect forward secrecy) and to delegate
managerial duties to subgroup controllers (for scalability). Finally, we
discuss performance issues and directions for future research.

1 Introduction

IP Multicast is an efficient way of disseminating information to large groups of
users. However, it does not provide any access control mechanism: any host can
join a multicast group by sending a request-to-join message to the nearby router.
To enforce access control, a typical approach is to encrypt group data traffic with
a symmetric cryptographic key, which is distributed selectively, to legitimate
group members (GMs) only. In other words, the access control problem for group
data is transformed into access control on the data encryption key (DEK).

A security concern in this setting is perfect forward secrecy : the compromise
of a GM at a particular time does not lead to the compromise of past multicast
data, provided the data are not stored locally by the compromised GM. This
suggests DEKs should be refreshed periodically, with old versions erased, so that
access to the current DEK does not imply access to past data.

In a multicast group with dynamic membership (i.e., GMs may join and leave
throughout the lifetime of the group), two more security issues arise:
– Group backward secrecy : a new GM should not have access to data that were

transmitted before he joined.

? This research was sponsored by the United States Air Force under Air Force Contract
FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are
not necessarily endorsed by the US Government.

?? Cheung was also supported by NSF Award #CCR-0326277. Newport was supported
by NSF Award #CCR-0121277 and USAF, AFRL Award #FA9550-04-1-0121.

Preliminary version – March 22, 2007

2

– Group forward secrecy : once a GM leaves the group, he should not have
access to future data.

Both perfect forward secrecy and group backward secrecy can be addressed effi-
ciently, for instance, by applying a one-way transformation to the DEK at regular
intervals. Since one-way functions cannot be inverted efficiently, a new GM (or
an intruder with access to the current DEK) cannot recover old DEKs.

Group forward secrecy, however, is harder to achieve, because the leaving
GM knows potentially all DEKS that have been used. Any new key efficiently
derivable from old ones is therefore insecure. A typical solution is to have new
DEKs generated independently and delivered securely to remaining GMs. Thus,
the main challenge becomes the efficiency of selective key distribution. This
problem is known in the literature as group key management, and has been
studied extensively for over a decade. We refer to [1] for a comprehensive survey.

Most existing group key management schemes make use of auxiliary keys,
often called key encryption keys (KEKs). Each GM is given a unique subset of
KEKs, and the group controller (GC) encrypts the new DEK with a combination
of KEKs that ensures only current GMs can decrypt. For example, a naive
solution is to assign a unique KEK to each GM and to encrypt the new DEK
individually to every remaining GM. More efficient solutions have been proposed
(e.g., [2–4]), where the number of encryptions is logarithmic in the size of the
group. This is achieved by allowing GMs to hold subsets of KEKs that intersect.

In this paper, we show that a similar concept can be implemented using the
ciphertext-policy attribute-based encryption (CP-ABE) primitive proposed by
Bethencourt, Sahai and Waters (BSW) [5]. The main idea is to associate each
GM with a set of abstract attributes, instead of actual KEKs. An attribute can
be any statement regarding the GM; for example, “The 12-th bit in my ID is 0,”
or “I belong to the subgroup identified by gid .” Like KEKs, these attributes allow
the GC to distinguish current GMs from former/leaving GMs. The GC computes
an access structure that is satisfied by the attribute set of every current GM, but
not by that of any former/leaving GM. This structure is then used to encrypt
the new DEK in the CP-ABE system, which ensures the desired access control.

There are several advantages to using CP-ABE (in particular, the BSW im-
plementation) for group key management. One of them is the decoupling of
abstract attributes from actual keys. When a secret key SK is issued for a set
S of attributes, the components of SK are computed based on S, but are also
masked by a combination of randomization factors unique to SK . As a result,
even if two GMs share certain attributes, their secret keys are independent, and
hence secret keys need not be refreshed during a join/leave event. This differs
from traditional approaches, where affected KEKs must be replaced. Moreover,
GMs cannot share their secret keys to increase the number of attributes to which
they are associated, as the randomization factors will not match1. This allows
us to give a collusion-resistant implementation of the flat table scheme, which is
vulnerable to collusion attacks when implemented with traditional KEKs [3, 6].

1 Indeed, collusion attacks are built into the CP-ABE security game of [5], where the
adversary may query for secret keys both before and after submitting the challenges.

Preliminary version – March 22, 2007

3

We also use the Delegate algorithm of [5] to implement subgroup controllers
(SGCs). This algorithm generates new secret keys by re-randomizing an existing
secret key, without access to the master secret. Thus, the master secret resides
only at the central GC, which further improves security. In addition, we describe
an efficient technique to refresh an entire BSW encryption system, including the
public parameters, master secret key and user secret keys. We use this to achieve
perfect forward secrecy. Only two multicast messages are necessary for the refresh
operation: a new DEK and a conversion factor, which is a single bilinear group
element, are both sent encrypted with the current DEK. New secret keys can be
derived locally using one multiplication.

