
6.896 Topics in Algorithmic Game Theory February 16, 2010

Lecture 4
Lecturer: Constantinos Daskalakis Scribe: Jason Biddle, Alan Deckelbaum

NOTE: The content of these notes has not been formally reviewed by the
lecturer. It is recommended that they are read critically.

1 Introduction

In this lecture we cover the following topics:

• Hedging

• Using Learning in Zero-Sum Games

This is our last lecture on zero-sum games. The reason we have spent several lectures on zero-sum games
is that zero-sum games are one of the few cases in the social sciences where we’re fairly confident about
our mathematical predictions of how agents behave—recall Aumann’s quote from the first lecture. In
this lecture, we begin by finishing our discussion on hedging and expert algorithms, and then relate this
topic to convergence of distributed algorithms to equilibria in zero-sum games.

2 Expert Algorithms

Recall our setup from last lecture. There are n experts, and at each time-step t = 1, 2, 3 . . . there is an
associated loss vector `t ∈ [0, 1]n which assigns a loss value to each expert. In each time-step, we pick a
probability distribution Pt over the n experts. Our loss obtained up to T is given by

LT :=
T∑
t=1

`t ·Pt.

As a benchmark for our algorithm’s performance, we compare LT against the performance of the single
best expert over these rounds. That is, our benchmark is

min
i

T∑
t=1

`ti.

For notational purposes, we will refer to the quantity
∑T
t=1 `

t
i as LTi . As mentioned in the last lecture,

the follow-the-leader algorithm (at each time τ , choose an expert which has minimal Lτ−1
i value) can

be worse than our benchmark by a factor of n. In this lecture, we will show that the “multiplicative
weights update algorithm” or “hedging algorithm” has a significantly better performance guarantee.

2.1 Hedging Algorithm (Multiplicative Weights Update Algorithm)

We now recall the hedging algorithm introduced last lecture. At each time-step, we will maintain a
weight vector wt assigning a weight to each expert. Our probability distribution Pt will simply assign
probabilities to experts proportional to their weights:

4-1

Pt =
wt

wt · 1
.

To update the weights each round, we simply set

wti ← wti · ub(`ti)

where ub is any function which satisfies the following conditions:

• b ∈ (0, 1)

• For all x ∈ [0, 1], we have bx ≤ ub(x) ≤ 1− (1− b)x

We now have the following performance guarantee of the multiplicative weights update algorithm:

Theorem 1. For all `1, `2, . . . , `t, . . . and all t, we have

Lt ≤ (min
i
Lti) ·

ln (1/b)
1− b

+
lnn
1− b

.

Proof: We will define a potential function at time t to be ln (
∑n
i=1 w

t
i). We compute

n∑
i=1

wt+1
i =

n∑
i=1

(wti · ub(`ti)) ≤
n∑
i=1

(wti(1− (1− b)`ti)).

We now note that wti = pti ·
∑
i w

t
i , and hence the right-hand side above is just

=

(∑
i

wti

)
·
∑
i

(pti(1− (1− b)`ti)).

We now take the natural log of both sides to obtain

ln

(
n∑
i=1

wt+1
i

)
≤ ln

(
n∑
i=1

wti

)
+ ln

(
1− (1− b)Pt · `t

)
.

Since ln(1− x) ≤ −x, we have:

ln

(
n∑
i=1

wt+1
i

)
≤ ln

(
n∑
i=1

wti

)
− (1− b)Pt · `t.

Summing both sides of the inequality from t = 1 to T and cancelling the terms which appear on both
sides yields:

ln

(
n∑
i=1

wT+1
i

)
≤ ln

(
n∑
i=1

w1
i

)
− (1− b)LT .

We can initially distribute the weights uniformly, so that (for example) w1
i = 1

n for each i. We notice
that in this case, ln (

∑
i w

1
i) = 0. Therefore, we have

LT ≤
− ln (

∑n
i=1 w

T+1
i)

1− b
.

By monotonicity of the negative log function, we see that the for any particular i, we have

LT ≤ − ln(wT+1
i)

1− b
.

4-2

We now observe that our update rule wt+1
i ← wtiub(`

t
i) combined with the inequality ub(x) ≥ bx

implies that wT+1
i ≥ w1

i b
`1i · b`2i · · · b`Ti and hence wT+1

i ≥ w1
i b
LT

i = 1
nb
LT

i . Therefore, we see that for all
i, we have

LT ≤
− ln(1

nb
Lt

i)
1− b

=
ln(n)
1− b

− Lti ln(b)
1− b

.

