6.853 Topics in Algorithmic Game Theory September 20, 2011

Lecture 4

Lecturer: Constantinos Daskalakis Scribe: Constantinos Daskalakis

We have seen that Nash equilibria in two-player zero-sum games (and generalizations thereof) are
polynomial-time tractable from a centralized computation perspective. We have also seen that the
payoff matrix of a zero-sum game determines a unique value for the row player and a unique value for
the column player (summing to zero), which specify their payoffs in all equilibria of the game. In this
lecture, we investigate whether Nash equilibria can arise as a result of the distributed interaction between
the players of a zero-sum game, and whether the values of the players in the game are descriptive of
their long-term payoffs in the course of their interaction.

Clearly, if the players are aware of the details of the game (i.e. the game’s payoff matrix), they can
compute their min-max strategies on the side and just use these strategies forever. We envision a much
weaker distributed scenario, of completely-uncoupled dynamics as follows:

e cach player knows her own pure strategies, but does not know the game matrix, or even the number
of strategies available to her opponent;

e players interact in rounds, and each player can choose a mixed strategy in each round;

e in the end of each round, each player is informed about the expected payoff she would have gotten
had she played each of her pure strategies against the opponent’s mixed strategy (but the mixed
strategy of the opponent is not revealed to her).

1 Fictitious Play

We consider a type of completely-uncoupled dynamics called fictitious play. Fictitious play was defined
by George W. Brown [1] who conjectured its convergence to the value of a zero-sum game, and its
convergence properties were established by Julia Robinson [6] (yes, the same Julia Robinson of Hilbert’s
tenth problem [5]). We proceed to describe how fictitious play works. Let (R,C = —R);,xn be a two
player zero-sum game, but assume we are in a completely-uncoupled scenario where the players are
ignorant of the game matrix. The players interact in rounds as follows:

e Inround t = 1:
— the row player plays an arbitrary strategy i; and the column player plays an arbitrary strategy
J1;
— the row player observes Re;, and the column player observes e}lC’ ;

e In round t = 2:

— the row player plays any strategy is € argmax,{e; Re;, }, and the column players plays any
strategy jo € argmax;{e}. Ce;};
— the row player observes Rej, and the column player observes e;SC’;
e ...

e In a general round ¢:

— the row player plays any strategy

) 1
i; € argmax; { e; R | —— E €j, ,
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and the column player plays any strategy
T

Jt € argmax; 1 Z €, Cej ¢

/*observe that i; and j; can be selected using information that the row and column player has
observed, in particular average payoff vectors from previous rounds™/

— the row player observes Re;, and the column player observes e}ZC;
o ...

For notational convenience in what follows we denote by x; = %(ZTSt e;,) and y; = %(ngt €j,)
the empirical, or historical, strategies played by the row and column players respectively in the course
of the dynamics. In a nutshell,

Definition 1. Fictitious play is the completely uncoupled player interaction in which in every round
each player plays a best response to the opponent’s historical strateqy as described above.

Example 1. Let (R,C) be a two-player zero-sum game with three strategies per player. Suppose that
the row player’s payoffs are given by

2 1 0
R= 2 0 3
-1 3 -3

Suppose that at time ¢ = 1 the row player plays i; = 1 and the column player plays j; = 3. Table 1
summarizes the first three rounds of fictitious play.

t | i gt terlfRyt tegRyt t63T Ry, ta:?Cel tz?C’eg t:l:;f Ces
171 3 0 3 -3 -2 -1 0
212 3 0 6 -6 -4 -1 -3
312 2 1 6 -3 -6 -1 -6

Table 1: Summary of the first three rounds of fictitious play. Underlined numbers indicate optimal
cumulative pyoffs for a given round by each player of the game.

It is easy to establish the following:

Claim 1. If the players of a zero-sum game (R,C = —R) interact via fictitious play, then for all times
t>1:
max e;FRyt > v > min :rtTRej,
i J

where v is the value of the row player in the game.

Proof:
Lecture 2:

The proof follows easily from the min-max theorem. Recall the linear program LP(2) from

min z
st. Ry<z-1

Zyizlayi > 0.

In every optimal solution (y*,z*) of this linear program, at least one of the slack constraints must be
tight. So we get z* = max; (el R - y*). We also argued in the previous lecture that the optimal value z*
of this LP is equal to the value v of the game.