Finally, the use of CP-ABE reduces storage overhead for the GC. Instead of
storing all KEKs in the system, the GC stores only the public parameters and
master secret of CP-ABE. For a fixed security parameter, these are of constant
size, independent of the size of the multicast group.

Related Work The flat table key management scheme was proposed in [3, 6].
Despite its simplicity and good overall performance, flat table has been largely
dismissed due to collusion threats. In contrast, tree-based rekey algorithms have
gained popularity, including, notably, Logical Key Hierarchy (LKH) [7, 8], One-
Way Function Tree (OFT) [2], One-way Function Chain Tree [9], Hierarchical
a-ary Tree with Clustering [10] and Efficient Large-Group Key (ELK) [4]. These
algorithms provide different tradeoffs among storage, computation and commu-
nication overheads. We give some basic comparisons in Sections 6 and B, and
we refer to [1] for detailed comparisons based on various performance measures.

In [11], Boneh et al. propose a collusion-resistant broadcast encryption scheme
in which both ciphertexts and secret keys are of constant size, but the public
key vector grows linearly with N , the size of the user ID space. The authors
also outline a secure mailing list application—a problem that is very similar to
secure multicast. In that approach, users are represented individually (e.g., two
bilinear group elements per user in the public key), therefore linear complexity
is inherent in both public key size and in encryption and decryption time2. Even
with the proposal of parallel instances, the complexities are still linear in the size
of each instance (e.g.,

√
N). In comparison, attribute-based encryption is more

flexible, allowing efficient representations (e.g., O(log(N))) of many large sets.
We leave it as interesting future work to fully develop a group key management
scheme using broadcast encryption, and to provide detailed comparisons.

Overview Sections 2 and 3 describe the basics of flat table key management and
ciphertext-policy attribute-based encryption, respectively. Section 4 presents the
specifics of our new group key management scheme, with a decentralized version
outlined in Section 5. Section 6 discusses performance issues and presents some
simulation results. Concluding remarks follow in Section 7.

2 The time complexity of encryption and decryption can be reduced by caching previ-
ously computed bilinear group elements. However, if large sets of members join and
leave the group frequently, the benefit of caching diminishes.

Preliminary version – March 22, 2007

4

2 Flat Table Key Management

In this section, we review the basic setup of the flat table group key management
scheme [3, 6]. Assume that all potential GMs have unique bit-string identifiers
of length n. A typical ID is denoted Xn−1Xn−2 . . . X0, where each Xi is either
0 or 1. The maximum size of the group is thus N := 2n. In addition to a DEK,
denoted K, the GC maintains 2n KEKs: {ki,b|i ∈ Zn, b ∈ Z2}. Each GM holds
n + 1 keys: the DEK K and exactly half of the KEKs. More precisely, a GM
with ID Xn−1Xn−2 . . . X0 holds the KEKs {ki,Xi |i ∈ Zn}.

Join Suppose the joining ID is Xn−1Xn−2 . . . X0. For group backward secrecy,
n + 1 keys are refreshed: {ki,Xi

|i ∈ Zn} and K. The GC multicasts the new
keys, each encrypted with the corresponding old key: {k′n−1,Xn−1

}kn−1,Xn−1
, . . .,

{k′0,X0
}k0,X0

, {K ′}K . (Here {M}k denotes the result of encrypting M with sym-
metric key k.) Finally, the joining GM is given {k′i,Xi

|i ∈ Zn} and K ′ via secure
unicast messages.

Leave Suppose the leaving ID is Xn−1Xn−2 . . . X0. For group forward secrecy,
all n + 1 keys held by this GM are refreshed. The GC multicasts the new
DEK, encrypted once with each of the n KEKs not held by the leaving GM:
{K ′}kn−1,X̄n−1

, . . . , {K ′}k0,X̄0
. (Here X̄i denotes the complement of Xi.) Clearly,

the leaving GM cannot decrypt any of these messages. On the other hand, since
every other ID differs from the leaving ID by at least one bit, every remaining
GM should be able to decrypt at least one of these messages, thus obtaining K ′.

The GC then multicasts new KEKs, each encrypted with both the new DEK
and the corresponding old KEK: {k′n−1,Xn−1

}K′,kn−1,Xn−1
, . . . , {k′0,X0

}K′,k0,X0
.

(Here {M}k1,k2 denotes the result of double encryption: first encrypt with k1;
then the resulting ciphertext is encrypted with k2.) Again, all remaining GMs
can decrypt and update the appropriate KEKs, while the leaving GM cannot
decrypt at all because he does not have K ′.

Multiple Leaves In principle, the procedure above can be repeated to remove
multiple members from the group. A more efficient strategy is proposed in [3],
using Boolean function minimization (BFM). The main idea is to associate a
Boolean function m with each rekey event. This function takes n bits as inputs
and returns one bit, satisfying:
– m(Xn−1, . . . , X0) = 0, if the ID Xn−1 . . . X0 is leaving;
– m(Xn−1, . . . , X0) = 1, if the ID Xn−1 . . . X0 remains in the group.