Since i was arbitrary, the proof is complete.
�

If we set b = 1− ε for some ε ∈ (0, 1/2), our above bound becomes

LT ≤ (min
i
LTi)

ln(1
1−ε)
ε

+
ln(n)
ε

.

Using the standard inequality − ln(1− z) ≤ z + z2 for all z ∈ (0, 1/2), we obtain

LT ≤ min
i
LTi (1 + ε) +

ln(n)
ε

.

Suppose that we know the time horizon T in advance. Then we can set

ε = min

(√
ln(n)
n

,
1
2

)
to obtain the bound

LT ≤ min
i
LTi + 2

√
T · ln(n).

Therefore, we can bound the average loss by

LT
T
−min

i

LTi
T
≤
√

4 ln(n)√
T

.

Even if we do not know the final time horizon T in advance, we can use a “doubling trick” to obtain
a similar bound. The idea behind this trick is to start by choosing ε for a T of 2. If the time horizon
exceeds 2, we now select a new ε corresponding to T = 4. If this time horizon is surpassed, we select a
new ε corresponding to T = 8, and so on.

Instead of the above “doubling trick,” we could also change ε with each step. By setting ε to have a

form such as εt = min
(√

ln(n)
t , 1

2

)
, we can do slightly better than we did with the doubling trick.

2.2 Tightness of the Multiplicative Weights Bound

We now look at how close the performance of the multiplicative weights update method is to the optimal
learning algorithm. We will argue that our bound is asymptotically close to optimal, by giving two
examples.

2.2.1 Example 1

Suppose we have n experts. In each round, an expert will either receive a loss of 0 or a loss of 1 (that
is, `t ∈ {0, 1}n.) The losses are assigned according to the following random process:

• At t = 1, select a random subset S1 ⊂ [n] of size n/2. Assign loss 0 to the experts in S1, and
assign loss 1 to the experts in S̄1.

• At t = 2, select a random subset S2 ⊂ S1 of size n/4. Assign loss 0 to the experts in S2, and assign
loss 1 to the remaining experts.

4-3

• At t = 3, select a random subset S3 ⊂ S2 of size n/8. Assign loss 0 to the experts in S3, and assign
loss 1 to the remaining experts.

• Continue the above process up until t = log2 n. At each step t a total of n/(2t) experts will have
loss 0.

It is clear that, after t = log2 n, the best expert will have loss 0. Furthermore, it is clear that any
learning algorithm A will have expected performance E[`tA] ≥ 1

2 . (All of the experts from ¯St−1 will have
loss 1, and every expert from St−1 will have expected loss 1/2 at time t.) Therefore, for any learning
algorithm A, we see that E[LTA] ≥ T/2, where T u log2 n. Since T u log2 n, our above bound for the
multiplicative weights learning algorithm of 2

√
T lnn is within a constant factor of the best possible

performance of log2 n.

2.2.2 Example 2

The above example had a bounded time horizon of T = log2 n. However, we can also provide an example
with an unbounded time horizon. In this example, we have 2 experts. At every time t, we choose `t to
be either (0, 1) or (1, 0) uniformly at random. (That is, we uniformly at random select one expert to
receive 1 point of loss, and the other expert receives no points of loss.)

It is obvious that every learning algorithm A will have E[LTA] ≥ T/2 (since both experts have an
expected loss of 1/2 at each round).

Our benchmark (the loss of the best expert at time T) will be, with constant probability, T2 −Ω(
√
T).

(This bound comes from the thought experiment of flipping a fair coin T times and estimating the
minimum of the number of heads and the number of tails. We know that, with significant probability,
the average number of heads will be within a few standard deviations of the average number of tails.
Thus, the number of heads and the number of tails should each be, with high probability, within ±

√
T

from T/2.) Thus, we see that the
√
T term in our performance guarantee is necessary.

3 Back to Zero-sum Games

Recall the definition of a two-player zero-sum game defined by a pair of m × n payoff matrices (R,C)
where R+ C = 0. For the remainder of this section, we assume w.l.o.g. that m = n.