Now notice that (y;, max;(ej R-y;)) is always a feasible solution of this linear program achieving value
max;(e] R - y;). Since the linear program is a minimization problem, we must have max;(e} R - y*) >
z* = v. Similarly, we can argue using LP(1) of Lecture 2 that v > min;(z] - Re;). This concludes the
proof. ([l
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1.1 Convergence of Fictitious Play

The above result gives an interesting property of fictitious play, namely that the maximum payoff that
the row player can achieve against the empirical strategy of the column player is larger than the value of
the game, which in turn is larger than the minimum loss that the column player could suffer against the
empirical strategy of the row player. Do these values converge to the value of the game? And, do the
empirical strategies converge to an equilibrium of the game? Julia Robinson [6] showed that the answer
to these questions is positive, namely

Theorem 1 (J. Robinson [6]). If the players of a zero-sum game (R,C = —R) interact via fictitious
play, then:
lim maxe] Ry; = tlim min w;rRej =,
—00  j

t—oo 1

where v is the value of the row player in the game.
Discussion:

e Robinson’s proof is a clever inductive argument on the number of strategies of the game. We do
not provide the proof here, but encourage the interested reader to look at it [6].

e It is a priori not clear that the above limits exist. So in particular the above theorem informs us
that these limits do exist.

e Robinson’s proof does not discuss the speed of convergence to the value of the game. Unraveling
her inductive argument we can establish the following.
Q
Theorem 2. For all e > 0, for allt > (@) (metn)

€

we have
T T
maxe; Ry, — rnjm zy Rej| <e,

where Ryar = maz; j(|Rij]), and m, n are respectively the number of rows and columns in the
payoff matrices of the game.

e Finally, there is nothing special about the row player; we can obviously state an analogous result
for the column player.

And what about the empirical mixed strategies, do they also converge to some interesting object? Before
discussing this, let us recall the notion of an e-approximate Nash equilibrium from the previous lecture.

Definition 2. A pair of mized strategies (x,y) for the players of a two-player game (R,C)mxn is an
e-approzimate Nash Equilibrium if and only if

1. TRy > 2'"Ry — € for all ' € A,,,
2. xTCy > 2TCy' — € for all y € A,,.

That is, no player of the game can improve by more than an additive € by switching to a different mized
strategy.

We obtain the following corollary of Theorem 2, showing that the empirical strategies constitute an
e-approximate Nash equilibrium for all ¢ large enough.

Corollary 1. For all e > 0, for all t > (%)Q(m‘”"), (x¢,y¢) is an e-approzimate Nash equilibrium of
the game.
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Proof: Claim 1 and Theorem 2 imply that
0 < maxe] Ry; — min x;FRej <e.
i J

But note that min; zf Re; < 2 Ry;. The reason is that the right hand side can be interpreted as a
convex combination of the coordinates of z} R, and this convex combination must be at least as large as
the minimum coordinate. Summing these inequalities we get

max e;rRyt — x;rRyt <e
1

=3 :EtTRyt > Inzax eiTRyt — €.

That is, if the column player uses her empirical mixed stretegy v;, the row player cannot improve her
payoff by more than € by not using his empirical mixed strategy x;. Similarly, we can argue that the
column player cannot improve by more than e by deviating from y;. This establishes that the pair (x¢, y:)
is an e-approximate Nash equilibrium. (Il

In other words, if the players of a zero-sum game interact via fictitious play, then their empirical mixed
1

strategies at round ¢ constitute a (Rmam -t OtmEn) )— approximate Nash equilibrium. Can convergence
be made faster? Samuel Karlin conjectured so...

Conjecture 1 (Samuel Karlin, 1959 [3]). Fictitious play converges with rate % - f(|R]), for some

function f(|R|) of the description complexity of the game matriz R.

If the conjecture were true then, for all e > 0, the empirical strategies computed by fictitious play after
time ¢ > % f?(|R|) would constitute an e-approximate Nash equilibrium of the game.

2 A Detour: Learning from Expert Advice

We temporarily postpone our study of games, switching contexts to optimization against an unknown
future using expert advice. We come back to zero-sum games in the next lecture. The setup we consider
here is the following:

- n experts/strategies are available to a learner; identify them with the elements of [n] := {1,...,n}.
- At every time t:

- The learner chooses a probability distribution over the experts [n]: p;.