For any other ID Xn−1 . . . X0, m(Xn−1, . . . , X0) may be either 0 or 1. The GC
runs the Quine-McCluskey algorithm [3, 12] to reduce m to a sum of products
expression (SOPE) with (i) the smallest possible number of ORs, and (ii) given
the number of ORs, the smallest possible number of literals.

For example, suppose 011 and 101 are to be removed from a group of seven
members, with all but 000 currently in the group. The membership function
m(X2, X1, X0) can be reduced to the minimal expression X2X1+X̄2X̄1+X̄0. To

Preliminary version – March 22, 2007

5

update the DEK, it is then sufficient to multicast three messages: {K ′}k2,1,k1,1 ,
{K ′}k2,0,k1,0 and {K ′}k0,0 . In general, the number of summands in the minimal
expression corresponds to the number of messages, while the literals in each
summand indicate which keys should be used to encrypt the new DEK. We refer
to [3] for further details.

Collusion Attacks Although the flat table scheme is simple and efficient, it is sus-
ceptible to collusion attacks. In the example above, if 011 and 101 collude, then
they can decrypt two of the three rekey messages: {K ′}k2,1,k1,1 and {K ′}k2,0,k1,0 .
In fact, if a set of leaving GMs collectively hold all 2n KEKs (e.g., two GMs
with complementary bits in their IDs), then they may collude to obtain the new
DEK, no matter how it is encrypted with KEKs.

The new scheme we present Section 4 avoids collusion attacks by replacing
actual KEKs with abstract attributes: a GM with ID Xn−1 . . . X0 is said to
possess the attributes {Ai,Xi |i ∈ Zn}. Upon joining, this GM receives a secret
key SKS associated with the attribute set S := {Ai,Xi |i ∈ Zn} in a ciphertext-
policy attribute-based encryption system. These secrete keys are generated in
such a way that two keys SKS1 and SKS2 cannot be combined to obtain SKS′ ,
where S′ 6⊆ S1 and S′ 6⊆ S2. For example, even if 011 and 101 collude, they
cannot obtain a secret key for the attribute set {A2,1, A1,1}. Essentially, each
secret key has its own randomization factors, making it impossible to combine
two keys into one coherent new key.

3 Ciphertext-Policy Attribute-Based Encryption

We now describe a simplified version of the BSW scheme [5], sufficient for our
purposes. In CP-ABE, each user is associated with a set of attributes (expressed
as bit strings) and he receives a secret key based on that set. For each encryption,
the encryptor must specify a threshold access structure over attributes and send
it as part of the ciphertext. A user can decrypt if and only if his attribute set
satisfies this access structure.

In [5], an access structure is a tree in which every leaf y is labeled by an
attribute att(y) and every non-leaf node represents a threshold gate3. For our
purposes, it is sufficient to consider only depth-1 trees; in particular, AND gates
(n-of-n) and OR gates (1-of-n). Moreover, each node is assumed to have a total
ordering of its children: if y is not the root, index(y) denotes the index of y as a
child of its parent.

An CP-ABE scheme consists of four fundamental algorithms: Setup, Encrypt,
KeyGen and Decrypt. An optional algorithm, Delegate, is also provided in [5].

Setup This algorithm takes as input the security parameter κ and returns a
public key PK and a master secret key MK . It selects:
– a bilinear group G of prime order p, with bilinear map e : G×G → G1,
– a generator g of G, two random elements α and β in Zp, and

3 A t-of-n threshold gate is satisfied if and only if at least t of the n inputs are satisfied.

Preliminary version – March 22, 2007

6

– a hash function H that maps bit-string attributes into G.
The public key is PK := 〈G, g, gβ , g

1
β , e(g, g)α,H〉. The master secret key is

MK := 〈β, gα〉.

Encrypt This algorithm takes as input the public key PK, a message M ∈ G1,
and an access tree T , and returns a ciphertext CT . For simplicity, we only
describe the encryption procedure for depth-1 trees. This is sufficient for our
group key management scheme.

Let tT denote the threshold value for T and let dT := tT − 1. The algorithm
selects a degree-dT polynomial qT as follows: (i) choose random s ∈ Zp and
set qT (0) := s; (ii) choose dT other points independently at random. Let Y
denote the set of leaf nodes in T and, for every y ∈ Y , set qy to be the constant
polynomial qT (index(y)). The ciphertext CT is:

〈T, M · e(g, g)αs, gβs, {gqy(0)|y ∈ Y }, {H(att(y))qy(0)|y ∈ Y }〉.

KeyGen This algorithm takes as input a set S of attributes and returns a secret
key SK associated with S. First, it selects from Zp a random r and random
rj for each j ∈ S. (These are the aforementioned randomization factors.) The
secret key SK is: 〈g

α+r
β , {gr ·H(j)rj |j ∈ S}, {grj |j ∈ S}〉.

Decrypt This algorithm takes as input a ciphertext CT and a secret key SK for
an attribute set S, and returns the message M if S satisfies the access tree T in
CT . Due to space considerations, the full description is given in Appendix A.

