
6.853 Topics in Algorithmic Game Theory September 22, 2011

Lecture 5
Lecturer: Constantinos Daskalakis Scribe: Constantinos Daskalakis

We continue our discussion from last lecture, looking at the performance of Multiplicative-Weights-
Updates. We then see how to use MWU in the context of zero-sum games hence concluding our discussion
of zero-sum games. In the end of the lecture, we switch contexts to general games, presenting the elegant
proof of Nash’s theorem.

1 Performance of Multiplicative-Weights-Updates

Let us remember the mechanics of Multiplicative-Weights-Updates:

- At every time t, the learner maintains a weight vector wt ≥ 0 over the experts.

- Given the weight vector, the probability distribution over the experts is computed as pt = wt

wt·1 .

- The weights are initialized at w1 = 1
n · 1.

- (Multiplicative-weights-update step.) Given the loss vector at time t the weights are updated as
follows

wt+1(i) = wt(i) · uβ(lt(i)),∀i,

where uβ : [0, 1]→ [0, 1] is an update function satisfying

βx ≤ uβ(x) ≤ 1− (1− β)x, ∀x ∈ [0, 1],

for some β ∈ [0, 1].

The reader is free to chose whatever function uβ s/he wants. For example, one can use uβ(x) = βx,
for any β ∈ [0, 1]. In this case, wt+1(i) = wt(i) · βlt(i) = . . . = w1(i) · βLt(i) ≡ 1

nβ
Lt(i).

We can give the following performance guarantee for this algorithm.

Theorem 1. For all T and any sequence l1, l2, . . . , lT of loss vectors, the cumulative loss suffered by
“Multiplicative-Weights-Updates” satisfies

LT ≤
ln(n) + mini(LT (i)) · ln( 1

β )

1− β
.

For example, if we choose β = 1
2 , LT ≤ 2 ln(n) + 2 ln(2) ·mini(LT (i)).

We proceed to give a proof of Theorem 1.

Proof: Let us define a potential function at time t to be ln (
∑n
i=1 wt(i)). We have

n∑
i=1

wt+1(i) =

n∑
i=1

(wt(i) · ub(`t(i))) ≤
n∑
i=1

(wt(i)(1− (1− b)`t(i))).

We now note that wt(i) = pt(i) ·
∑
i wt(i), and hence the right-hand side above is just

=

(∑
i

wt(i)

)
·
∑
i

(pt(i)(1− (1− b)`t(i))).

We now take the natural log of both sides to obtain
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ln

(
n∑
i=1

wt+1(i)

)
≤ ln

(
n∑
i=1

wt(i)

)
+ ln (1− (1− b)pt · `t).

Since ln(1− x) ≤ −x, we have:

ln

(
n∑
i=1

wt+1(i)

)
≤ ln

(
n∑
i=1

wt(i)

)
− (1− b)pt · `t.

Summing both sides of the inequality from t = 1 to T and cancelling the terms which appear on both
sides yields:

ln

(
n∑
i=1

wT+1(i)

)
≤ ln

(
n∑
i=1

w1(i)

)
− (1− b)LT ≡ −(1− b)LT ,

given that we chose the original weights to be w1(i) = 1
n , for all i. Hence:

LT ≤
− ln (

∑n
i=1 wT+1(i))

1− b
.

By monotonicity of the log function, the previous inequality implies:

LT ≤
− ln(wT+1(i))

1− b
,∀i. (1)

We now observe that our update rule wt+1(i)← wt(i)ub(`t(i)) combined with the inequality ub(x) ≥
bx implies that wT+1(i) ≥ w1(i)b`1(i) · b`2(i) · · · b`T (i) ≡ 1

nb
LT (i). Therefore, (1) implies

LT ≤
− ln( 1

nb
LT (i))

1− b
=

ln(n)

1− b
− LT (i) ln(b)

1− b
,∀i.

�
Let us experiment a bit with Theorem 1:

• First, if we set b = 1− ε for some ε ∈ (0, 1/2), the bound becomes

LT ≤ (min
i
LT (i))

ln( 1
1−ε )

ε
+

ln(n)

ε
.

which, using the inequality − ln(1− z) ≤ z + z2 for all z ∈ (0, 1/2), gives

LT ≤ min
i
LT (i)(1 + ε) +

ln(n)

ε
.

• In particular, if we know the time horizon T for which the dynamics will be run in advance, we
can set

ε = εT = min

(√
ln(n)

T
,

1

2

)
(2)

to obtain the bound
LT ≤ min

i
LT (i) + 2

√
T · ln(n).