Now suppose row player and column player both use a multiplicative weights update (MWU) experts
algorithm to generate their respective mixed strategies, xt and yt for the zero-sum game at time step t.
Each player could use a different MWU algorithm, however we assume both algorithms are of low regret
(i.e. the algorithm achieves the MWU bound discussed in the previous section).

Since the game is zero-sum, row player’s loss at time step t is determined by column player’s strategy,

`trow = Cyt.

Similiarly, column player’s loss at time step t is determined by row player’s strategy,

(`tcol)
T = (xt)TR ⇔ `tcol = RTxt.

Recall our assumption of bounded losses, `t ∈ [0, 1]n in the experts algorithm setting. Here, however,
the losses of row and column player are not restricted to that range since the payoffs in R and C can take
on any values as long as R + C = 0. In order to use the proved MWU bounds, we must first normalize
R and C so that `trow, `

t
col ∈ [0, 1]n.

4-4

Before proceeding, let us introduce the following scalar term:

M = max
i,j
|Ri,j | = max

i,j
|Ci,j | since R+ C = 0.

Now we apply an affine transformation to R and C to produce normalized payoff matrices R′ and C ′

R′ =
1

2M
[R+M 1]

C ′ =
1

2M
[C +M 1],

where 1 denotes the matrix of ones. Next we derive the cumulative loss for row and column player’s
experts algorithms for time horizon T using the normalized payoff matrices. To avoid confusion between
the time horizon T and the tranpose operator, we henceforth use the conjugate transpose A∗ to denote
the transpose of A. Entries in the strategy vectors and payoff matrices are real, so A∗ coincides with the
transpose of A.

LTrow =
T∑
t=1

(xt)∗`trow =
T∑
t=1

(xt)∗C ′yt =
T∑
t=1

(xt)∗
(

1
2M

[C +M 1]
)
yt

=
1

2M

[T∑
t=1

(xt)∗Cyt +M

T∑
t=1

(xt)∗1yt
]

=
1

2M

[T∑
t=1

(xt)∗Cyt +MT

]
, (1)

since ∀t, (xt)∗1yt = 1. Using the same construction for column player, we find the following:

LTcol =
T∑
t=1

(`tcol)
∗yt =

T∑
t=1

(xt)∗R′yt =
1

2M

[T∑
t=1

(xt)∗Ryt +MT

]
. (2)

Now we bound the cumulative loss for row player’s experts algorithm given a known time horizon T ,

LTrow ≤ min
i
LTi + 2

√
T ln(n) ≤ LTi + 2

√
T ln(n), ∀i

LTi =
T∑
t=1

e∗i `
t
row =

T∑
t=1

e∗iC
′yt =

T∑
t=1

e∗i

(
1

2M
[C +M 1]

)
yt

=
1

2M

[T∑
t=1

e∗iCy
t +M

T∑
t=1

e∗i 1y
t

]
=

1
2M

[T∑
t=1

e∗iCy
t +MT

]

⇒ LTrow ≤ 1
2M

[T∑
t=1

e∗iCy
t +MT

]
+ 2
√
T ln(n), ∀i,

which we combine with equation 1 and simplify,

1
2M

[T∑
t=1

(xt)∗Cyt +MT

]
≤ 1

2M

[T∑
t=1

e∗iCy
t +MT

]
+ 2
√
T ln(n), ∀i

(×2M) ⇒
T∑
t=1

(xt)∗Cyt ≤
T∑
t=1

e∗iCy
t + 4M

√
T ln(n), ∀i. (3)

4-5

Similiarly, we bound the cumulative loss for column player’s experts algorithm,

LTcol ≤ min
j
LTj + 2

√
T ln(n) ≤ LTj + 2

√
T ln(n), ∀j

LTj =
T∑
t=1

(`tcol)
∗ej =

T∑
t=1

(xt)∗R′ej =
T∑
t=1

(xt)∗
(

1
2M

[R+M 1]
)
ej

=
1

2M

[T∑
t=1

(xt)∗Rej +M

T∑
t=1

(xt)∗1 ej

]
=

1
2M

[T∑
t=1

(xt)∗Rej +MT

]

⇒ LTcol ≤
1

2M

[T∑
t=1

(xt)∗Rej +MT

]
+ 2
√
T ln(n), ∀j,

which we combine with equation 2 and simplify,

1
2M

[T∑
t=1

(xt)∗Ryt +MT

]
≤ 1

2M

[T∑
t=1

(xt)∗Rej +MT

]
+ 2
√
T ln(n), ∀j

(×2M) ⇒
T∑
t=1

(xt)∗Ryt ≤
T∑
t=1

(xt)∗Rej + 4M
√
T ln(n), ∀j. (4)

Equations 3 and 4 tell us that the cumulative losses of the row and column player’s experts algo-
rithms are bounded by the no-regret loss times a multiplicative term, which is linear in the maximum
absolute value M in the payoff tables. In the following theorem, we see what these bounds tell us about
the average payoff of the game.