Delegate This algorithm takes as input a secret key SK for a set S of attributes,
and a set S̃ ⊆ S, and returns a secret key ˜SK for S̃. First, it selects from Zp

a random r̃ and random r̃j for each j ∈ S̃. (These are the re-randomization
factors.) Suppose SK is of the form 〈D, {D0

j |j ∈ S}, {D1
j |j ∈ S}〉. The new

secret key ˜SK for S̃ is: 〈D · g
r̃
β , {D0

j · gr̃ ·H(j)r̃j |j ∈ S̃}, {D1
j · gr̃j |j ∈ S̃}〉.

Security Game CP-ABE security is defined as the statement that all probabilistic
polynomial-time adversaries have at most negligible advantage in the following
game. The full security proof can be found in [5].

Setup The challenger runs the Setup algorithm and gives the adversary PK .
Phase 1 The adversary chooses sets S1, . . . , Sq of attributes and makes KeyGen

queries on these sets.
Challenge The adversary submits two messages M0 and M1 of equal length, as

well as an access structure T such that T is not satisfied by any of the sets
S1, . . . , Sq. The challenger chooses b ∈ {0, 1} at random and encrypts Mb

with T . The resulting ciphertext CT is given to the adversary.
Phase 2 The adversary chooses sets Sq+1, . . . , Sq′ of attributes and makes Key-

Gen queries on these sets, provided again none of these sets satisfy T .
Guess The adversary outputs a guess b′ of b.

Notice, collusion resistance follows from the fact the adversary may make
multiple secret key queries both before and after selecting challenge plaintexts.

Preliminary version – March 22, 2007

7

4 New Scheme for Group Key Management

This section presents our new proposal for group key management. The underly-
ing concept is flat table, but we rely on CP-ABE to carry out rekey operations.
We achieve collusion resistance and some performance improvements, such as
constant-size messages for join and periodic refresh.

We assume that each potential GM is uniquely identified by a bit string of
length n: Xn−1Xn−2 . . . X0. Depending on the application, this ID may be a hash
value of the GM’s public key, or it may be assigned by the GC when the GM
joins the group for the first time4. In either case, it is desirable to have actual
IDs sparsely distributed in the space of all length-n bit strings. This helps to
reduce the average size of BFM outputs and hence the message complexity for
rekeying.

The GC plays the role of the central authority in CP-ABE. To initialize the
group, he runs Setup and obtains PK = 〈G, g, gβ , g

1
β , e(g, g)α,H〉 and MK =

〈β, gα〉. Then he selects random K ∈ G1 as the DEK5. The GC does not hold
any other keys; in particular, no KEKs.

The attributes in our system are of the following form: “The i-th bit in my
ID is b,” where i ∈ Zn and b ∈ {0, 1}. This is denoted Ai,b. Thus, a member with
ID Xn−1Xn−2 . . . X0 possesses the attributes {Ai,Xi |i ∈ Zn}.

Join The joining GM first establishes a secure unicast connection with the GC,
who checks whether the member is authorized to join. If the checks succeed, the
joining ID is added to a set C of current IDs. The GC then selects a new DEK
K ′ ∈ G1 at random and multicasts {K ′}K . Current GMs decrypt and update
the DEK. The GC then runs KeyGen with the attribute set S := {Ai,Xi |i ∈ Zn}.
The joining GM receives, by secure unicast, the resulting secret key SK and the
new DEK K ′.

Leave Our scheme treats a single leaving GM and multiple leaving GMs in
exactly the same way. Once the set of leaving GMs is determined, the GC sets
C′ to be the set of remaining IDs. Let m denote the Boolean function such that
an ID evaluates to 1 if and only if it is in C′. The GC runs the Quine-McCluskey
algorithm to reduce m to a minimal SOPE E = E0 + . . . + EL. If the GC
maintains a list of all former members, then m can be relaxed to allow “don’t
care” values on unused IDs (i.e., those for which a secret key was never issued.)
This reduces the size of E, because the set of IDs to be covered is smaller. Indeed,
we maintain such a list in our experimental implementation (see Section 6).

For each l ∈ {0, . . . , L}, let Tl denote any access tree satisfying: the root is
an AND gate and the leaves are labeled by exactly those literals occurring in
El. For example, if El is X̄2X̄1X0, then Tl has exactly three leaf nodes and they
are labeled with A2,0, A1,0 and A0,1, respectively.
4 Assigned IDs may be a better option, because the GC can use the Huffman technique

for ID generation, which improves BFM calculations [13, 14].
5 Alternatively, we may use K as a seed for generating the DEK. The generator func-

tion must be known to all GMs.

Preliminary version – March 22, 2007

8

The GC selects at random a new DEK K ′ ∈ G1. For each l, he runs Encrypt
on K ′ and Tl, obtaining CT l. Then he multicasts CT 0, . . . ,CTL. By construc-
tion, every GM with ID in C′ satisfies at least one El, therefore it can decrypt at
least one of these messages. Similarly, a GM with ID not in C′ does not satisfy
any El, therefore he cannot decrypt any of these messages on his own. Since the
BSW scheme is collusion resistant, this implies former and leaving GMs cannot
recover K ′ even if they all collude (e.g., by sharing their secret keys).