- After the learner makes his choice, nature or an adversary outputs a loss vector suffered by
the experts l; € [0,1]". (N.B. our limitation to [0,1] is benign since we can always apply an
affine transformation to bring the losses to [0, 1], as long as the losses are bounded.)

- The learner’s loss in this round is p; - ;.
- The learner’s cumulative loss up to time t is Ly =) __, pr - l+.

Our goal is to devise an algorithm for the learner so as to minimize the cumulative loss, L;. But, what
benchmark should we compare our algorithm’s performance against? One possibility is Y, min, (I, (2)).
This is exactly the best we could do, if we knew the future. We argue that this is too ambitious. Indeed,
as we have said, the adversary can in principle observe the learner’s choice p; before deciding /;. Hence,
she could give loss of 1 to all experts in the support of p;, except for the expert with the smallest
probability in p; to which she would give loss of 0 (breaking ties arbitrarily). The learner’s loss would
grow linearly with time, while the benchmark )" __, min,(l,(¢)) would remain 0.

It turns out that a more reasonable benchmark to compare against is the best fixed expert, incurring
loss of min;(} ., 1;(i)). Below we consider a couple of learning algorithms, comparing them against
this milder benchmark.
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2.1 “Follow-the-Leader”

Maybe the simplest strategy for the learner is to pick the strategy that has performed the best so far.
This rule for choosing experts is called “Follow-the-Leader”, formally defined as follows:

- For every expert i, let Ly(i) = Y __, l-(4) be its cumulative loss up until time ¢, inclusive.
(In these terms, we ultimately want to compare our cumulative loss L; to min; L:(7).)

- At time ¢, pick some expert in argmin; L;_1(4), i.e. one of the best performing experts given the
cumulative loss vectors observed so far.

The following example shows that the performance of this algorithm can be poor.

Example 2. In the table below, the rows are indexed by the n strategies available to the learner and the

columns are indexed by the time step t = 1,2,.... Fach column t represents the loss vector l; at time t.
The empty cells of the table should be interpreted as carrying loss of 0.
t=1 t=2 t=3 -+ t=n+1
11 1
i
2l e
n 1 1

At time t = n+ 1, the loss of “Follow the leader” is L,4+1 = L1 + n, while the benchmark achieves loss
min; (Ly(i)) =1+ L.

It looks then that the cumulative loss of “Follow the Leader” can be at least about n times larger than
the benchmark min;(L;(7)). In fact, this is essentially the worst possible performance by this algorithm.

Theorem 3. For allt, “Follow-the-Leader” achieves

Ly <n-(min L (2) + 1).

Proof: Assigned as an exercise problem. O

Remark 1. Observe (exercise) that fictitious play can be viewed equivalently as the result of the two-
players of a zero-sum using the “Follow-the-Leader” protocol to update their strategies.

2.2 Hedging Method (a.k.a. “Multiplicative-Weights-Updates”)

Instead of picking a single expert deterministically as in “Follow-the-Leader”, wouldn’t it be a better
idea to spread risk across the various experts depending on their performance? This is the motivation
behind the multiplicative-weights-update method, developed by Littlestone and Warmuth [4] and first
used in a game-theoretic context by Freund and Schapire [2]. The method is described next:

- At every time t, the learner maintains a weight vector w; > 0 over the experts.

Given the weight vector, the probability distribution over the experts is computed as p; = w“t’fl.

- The weights are initialized at w; = + - 1.

n
(Multiplicative-weights-update step.) Given the loss vector at time ¢ the weights are updated as
follows

Wi () = wid) - wp(le(8), Vi,

where ug : [0,1] — [0,1] is an update function satisfying
BY <wug(z) <1—-(1-p)z,Vo€[0,1],

for some 3 € [0,1].
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The reader is free to chose whatever function ug s/he wants. For example, one can use ug(z) = %,

for any

B € [0,1]. In this case, w1 (i) = wy(i) - B = ... = wy (i) - pEO) = 1310,

We can give the following performance guarantee for this algorithm.

Theorem 4. For allt and any sequence l1,la,...,l; of loss vectors,

In(n) 4+ min; (L (7)) - ln(%)

1-p
For example, if we choose 3 = 3, Ly < 2In(n) + 2In(2) - min;(L(i)). We show Theorem 4 in the next
lecture.
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