Theorem 2. If (x1, x2, ..., xT) and (y1, y2, ..., yT) are the sequences of strategies generated for the row
player and column player respectively by the MWU algorithm, then(

1
T

T∑
t=1

xt,
1
T

T∑
t=1

yt
)

is a
(

8M

√
ln(n)
T

)
− approximate Nash Equilibrium.

Proof: For an ε-approximate N.E., we must show the following:(
1
T

T∑
t=1

xt
)∗
R

(
1
T

T∑
t=1

yt
)
≥ e∗iR

(
1
T

T∑
t=1

yt
)
− ε, ∀i ∈ {1, ...,m}

(
1
T

T∑
t=1

xt
)∗
C

(
1
T

T∑
t=1

yt
)
≥

(
1
T

T∑
t=1

xt
)∗
Cej − ε, ∀j ∈ {1, ..., n}.

4-6

We begin by replacing C with −R (since R+ C = 0) in equation 3,

T∑
t=1

(xt)∗(−R)yt ≤
T∑
t=1

e∗i (−R)yt + 4M
√
T ln(n), ∀i

⇒ −
T∑
t=1

(xt)∗Ryt ≤ −
T∑
t=1

e∗iRy
t + 4M

√
T ln(n), ∀i

⇒
T∑
t=1

(xt)∗Ryt ≥
T∑
t=1

e∗iRy
t − 4M

√
T ln(n), ∀i

⇒
T∑
t=1

(xt)∗Ryt ≥ e∗iR

T∑
t=1

yt − 4M
√
T ln(n), ∀i.

Next we rearrange the terms in equation 4 and apply the above bound,

T∑
t=1

(xt)∗Rej ≥
T∑
t=1

(xt)∗Ryt − 4M
√
T ln(n), ∀j

⇒ min
j

[(T∑
t=1

xt
)∗
Rej

]
≥

T∑
t=1

(xt)∗Ryt − 4M
√
T ln(n)

⇒ min
j

[(T∑
t=1

xt
)∗
Rej

]
≥ e∗iR

T∑
t=1

yt − 8M
√
T ln(n), ∀i.

Finally we introduce the average strategy 1
T

∑
t y
t which is a probability distribution over the deter-

ministic strategies ej . We use the fact that any linear function applied to 1
T

∑
t y
t must have value at

least as large as the minimum value it takes over the deterministic strategies ej(T∑
t=1

xt
)∗
R

(
1
T

T∑
t=1

yt
)
≥ min

j

[(T∑
t=1

xt
)∗
Rej

]

⇒
(T∑
t=1

xt
)∗
R

(
1
T

T∑
t=1

yt
)
≥ e∗iR

T∑
t=1

yt − 8M
√
T ln(n), ∀i

(
× 1
T

)
⇒
(

1
T

T∑
t=1

xt
)∗
R

(
1
T

T∑
t=1

yt
)
≥ e∗iR

(
1
T

T∑
t=1

yt
)
− 8M

√
ln(n)
T

, ∀i.

Following the same construction for column player, that is by replacing R by −C in equation 4 and
rearranging the terms in equation 3, we find the following:(

1
T

T∑
t=1

xt
)∗
C

(
1
T

T∑
t=1

yt
)
≥

(
1
T

T∑
t=1

xt
)∗
Cej − 8M

√
ln(n)
T

, ∀j

�

Remark 1. Theorem 2 demonstrates two important facts about the two-player zero-sum game as the
time horizon increases (i.e. T →∞):
1) The average payoffs obtained by the row and column player of the game converge to their values in
the game.
2) (Informal) The histogram of play, or average strategies of the players, converges to an equilbrium of
the game.

4-7

Remark 2. In Thereom 2, the ε error term decreases as the inverse square root of time. It is an open
question whether there exists a simple no-regret algorithm for zero-sum games converging faster (e.g.
exponentially fast).

4-8