Periodic Refresh For perfect forward secrecy, we perform a system-wide refresh
at regular intervals. The GC chooses random K ′ ∈ G1 and α′ ∈ Zp. The public
and master keys are updated as: PK ′ := 〈G, g, gβ , g

1
β , e(g, g)α′ ,H〉 and MK ′ :=

〈β, gα′〉. Then the GC multicasts two messages: {K ′}K and {g
α′−α

β }K .
Each current GM can decrypt both messages because he knows K. The DEK

is updated to K ′. The second message, g
α′−α

β , is called the conversion factor
and is used to update the secret key. Let SK = 〈D, {D0

j |j ∈ S}, {D1
j |j ∈ S}〉

denote the old secret key held by a GM. The new secret key is calculated as

SK ′ := 〈D · g
α′−α

β , {D0
j |j ∈ S}, {D1

j |j ∈ S}〉. The old key SK is securely erased.

Note that only the first component of SK is changed, and D · g
α′−α

β =

g
α+r

β + α′−α
β = g

α′+r
β , therefore SK ′ is a valid secret key in the new system

for the same attribute set. Moreover, for α0 6= α′, SK ′ can be rewritten as

〈g
α0+(r+α′−α0)

β , {gr ·H(j)rj}j∈S , {grj}j∈S〉. This is not a valid secret key in the
system parameterized by α0. Thus, SK ′ cannot be used to decrypt past rekey
messages.

Security Properties In the refresh algorithm above, K ′ and α′ are generated ran-
domly, therefore they do not reveal information about older versions of K and α.
Moreover, we have argued that current secret keys are not valid in older systems
with different α parameters. Therefore, perfect forward secrecy is satisfied.

Note that, during every rekey operation, the new DEK K ′ is
– either encrypted with the old DEK K, using symmetric encryption, or
– encrypted to the set C′ of remaining IDs, using CP-ABE.

Assuming the security of symmetric encryption and CP-ABE, a GM joining for
the first time cannot decrypt either type of messages from the past, hence group
backward secrecy is satisfied.

For collusion resistance and group forward secrecy, we have seen that a leav-
ing GM cannot recover the new DEK K ′, even if he colludes with other for-
mer/leaving GMs (cf. the leave algorithm). Assuming the security of symmetric
encryption and CP-ABE, the same holds until this GM rejoins.

5 Decentralized Management

In the scheme we just described, a single entity (namely, the GC) manages the
whole group. This imposes many requirements on the GC, including storage

Preliminary version – March 22, 2007

9

(e.g., maintaining a list of active group members), computation (e.g., signature
verification, key generation and BFM) and communication (e.g., unicast mes-
sages during join and leave). In this section, we show that some of this workload
can be distributed to trusted members who act as subgroup controllers (SGCs).

We assume the number of SGCs is relatively small, therefore secure unicast
communication can be used from each SGC to the GC. Multicast is used for the
other direction. SGCs may be added or removed dynamically. They maintain
precise membership of their own subgroups, and accept join/leave requests on
behalf of the GC. Thus, the GC behaves as a simple key server, generating DEKs
and α parameters whenever they are requested or for periodic rekeying. SGCs use
the Delegate algorithm to issue secret keys without knowing the system master
key MK . This allows the group to recover quickly from the compromise of an
SGC, using the Remove SGC algorithm below.

We also stress the fact that BFM computations are now performed by SGCs,
each within his own subgroup. Moreover, the leave operation applies only to a
single subgroup, therefore we add a global revoke operation.

Below we define the various operations in the new decentralized context.
First, we augment the encryption system with new attributes

⋃
gid∈V{Bgid , Cgid},

where V is some appropriate name space. Given a subgroup identified by gid ,
every member of the subgroup possesses the attribute Bgid , while only the SGC
possesses the attribute Cgid . The GC can now encrypt messages to the SGCs
only, and an SGC can encrypt messages to members of his subgroup only.

Add SGC Suppose a trusted member is authorized and willing to become an
SGC. The GC assigns a subgroup ID gid and gives the new SGC a secret key
generated with the attribute set {Ai,b|i ∈ Zn, b ∈ {0, 1}} ∪ {Bgid , Cgid}. This
subgroup ID is added to the list of active subgroups. The SGC also receives the
appropriate policy information on who may join his subgroup6 and how IDs are
obtained (e.g., derived from member public keys, or assigned by the SGC from
some ID space).

Join The joining GM contacts a SGC, who verifies the requests and sends a
unicast message to the GC to signal a join. The GC multicasts {K ′}K to the
whole group. The SGC then runs the Delegate algorithm with its own secret key
and the attribute set {Ai,Xi

|i ∈ Zn} ∪ {Bgid}, where Xn−1 . . . X0 is the joining
ID. The resulting secret key and the new DEK K ′ are given to the joining GM
by secure unicast.