In this case, the average loss can be bounded by

LT
T
−min

i

LT (i)

T
≤
√

4 ln(n)√
T

.

In other words, the regret of the learner goes down with rate O( 1√
T

).
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• Even if we do not know the final time horizon T in advance, we can use a “doubling trick” to
obtain a similar bound. The idea of the trick is to start agressively choosing εT for T = 2. If the
time horizon exceeds 2, we can soften the learning rate by switching to εT for T = 4. If this time
horizon is surpassed, we switch to εT for T = 8, and so on.

• Instead of the above “doubling trick,” we could also change ε in each step. Using εt = min

(√
ln(n)
t , 12

)
at time t, we can do a bit better than when using the doubling trick.

2 Importing Learning to Zero-sum Games

We saw that Fictitious Play can be viewed as the result of the two players of a zero-sum game
choosing their strategies using the “Follow-the-Leader” rule. What would happen if they employed
“Multiplicative-Weights-Updates” instead? In fact, how would they even employ MWU given that we
defined the rule for losses in [0, 1]?

We start with answering the latter question. According to our completely-uncoupled dynamics
assumption, the game (R,C = −R)n×n is unknown to the players. 1 We assume however that the
players know a bound M > 0, such that |Rij | ≤M , for all i, j. Now, given a strategy x of the row player
the column player observes a loss vector of RTx ∈ [−M,M ]n, while given a strategy y of the column
player the row player observes a loss vector of Cy ∈ [−M,M ]n. To apply the MWU rule the players
apply an affine transformation on these loss vectors, using respectively the loss vectors 1

2 · 1 + 1
2MRTx

and 1
2 · 1 + 1

2MCy. Here is what this gives:

Theorem 2. Suppose that the players of a zero sum game (R,C = −R)n×n choose strategies using the
MWU rule, employing an affine transformation on their observed loss vectors as specified above, given an
upper bound M on the absolute values of the entries of R. Let x1, . . . , xT and y1, . . . , yT be the sequences
of mixed strategies produced by MWU using β = 1− εT , where εT is defined as in (2). Then

1

T

∑
t

xTt Ryt ≥ max
i
eTi R

(
1

T

∑
t

yt

)
− 4M

√
lnn

T
; (3)

1

T

∑
t

xTt Cyt ≥ max
j

(
1

T

∑
t

xt

)T

Cej − 4M

√
lnn

T
. (4)

Proof: Assigned as an exercise. �

Theorem 3. Suppose that two sequences of mixed strategies x1, . . . , xT and y1, . . . , yT for the row and
column player respectively of a zero-sum game (R,C = −R)n×n satisfy (3) and (4). Then

• the pair of strategies
(
1
T

∑
t xt,

1
T

∑
t yt
)

is a 8M
√

lnn
T -approximate Nash equilibrium;

• 1
T

∑
t x

T
t Rxt is within an additive 4M

√
lnn
T from the row player’s value in the game;

• 1
T

∑
t x

T
t Cyt is within an additive 4M

√
lnn
T from the column player’s value in the game.

Proof: Let us start by proving the first assertion of the theorem. Equation (4) implies (replacing C
by −R):

− 1

T

∑
t

xTt Ryt ≥ −min
j

(
1

T

∑
t

xt

)T

Rej − 4M

√
lnn

T
.

Summing this with (3) we get:

min
j

(
1

T

∑
t

xt

)T

Rej ≥ max
i
eTi R

(
1

T

∑
t

yt

)
− 8M

√
lnn

T
.

1The assumption that the number of strategies available to the players is the same is w.l.o.g.
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Now observe that (
1

T

∑
t

xt

)T

R

(
1

T

∑
t

yt

)
≥ min

j

(
1

T

∑
t

xt

)T

Rej .

Put together, the last two inequalities give:(
1

T

∑
t

xt

)T

R

(
1

T

∑
t

yt

)
≥ max

i
eTi R

(
1

T

∑
t

yt

)
− 8M

√
lnn

T
.

Similarly, we can show(
1

T

∑
t

xt

)T

C

(
1

T

∑
t

yt

)
≥ max

j

(
1

T

∑
t

xt

)T

Cej − 8M

√
lnn

T
.

The above two inequalities imply the first assertion of the theorem.
Let us prove the second assertion of the theorem. The third assertion can be proven similarly. We

start by observing that, for all mixed strategies x for the row player the following is true:

xTR

(
1

T

∑
t

yt

)
≥ min

y
xTRy.

