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Canonical BROUWER instance 

color 0 (ambient space) (−1,−1,−1)× α

color 1 (1, 0, 0)× α
color 2 

x1

x2

x3

(0, 1, 0)× α α = 2−2m

- Using the SPERNER coloring (which itself was obtained via the embedding of the 
PPAD graph into [0,1]3), define at the center of each cubelet one of 4 possible 
displacement vectors 

- Partition every dimension into multiples of 2-m. 

color 3 (0, 0, 1)× α

- The goal is to find a point of the subdivision s.t. among the 8 cubelets containing 
it, all 4 displacements are present. 



This Lecture 

... 
0n

 

Generic PPAD 

Embed PPAD 
graph in [0,1]3 

3D-SPERNER 
 p.w. linear  
BROUWER 

multi-player 
NASH 

4-player 
NASH 

3-player 
NASH 

2-player 
NASH 

[Pap ’94] 

[DGP ’05] 

[DGP ’05] 

[DGP 
’05] 

[DGP 
’05] 

[DGP ’05] 

[DP ’05] 
[CD’05] 

[CD’06] 

DGP = Daskalakis, Goldberg, Papadimitriou 
CD = Chen, Deng 

x1

x2

x3



PPAD

SPERNER

BROUWER

POLYMATRIX NASH



Polymatrix Games 

Graphical games with edge-wise separable utility functions. 

- player’s payoff is the sum of payoffs from all adjacent 
edges	



… … 

- edges are 2-player games	





Game Gadgets 



… … 

x

y

z

Binary computations 
- 3 players: x, y, z   
 (imagine they are part of a larger graphical game) 
- every player has strategy set {0, 1} 

- z’ s payoff table: 

z : 0 
y : 0 y : 1 

x : 0 1 0.5 
x : 1 0.5 0 

z : 1 
y : 0 y : 1 

x : 0 0 1 
x : 1 1 2 

So we obtained an OR gate, and we can similarly obtain AND and NOT gates. 

Claim: In any Nash equilibrium of a large game containing the above three players, if  
  Pr[x : 1] , Pr[y : 1] ∈ {0,1}, then:                                                          . Pr[z : 1] = Pr[x : 1] ∨ Pr[y : 1]

- x and y do not care about z , i.e. their strategies are 
affected by the larger game containing the game on the 
left, while z cares about x and y 



Binary Circuits 

Can simulate any boolean circuit with a polymatrix game. 

However, cannot enforce that the players will always play pure strategies. 
Hence my circuit may not compute something meaningful. 

∨ 

∨ 

∧ ∧ 

¬ 

¬ 

¬ ∨ 

∧ 

∧ 
0 

1 



- real numbers seem to play a fundamental role in the reduction 

bottom line: 

- a reduction restricted to pure strategy equilibria is likely to fail 
(see also discussion in the last lecture) 

Can games do real arithmetic? 

What in a Nash equilibrium is capable of storing reals? 



Games that do real arithmetic 

… … 

x 

y 

z w 

w is paid:  
      - $ Pr[x : 1] +Pr[y : 1] for playing 0 
      - $ Pr[z :1] for playing 1 

z is paid to play the 
opposite of w 

Suppose two strategies per player:  {0,1} 

e.g. addition game 

then  mixed strategy ≡ a number in [0,1]   (the probability of playing 1) 

u(w : 1) = Pr[z : 1]
u(w : 0) = Pr[x : 1] + Pr[y : 1]

u(z : 0) = 0.5

u(z : 1) = 1− Pr[w : 1]

Claim: In any Nash equilibrium of a game containing the above 
gadget                                                                    . Pr[z : 1] = min{Pr[x : 1] + Pr[y : 1], 1}



Games that do real arithmetic 

… … 

x 

y 

z w 

w is paid:  
      - $ Pr[x : 1] - Pr[y : 1] for playing 0 
      - $ Pr[z :1] for playing 1 

z is paid to play the 
opposite of w 

Suppose two strategies per player:  {0,1} 

e.g. subtraction  

then  mixed strategy ≡ a number in [0,1]   (the probability of playing 1) 

u(z : 0) = 0.5

u(z : 1) = 1− Pr[w : 1]

u(w : 1) = Pr[z : 1]
u(w : 0) = Pr[x : 1]− Pr[y : 1]

Claim: In any Nash equilibrium of a game containing the above 
gadget                                                                    . Pr[z : 1] = max{0,Pr[x : 1]− Pr[y : 1]}



From now on, use the name of the node and the 
probability of that node playing 1 interchangeably. 

x Pr[x : 1]



Games that do real arithmetic 

copy : 

addition : 

subtraction : 

set equal to a constant : 

z = min{1, x + y}

z = max{0, x− y}

z = α, for any α ∈ [0, 1]

multiply by constant : z = min{1, α · x}

z = x

z = x · ycan also do multiplication 

won’t be used in our reduction 



Comparison Gadget 

z =






1, if x > y

0, if x < y

∗, if x = y

brittleness 



Comparison Gadget 

d =

�
1, if a < b

0, if a ≥ b

Impossibility to remove brittleness… 

In any Nash equilibrium: 

a = d

b = 1

What is    ? a

a = 1 =⇒ contradiction
a < 1 =⇒ contradiction



Administrativia 

Homework: 

Scribe notes for Lectures 6, 7 were posted on the website on Friday. 
Rule of thumb: Since there will be about 20 lectures in this class, by the end of this 
week registered students should have collected about 6-7 points in hw problems. 