Leave The leaving GM contacts the SGC from whom he received his secret
key7. The SGC verifies the request and sends a unicast message to the GC to
signal a leave. The GC multicasts K ′ to SGCs only, by encrypting the new key
using CP-ABE and the C attributes. Each SGC performs a BFM computation

6 This determines whether a member could join multiple subgroups.
7 If the leaving GM received multiple secret keys from multiple SGCs, he must contact

all of them.

Preliminary version – March 22, 2007

10

within his own subgroup8 and multicasts rekey messages with the additional
attribute Bgid , so that his rekey messages cannot be decrypted by members of
other subgroups.

Global Revoke When the GC makes a revocation decision (e.g., because it detects
malicious behavior from a particular GM), it multicasts the decision and a new
DEK K ′ to the SGCs only, using CP-ABE and the C attributes. Each SGC
proceeds with BFM and multicasts rekey messages, as in the leave algorithm.

Periodic Refresh This is done by the GC as in Section 4.

Remove SGC Suppose the GC decides to remove an SGC with subgroup ID
gid0, or the SGC decides to leave the group. The GC multicasts the new DEK
K ′, encrypted using CP-ABE with the attribute set {Cgid |gid active and gid 6=
gid0}. Each remaining SGC proceeds with BFM and multicasts rekey messages,
as in the leave algorithm. Note that members of subgroup gid0 are now effectively
removed from the group, because they cannot decrypt rekey messages from other
SGCs. These members must now rejoin by contacting another SGC.

6 Performance

In this section we compare our rekey scheme against the original flat table (FT)
scheme [3, 6], with and without the BFM optimization. We also compare against
tree-based schemes (e.g., OFT [2], LKH [7, 8] and ELK [4]). The comparisons
are in terms of storage and communication.

Recall that n is the length of IDs and N = 2n is the size of ID space. Let M
denote the number of current GMs, m denote log(M), and L denote the number
of leaving GMs.

Storage Communication
Scheme GC GM Join Single Leave Multiple Leaves

FT (CP-ABE) Θ(M) Θ(n) Θ(1) O(n) ≈ O(m)

FT (KEKs) Θ(n) Θ(n) Θ(n) Θ(n) Θ(L · n)

FT/BFM (KEKs) Θ(M + n) Θ(n) Θ(n) O(n) ≈ O(m)

Tree-Based Θ(M) Θ(m) Θ(1) Θ(m) O(L · m)

Fig. 1. Comparison of Storage and Communication Complexities.

For FT(CP-ABE) and FT/BFM (KEKs), the message complexity for leave
varies, depending on which IDs are leaving and which IDs remain the group.
For single leave, the worst case requires all complementary bits of the leaving
8 If the leave event is entirely outside his subgroup, the SGC may skip the BFM

computation and multicast using the last BFM output.

Preliminary version – March 22, 2007

11

ID, hence O(n). For multiple leaves, our experimental results suggest the com-
plexity is O(m), although the number of bytes communicated is large in our
case due to the size of bilinear group elements (cf. Section 6.1 below). Barring
the difference between m and n, our scheme is asymptotically comparable with
tree-based schemes, and superior to original flat table. Further explanations of
these complexity results are provided in Appendix B.

6.1 Experimental Evaluation

We simulate our group key management scheme using pre-existing software for
BSW encryption [5] and for the Quine-McCluskey BFM algorithm [15]. Since
the message complexity is constant for both join and refresh, we focus on the
message complexity for simultaneous leaves. This case is difficult to analyze due
to its dependence on BFM.

Our implementation is driven by an event file, which describes the size of
the ID space, the IDs of current GMs, and the IDs of leaving GMs. Given an
event file, our software generates the corresponding multicast traffic. We test
four different group sizes: 16, 32, 64, and 128. For each group size, we test four
different scenarios: 10%, 25%, 50%, and 75% members leaving. For each of these
sixteen combinations, we run 10 independent trials. The group membership and
the leaving members are chosen randomly in each trial, and the size of ID space
for all trials is 8-bits9.

Figure 2 describes the results of these experiments. Each entry describes the
average number of messages and the average number of bytes generated from
the given combination of group size and percentage of members leaving. We
observe, empirically, that a CP-ABE message encrypted on a single attribute
requires roughly 630 bytes. Each additional attribute adds roughly 250 to 300
bytes.

Extrapolating from these figures, the message complexity for multiple leaves
is O(log M), where M is the current group size. The constant factor is roughly
3.5. It is also interesting to note that traffic peaks at 50% leaving. This conforms
with the reflective nature of BFM; intuitively, 75% leaving and 25% leaving
present roughly the same level of difficulty.

On the other hand, the byte overhead of our scheme is large. For these small
group sizes, even a naive O(M) scheme has competitive performance. For ex-
ample, one can encrypt the new DEK to each remaining GM individually, using
32-byte symmetric keys. However, if our logarithmic behavior indeed extrap-
olates, such advantages would dissipate as the group size grows. These initial
results indicate that an important next step is to develop new CP-ABE schemes
with short ciphertexts.