Hence:

max
i
eTi R

(
1

T

∑
t

yt

)
≡ max

x
xTR

(
1

T

∑
t

yt

)
≥ max

x
min
y
xTRy.

Combining this with (3) we get:

1

T

∑
t

xTt Ryt ≥ max
x

min
y
xTRy − 4M

√
lnn

T
,

which given the min-max theorem establishes the second assertion of the theorem. �

It follows as a corollary of Theorems 2 and 3 that

Corollary 1. Under the assumptions of Theorem 2

• the pair of strategies
(
1
T

∑
t xt,

1
T

∑
t yt
)

is a 8M
√

lnn
T -approximate Nash equilibrium;

• the average payoff 1
T

∑
t x

T
t Rxt of the row player is within an additive 4M

√
lnn
T from the row

player’s value in the game;

• the average payoff 1
T

∑
t x

T
t Cyt of the column player is within an additive 4M

√
lnn
T from the

column player’s value in the game.

3 Nash’s Theorem

The following theorem was established by John Nash in 1950 [1].

Theorem 4 (Nash). Every game 〈[n], (Sp)p∈[n], (up)p∈[n]〉 has a Nash equilibrium.

Before we delve into the proof of this theorem, we need Brouwer’s fixed point theorem. This will be
proved (in the two-dimensional case) in the next lecture.

Theorem 5 (Brouwer). Let D be a convex, compact subset of the Euclidean space. If f : D → D is
continuous, then there exists x ∈ D such that f(x) = x.
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The idea behind Nash’s proof is to construct a function f : ∆ → ∆ that satisfies the conditions of
Brouwer’s fixed point theorem such that the fixed point x˜ is a Nash equilibrium. To do so, we introduce
the idea of a gain function.

Definition 1. Suppose x˜ ∈ ∆ is given. For a player p and strategy sp ∈ Sp, we define the gain as

Gainp;sp(x˜) = max{up(sp;x˜−p)− up(x˜), 0}.

In other words, the gain is equal to the increase in payoff for player p if he were to switch to pure
strategy sp, unless the increase is negative in which case the gain is taken to equal 0.

Proof of Theorem 1: We define a function f : ∆→ ∆ as follows. For all x˜ ∈ ∆, x˜ f7→ y˜ where for all

p ∈ [n] and sp ∈ Sp:

yp(sp) :=
xp(sp) + Gainp;sp(x˜)

1 +
∑
s′p∈Sp

Gainp;s′p(x˜)
.

In words, function f tries to boost the probability mass that player p places on various pure strategies
depending on the gains in payoff the player would get by switching to these strategies. The denominator
just ensures that

∑
sp∈Sp

yp(sp) = 1.
It is easy to see that f is continuous. Moreover, ∆ is a product of simplices, so is convex. At the

same time, ∆ is both closed and bounded, so it is also compact. Hence, Brouwer’s fixed point theorem
ensures the existence of a fixed point of f .

We claim that any fixed point of f is a Nash equilibrium. To establish this, it suffices to prove that
a fixed point x˜ = f(x˜) satisfies:

Gainp;sp(x˜) = 0, ∀p ∈ [n], sp ∈ Sp.

We proceed by contradiction. Assume that there is some player p who can improve his payoff by
switching to pure strategy sp, i.e.

Gainp;sp(x˜) > 0.

First, it is easy to see that xp(sp) > 0, otherwise x˜ cannot be a fixed point. Indeed, xp(sp) would be
0, while yp(sp) would be positive.

Given this, we argue next that there must exist some other pure strategy s′′p such that

xp(s
′′
p) > 0 (5)

and

up(s
′′
p ;x˜−p)− up(x˜) < 0. (6)

Indeed, notice that

up(x˜) ≡
∑
s′p∈Sp

xp(s
′
p) · up(s′p;x˜−p).

Hence, because xp(sp) > 0 and up(sp;x˜−p) > up(x˜), there must exist some s′′p satisfying (5) and (6).
Now notice that a pure strategy s′′p satisfying (5) and (6) also satisfies Gainp;s′′p (x˜) = 0. So:

yp(s
′′
p) =

xp(s
′′
p) + Gainp;s′′p (x˜)

1 +
∑
s′p∈Sp

Gainp;s′p(x˜)
< xp(s

′′
p),

since the numerator is equal to xp(s
′′
p), while the denominator is greater than 1 as there is at least one

non-zero gain in the summation—the one corresponding to pure strategy sp. Therefore, x˜ is not a fixed
point, a contradiction. It follows that x˜ is a Nash equilibrium, as desired. �
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