Project: Groups of 2-3 students  (1 is also fine) 

Submit a one-page description of the project by next Monday 

Preferred:  Research Oriented Study an open problem given in class 
Come up with your own question  
    (related to the class, or your own area) 

Could also be survey 

Talk to me if you need help 



Our Gates 

∨ ∧ ¬ Binary gates: 

a Constants: 

- + Linear gates: 

:= Copy gate: 

Scale: xa 

Brittle Comparison: > 

any circuit using these gates 
can be implemented with a 
polymatrix game 

need not be a DAG circuit, 
i.e. feedback is allowed 

let’s call any such circuit a  
game-inspired straight-line program with truncation at 0, 1 



Fixed Point Computation 

Suppose function                                   is computed by a game-inspired 
straight-line program. 

f : [0, 1]k → [0, 1]k

 Can construct a polymatrix-game whose Nash equilibria are in 
many-to-one and onto correspondence with the fixed points of f. 

∨ 

:= 

∧ 

¬ 

- a + 

xa 

> 

x1 

x2 

xk 

…
 

f(x)1 

f(x)2 

f(x)k 

…
 

:= 

:= 

:= 

…
 

 Can forget about games, and try to reduce PPAD to finding a fixed 
point of a game-inspired straight-line program. 



BROUWER      fixed point of game-inspired 
straight-line program 

4-displacement 
p.w. linear 

x  y z 
three players whose mixed strategies 
represent a point in [0,1]3 

A-to-D extract m bits from each of x, y, z 

xm ymy1 z1 zm… … … x1



Analog-to-Digital 

υ1 = x;
for i = 1, . . . ,m do:

xi := (2−i < υi); υi+1 := υi − xi · 2−i;
similarly for y and z;

Can implement the above computation via a game-inspired straight-line program. 

The output of the program is always 0/1, except if x, y or z is an integer multiple 
of 2-m. 



BROUWER      fixed point of game-inspired 
straight-line program 

4-displacement 
p.w. linear 

x  y z three players whose mixed strategies 
represent a point in [0,1]3 

A-to-D extract m bits from each of x, y, z 

xm ymy1 z1 zm… … … x1

using binary operations, check if 
input is panchromatic and in that 
case output (0,0,0), o. w. output 

vector (δx, δy, δz) 

(hopefully) represents a point of the 
subdivision 

δx  δy δz 

the displacement vector is chosen so that 
(δx, δy, δz) + (x, y, z) ∈ [0,1]3   

+= 



Add it up 

x 

δx 

+

…
 

+ 

- 

x 

(δx)+ 

…
 

(δx)- 

≡

since negative numbers are not allowed 



BROUWER      fixed point of game-inspired 
straight-line program 

4-displacement 
p.w. linear 

x  y z 

A-to-D 

xm ymy1 z1 zm… … … x1

using binary operations, check 
if input is panchromatic and in 
that case output (0,0,0), o.w. 

output vector (δx, δy, δz) 

δx  δy δz 

+= 

“Theorem”: 
In any fixed point of the circuit shown on 
the right, the binary description of the 
point  (x, y, z) is panchromatic. 

BUT: Brittle comparators don’t think so! 

this is not necessarily binary 



The Final Blow 

When did measure-zero sets scare us? 



The Final Blow 

When did measure-zero sets scare us? 

- For each copy, extract bits, and 
compute the displacement of the 
Brouwer function at the corresponding 
cubelet, indexed by these bits. 

- Create a micro-lattice of copies 
around the original point (x, y, z): 

(x + p · 2−2m, y + q · 2−2m, z + s · 2−2m),
−� ≤ p, q, s ≤ �

- Compute the average of the 
displacements found, and add the 
average to (x, y, z). 



Theorem: For the appropriate choice of the constant     , even if the set        
“conspires” to output any collection of displacement vectors they want, in order 
for the average displacement vector to be (0, 0, 0) it must be that among the 
displacement vectors output by the set        we encounter all of (1,0,0), (0,1,0), 
(0,0,1), (-1,-1,-1). 

B�

G

Logistics 
- There are                              copies of the point (x, y, z). M := (2� + 1)3

- Out of these copies, at most                      are broken, i.e. have a 
coordinate be an integer multiple of 2-m. We cannot control what 
displacement vectors will result from broken computations. 

