
6.896: Topics in Algorithmic Game Theory
Lecture 11

Constantinos Daskalakis

FNP

PPAPLS PPP

P

PPAD

PPAD

SPERNER

BROUWER

POLYMATRIX NASH

NASH

Algorithms for Nash Equilibria

Simplicial Approximation Algorithms

Support Enumeration Algorithms

Lipton-Markakis-Mehta

Algorithms for Symmetric Games

The Lemke-Howson Algorithm

Algorithms for Nash Equilibria

Simplicial Approximation Algorithms

Simplicial Approximation Algorithms

Given a continuous function , where f satisfies a Lipschitz
condition and S is a compact convex subset of the Euclidean space, find
 such that .
 .	

f : S → S

(or exhibit a pair of points violating the Lipschitz condition, or a point
mapped by the function outside of S)

x ∈ S |f(x)− x| < �

suppose that S is described in some meaningful
way in the input, e.g. polytope, or ellipsoid

Simplicial Approximation Algorithms comprise a family of algorithms
computing an approximate fixed point of f by dividing S up into simplices and
defining a walk that pivots from simplex to simplex of the subdivision until it
settles at a simplex located in the proximity of a fixed point.

(this is a re-iteration of the BROUWER problem that we defined in earlier lectures;
for details on how to make the statement formal check previous lectures)

(our own) Simplicial Approximation Algorithm
(details in Lecture 6)

1. Embed S into a large enough hypercube.
2. Define an extension f’ of f to the points in the hypercube that lie
outside of S in a way that, given an approximate fixed point of f’, an
approximate fixed point of f can be obtained in polynomial time.

3. Define the canonical subdivision of the hypercube (with small
enough precision that depends on the Lipschitz property of f’ see
previous lectures).
4. Color the vertices of the subdivision with n +1 colors, where n is the
dimensionality of the hypercube. The color at a point x corresponds to
the angle of the displacement vector . f �(x)− x

5. The colors define a legal Sperner coloring.

6. Solve the Sperner instance, by defining a directed walk starting at the
“starting simplex” (defined in lecture 6) and pivoting between simplices
through colorful facets.

7. One of the corners of the simplex where the walk settles is an
approximate fixed point.

Algorithms for Nash Equilibria

Simplicial Approximation Algorithms

Support Enumeration Algorithms

Support Enumeration Algorithms

How better would my life be if I knew the support of the Nash equilibrium?

 … and the game is 2-player?

any feasible point (x, y) of the following linear program is an equilibrium!

Setting: Let (R, C) by an m by n game, and suppose a friend revealed
to us the supports and respectively of the Row and Column
players’ mixed strategies at some equilibrium of the game.

SR SC

xTCei ≥ xTCej , ∀ i ∈ SC , ∀ j ∈ [n]

eT
i Ry ≥ eT

j Ry, ∀ i ∈ SR, ∀ j ∈ [m]

max 1

�
xi = 1 and

�
yi = 1

s.t.

xi = 0, ∀i ∈ SR yj = 0, ∀j ∈ SCand

Support Enumeration Algorithms

How better would my life be if I knew the support of the Nash equilibrium?

 … and the game is 2-player?

Runtime: 2m+n + poly(|R|, |C|)

for guessing the support for solving the LP

Support Enumeration Algorithms

How better would my life be if I knew the support of the Nash equilibrium?

 … and the game is polymatrix?

 can do this with Linear Programming too!

input: the support of every node at equilibrium Sv v

goal: recover the Nash equilibrium with that support

the idea of why this is possible is similar to the 2-player case:
- the expected payoff of a node from a given pure strategy is
linear in the mixed strategies of the other players;
- hence, once the support is known, the equilibrium conditions
correspond to linear equations and inequalities.

Rationality of Equilibria

Important Observation:

The correctness of the support enumeration algorithm implies that in 2-
player games and in polymatrix games there always exists an equilibrium
in rational numbers, and with description complexity polynomial in the
description of the game!