9 Clearly, a larger ID space is needed for large-scale deployment. Our naive implemen-
tation of Quine-McCluskey makes larger ID spaces computationally impractical. We
believe larger ID spaces can be handled using optimized BFM algorithms, such as
those commonly used in the digital logic community.

Preliminary version – March 22, 2007

12

Percentage of Members Leaving
Group Size 10% 25% 50% 75%

16 4 / 2286 4 / 3058 4 / 4405 3 / 3000

32 6 / 5510 6 / 6604 6 / 8105 4 / 5616

64 9 / 9662 10 / 13771 12 / 18128 8 / 13319

128 14 / 18588 20 / 30705 24 / 42711 18 / 33053

Fig. 2. Average Number of Msgs/Bytes Per Leave Event in 8-Bit ID Space.

7 Conclusions and Future Work

In this paper, we propose a group key management scheme based on ciphertext-
policy attribute-based encryption (CP-ABE). In this approach, each group mem-
ber is identified by a set of attributes, and is given a secret key in the CP-ABE
system that corresponds to his attribute set. During a leave event, the group
controller uses CP-ABE to encrypt the new data key to all (and only) remaining
members. We also provide efficient mechanisms for periodic system-wide refresh
and for subgroup management.

This approach is conceptually simple and has many good features. For exam-
ple, user secret keys are independent, even if certain attributes are shared. Thus
the compromise of one secret key does not affect other secret keys. Moreover,
users cannot collude to decrypt messages that they cannot decrypt individually.

The main challenge is to define attributes in such a way that the set of
legitimate members can be distinguished efficiently, using a small combination
of attributes. Following the flat table concept, we define attributes based on
bits in the IDs of group members, and Boolean function minimization is used
to determine which attributes should be included in the encryption of rekey
messages. Our experimental results suggest, while BFM itself is computationally
intensive, it provides good reduction in the number and size of rekey messages.
An interesting direction of future research is to find other definitions of attributes
for which rekey messages can be calculated more efficiently. For example, we may
return to a tree-based setting, where attributes correspond to nodes in a tree.

Our experimental results show that BFM is computationally impractical in
its naive implementation. (The problem is NP-hard.) However, efficient approx-
imations are well known and widely used within the digital logic community. It
would be interesting to simulate our rekey algorithm with an optimized BFM
algorithm and to determine the maximum ID length for which BFM computa-
tions are feasible. Also, the difficulty of BFM is mitigated to some extent in our
decentralized scheme, where SGCs perform BFM calculations locally.

Our experiments also show that BSW encryption produces very large cipher-
texts. This is because a ciphertext contains roughly two bilinear group elements
per attribute, and these elements are large (128 bytes each). We are currently in-
vestigating a modification to the BSW scheme, which reduces the ciphertext size
at the cost of increased public key size. Large public keys are easier to handle in

Preliminary version – March 22, 2007

13

the setting of group key management, because they can be obtained out-of-band,
for example, pre-placed in hardware.

Acknowledgments We thank Ran Canetti, Ron Rivest and Eran Tromer for
helpful discussions and suggestions.

References

1. Rafaeli, S., Hutchison, D.: A survey of key management for secure group commu-
nication. ACM Computing Surveys 35(3) (2003) 309–329

2. McGrew, D., Sherman, A.: Key establishment in large dynamic groups using one-
way function trees. Technical Report 0755, TIS Labs at Network Associates, Inc.
(1998)

3. Chang, I., Engel, R., Kandlur, D., Pendarakis, D., Saha, D.: Key management
for secure internet multicast using Boolean function minimization techniques. In:
Proceedings IEEE Infocomm’99. (1999)

4. Perrig, A., Song, D., Tygar, J.: ELK: a new protocol for efficient large-group key
distribution. In: Proceedings of the IEEE Symposium on Security and Privacy
(Oakland). (2001)

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the 28th IEEE Symposium on Security and Privacy (Oak-
land). (2007) To appear.

6. Waldvogel, M., Caronni, G., Sun, D., Weiler, N., Plattner, B.: The VersaKey
framework: versatile group keey management. IEEE Journal on Selected Areas in
Communications 17(9) (1999) 1614–1631 Special Issue on Middleware.

7. Wong, C., Gouda, M., Lam, S.: Secure group communications using key graphs. In:
Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication. (1998)

8. Wallner, D., Harder, E., Agee, R.: Key management for multicast: issues and
architectures. (RFC 2627)

9. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: Proceedings of the IEEE
INFOCOM’99. (1999)

10. Canetti, R., Malkin, T., Nissim, K.: Efficient communication-storage tradeoffs for
multicast encryption. Lecture Notes in Computer Science 1592 (1999) Advances
in Crytology – EUROCRYPT’99.

11. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. Lecture Notes in Computer Science 3621 (2005)
Advances in Crytology – CRYPTO’05.