3(2� + 1)2

- On the positive side, the displacement vectors computed by at least  
                                copies correspond to the actual displacement 
vectors of Brouwer’s function. 
(2�− 2)(2� + 1)2

bad set B

good set G

- At a fixed point of our circuit, it must be that the (0, 0, 0) 
displacement vector is added to (x, y, z). 

- So the average displacement vector computed by our copies must be (0,0,0). 



Theorem: For the appropriate choice of the constant     , even if the set        
“conspires” to output any collection of displacement vectors they want, in order 
for the average displacement vector to be (0, 0, 0) it must be that among the 
displacement vectors output by the set        we encounter all of (1,0,0), (0,1,0), 
(0,0,1), (-1,-1,-1). 

B�

G

Finishing the Reduction 

 In any fixed point of our circuit, (x, y, z) is in the proximity of a point 
(x*, y*, z*) of the subdivision surrounded by all four displacements. This 
point can be recovered in polynomial time given (x, y, z). 

 in any Nash equilibrium of the polymatrix game corresponding to our 
circuit the mixed strategies of the players x, y, z define a point located in the 
proximity of a point (x*, y*, z*) of the subdivision surrounded by all four 
displacements. This point can be recovered in polynomial time given (x, y, z). 

=⇒ (exact) POLYMATRIX NASH is PPAD-complete



Finishing the Reduction 

=⇒ (exact) POLYMATRIX NASH ≡ POLYMATRIX NASH

=⇒ POLYMATRIX NASH is PPAD-complete

Theorem: Given a polymatrix game        there exists      such that: G �∗

|�∗| = poly(|G|1. 

given a     -Nash equilibrium of       we can find in polynomial time an 
exact Nash equilibrium of     .        

�∗ G
G

2. 

Proof: 2 points 
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Reducing to 2 players 

… … 

polymatrix game 

can assume bipartite, by turning 
every gadget into a bipartite game 
(inputs&output are on one side 
and “middle player” is on the 
other 



Reducing to 2 players 

… … 
2-player game 

polymatrix game 

red lawyer represents red nodes, while 
blue lawyer represents blue nodes 

can assume bipartite, by turning 
every gadget into a bipartite game 
(inputs&output are on one side 
and “middle player” is on the 
other 



-  wishful thinking: if (x , y) is a  Nash equilibrium of the lawyer-game, then the marginal 
distributions that x assigns to the strategies of the red nodes and the 
marginals that y assigns to the blue nodes, comprise a Nash equilibrium. 

But why would a lawyer play 
every node he represents?  

… … v

u



- The lawyers play on the side a high-stakes game. 

- W.l.o.g. assume that each lawyer represents n clients. 
Name these clients 1,…,n. 
- Payoffs of the high-stakes game: 

Suppose the red lawyer plays any strategy of client j, 
and blue lawyer plays any strategy of client k, then 

= 

M 

If             , then red lawyer gets +M, while blue lawyer gets –M. j = k

If             , then both players get 0.  j �= k



Claim: The unique Nash equilibrium of the high-stakes 
lawyer game is for both lawyers to play uniformly 
over their clients. 

Proof: 1/2 point 



+ 
M,-M 0,0  0,0 

0,0 M,-M 0, 0 

0, 0 0 , 0 M,-M 

M = 

high stakes game 

payoff table addition 

umax: maximum absolute
value in payoff tables

M > 2n · umax



- when it comes to distributing the total probability mass among the different nodes 
of       , essentially only the high-stakes game is relevant to the lawyers… 

Lemma 1: if (x, y) is an equilibrium of the lawyer game, for all u, v : 

- when it comes to distributing the probability mass xu among the different strategies of 
node u, only the payoffs of the game         are relevant… 

The payoff difference for the red lawyer from strategies                 and                   
               is 

Lemma 2: 

yv =
1
n
·
�

1 ± 2umaxn2

M

�
xu =

1
n
·
�

1 ± 2umaxn2

M

�

Proof: 1.5 points total probability mass assigned by 
lawyers on  nodes u, v respectively  

�

v

�

�

�
A(u,v)

i,� −A(u,v)
j,�

�
· yv:�



Lemma 2      if                     , then for all  j: 

- if  M  is large, can correct it to an exact Nash equilibrium of the polymatrix game, 
appealing to Theorem of Slide 29. 

�

v

�

�

�
A(u,v)

i,� −A(u,v)
j,�

�
· yv:� ≥ 0

(marginals given by 
lawyers to different nodes)   

- define                               and  ŷv(j) :=
yv:j

yv

Observation: if we had xu =1/n, for all u, and yv =1/n, for all v, then       

                   would be a Nash equilibrium. {{x̂u}u, {ŷv}v}

- the                          deviation from uniformity results in an approximate Nash equilibrium  
of the polymatrix game.  

±2umaxn

M



POLYMATRIX NASH

(exact) 2−player NASH

2−player NASH

(exact) POLYMATRIX NASH

lawyer construction 

Theorem (slide 29) 

Theorem (slide 29) 

obvious 

PPAD
through SPERNER,  
BROUWER 