Algorithms for Nash Equilibria

Simplicial Approximation Algorithms

Support Enumeration Algorithms

Lipton-Markakis-Mehta

Computation of Approximate Equilibria
Theorem [Lipton, Markakis, Mehta ’03]:	

For all and any 2-player game with at most n strategies per
player and payoff entries in [0,1], there exists an -approximate
Nash equilibrium in which each player’s strategy is uniform on a
multiset of their pure strategies of size

�
� > 0

O

�
log n

�2

�
.

- By Nash’s theorem, there exists a Nash equilibrium (x, y).

- Suppose we take samples from x, viewing it as a distribution. t = �16 log n/�2�
X : uniform distribution over the sampled pure strategies

- Similarly, define by taking t samples from y. Y

Claim: (X ,Y) is an �-Nash equilibrium with probability at least 1− 4
n

.

Proof idea:	

(of a stronger claim)

Computation of Approximate Equilibria

Lemma: With probability at least 1-4/n the following are satisfied:

|eT
i RY − eT

i Ry| ≤ �/2, for all i ∈ [n];

|XTCej − xTCej | ≤ �/2, for all j ∈ [n].

Proof: on the board using Chernoff bounds.

Suffices to show the following:

Computation of Approximate Equilibria

set :	

S� every point is a pair of mixed
strategies that are uniform on
a multiset of size 	

O

�
log n

�2

�
.

nO(log n

�2)

Random sampling from takes
expected time

S�

Oblivious Algorithm: set does not depend on the game we are solving.	

S�

Theorem [Daskalakis-Papadimitriou ’09] : Any oblivious algorithm for
general games runs in expected time	

Algorithms for Nash Equilibria

Simplicial Approximation Algorithms

Support Enumeration Algorithms

Lipton-Markakis-Mehta

Algorithms for Symmetric Games

Symmetries in Games

Symmetric Game:	

 A game with n players in which each player p shares with
the other players: 	

- the same set of strategies: S = {1,…, s}

- the same payoff function: u = u (σ ; n1, n2,…,ns)

number of the other
players choosing each

strategy in S

choice of p
E.g. :	

- congestion games, with same source
destination pairs for each player	

Nash ’51: Always exists an equilibrium in which every player uses
the same mixed strategy

- Rock-Paper-Scissors	

Description Size: O(min {s ns-1, sn
 })

Existence of a Symmetric Equilibrium

Recall Nash’s function:	

yp(j) =
xp(j) + max (0, up(j;x−p)− up(x))

1 +
�

j∈Sp
max (0, up(j;x−p)− up(x))

x �−→ y
f

if the game is symmetric
every player has the same
payoff function

f : ×p∆p −→ ×p∆p

restrict Nash’s function on the set:

Gedanken Experiment:	

×p∆p

�
{x1 = x2 = . . . = xn}

crucial observation: Nash’s function maps points of the above set to itself!

Symmetrization

R , C
CT, RT

R, C
x

y x

y

x y

Symmetric Equilibrium Equilibrium

0, 0

0, 0

Any Equilibrium Equilibrium

In fact we show that

[Gale-Kuhn-
Tucker 1950]

w.l.o.g. suppose that R,
C have positive entries

Proof: On the board.

Symmetrization

R , C
RT,CT

C, R
x

y x

y

x y

Symmetric Equilibrium Equilibrium

0,0

0,0

Any Equilibrium Equilibrium
In fact […]

Hence, PPAD to solve
symmetric 2-player games

Open: - Reduction from 3-player games to symmetric 3-player games
- Complexity of symmetric 3-player games

Multi-player symmetric games

If n is large, s is small, a symmetric equilibrium

 x = (x1, x2, …, xs)

can be found as follows:

- guess the support of x : 2s
 possibilities

- write down a set of polynomial equations an
inequalities corresponding to the equilibrium
conditions, for the guessed support

- polynomial equations and inequalities of degree n
in s variables

can be solved
approximately
in time
 ns log(1/ε)

using tools from the existential
theory of the reals

polynomial in the size
of the input for s up to
about log n/log log n

Administrativia
Project FAQ:

Does it have to be on computing equilibria/complexity of equilibria?

What would a research project vs. a survey project entail?

How many pages will the final write-up be?