12. C.H. Roth, J.: Fundamentals of Logical Design. 5 edn. Thomson Engineering
(2003)

13. Ilango, S., Thomas, J.: Group key management utilizing Huffman and Petrick
based approaches. In: Proc. of the Int. Conf. on Information Technology: Coding
and Computing (ITCC’04). (2004)

14. Srinivasan, T., Sathish, S., Kumar, R.V., Vijayender, M.: A hybrid scalable group
key management approach for large dynamic multicast networks. In: Proc. of the
Sixth IEEE Int. Conf. on Computer and Information Technology (CIT’06). (2006)

15. : Quine-mccluskey logic simplifier. (http://sourceforge.net/projects/qmls/)

Preliminary version – March 22, 2007

14

A CP-ABE Decryption

The decryption algorithm takes as input a ciphertext CT and a secret key SK
for an attribute set S, and returns the message M if S satisfies the access tree
T in CT . Suppose SK is of the form 〈D, {D0

j}j∈S , {D1
j}j∈S〉 and CT is of the

form 〈T, C̃, C, {C0
y}y∈Y , {C1

y}y∈Y 〉, where Y is the set of leaf nodes in T .
Let y ∈ Y be given and suppose att(y) ∈ S. Using bilinearity of e, we can

compute e(g, g)r·qy(0) as
e(D0

att(y),C
0
y)

e(D1
att(y),C

1
y)

. Indeed, the latter equals

e(gr ·H(att(y))ratt(y) , gqy(0))
e(gratt(y) ,H(att(y))qy(0))

=
e(gr+m·ratt(y) , gqy(0))
e(gratt(y) , gm·qy(0))

=
e(g, g)(r+m·ratt(y))·qy(0)

e(g, g)qy(0)·m·ratt(y)
,

where m is any exponent satisfying gm = H(att(y)).
By assumption, S satisfies T . Thus, there are at least tT many leaf nodes y

with att(y) ∈ S. We select exactly tT of such y’s and compute e(g, g)r·qy(0) for
each of them. Now we can compute e(g, g)r·qT (0) as

∏
y e(g, g)r·qy(0)·∆y , where

∆y is the appropriate Lagrange coefficient. (We refer to [5] for more details.)
Finally, the message M is computed as follows.

C̃ · e(g, g)r·qT (0)

e(C,D)
=

M · e(g, g)α·s · e(g, g)r·qT (0)

e(gβ·s, g
α+r

β)
=

M · e(g, g)(α+r)·s

e(g, g)(α+r)·s

B Performance Comparisons

Storage (GC): In FT, the GC need not keep track of membership, although exact
membership is needed to use the BFM optimization. Thus, the GC stores at least
one DEK and 2n KEKs. In our scheme, the GC stores (i) the DEK, (ii) public
and master keys of the CP-ABE system and (iii) the list of current GMs. Since
the public and master keys for CP-ABE are of constant size, the GC’s storage is
dominated by M , the current group size. In a tree-based scheme, a GC stores all
the KEKs described by the key tree. Typically, this amounts to 2M − 1 KEKs.

Storage (GM) In FT, each GM stores one DEK and n KEKs. In our scheme,
each GM stores its secret key in the CP-ABE system, which consists of 2n + 1
group elements. (Note that bilinear group elements are quite large, 128 bytes
each.) In a tree-based scheme, a GM stores the KEKs on its path to the root.
Since the tree height is m, the GM stores m KEKs.

Communication (Join) In FT, the DEK and exactly n KEKs are refreshed
during a join event. Hence n + 1 messages are necessary. Our scheme requires
only one multicast message: the new DEK encrypted with the old DEK. In a
tree-based scheme, the message complexity varies. If new KEKs are derived from
old ones using one-way functions, only one message is necessary to signal the
join event. In ELK, for example, this is further reduced to 0, because the joining
members must wait until the next periodic refresh [4]. If new KEKs on the GM’s
path to the root are sent by the GC, then m messages are necessary, one for
each affected key.

Preliminary version – March 22, 2007

15

Communication (Single Leave) Without BFM, FT requires 2n messages, each
containing one symmetric key. With BFM, the number of messages can be re-
duced, depending on the particular GM leaving and the specific composition
of the remaining group. In our scheme, we generate one message for each sum-
mand in the BFM output. In the worst case, we would have n messages, each
describing one attribute. Depending on the result of BFM, fewer messages may
be sufficient.

In a tree-based scheme, at least Θ(m) messages are required: one for each af-
fected KEK on the path from the leaving GM to the root. The actual complexity
(e.g., the constant factors) varies depending on the particular scheme.

Communication (Multiple Leaves) Let L denote the number of leaving GMs.
Without BFM, FT requires 2n messages per leaving GM, thus 2L · n messages
in total. Each message contains one symmetric key. With BFM, the number
of messages can be reduced, depending on the particular GMs leaving and the
specific composition of the remaining group. Similarly for our scheme. In our
experiments (cf. Section 6), O(m) messages were generated on average, regardless
of the number of leaving members.

In a tree-based scheme, L · m messages are needed if members are removed
in succession. Some optimization is possible by taking advantage of the relative
positions of leaving GMs. For example, if the leaving GMs share a common
ancestor deep in the tree, then the number of messages required is small. If
instead they are well seperated, the number of messages approaches L ·m.

Preliminary version – March 22, 2007

