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Lecture 6
Lecturer: Constantinos Daskalakis Scribe: Jason Biddle, Debmalya Panigrahi

NOTE: The content of these notes has not been formally reviewed by the
lecturer. It is recommended that they are read critically.

In our last lecture, we proved Nash’s Theorem using Broweur’s Fixed Point Theorem. We also
showed Brouwer’s Theorem via Sperner’s Lemma in 2-d using a limiting argument to go from the
discrete combinatorial problem to the topological one. In this lecture, we present a multidimensional
generalization of the proof from last time. Our proof differs from those typically found in the literature.
In particular, we will insist that each step of the proof be constructive. Using constructive arguments,
we shall be able to pin down the complexity-theoretic nature of the proof and make the steps algorithmic
in subsequent lectures. In the first part of our lecture, we present a framework for the multidimensional
generalization of Sperner’s Lemma.

• A Canonical Triangulation of the Hypercube

• A Legal Coloring Rule

In the second part, we formally state Sperner’s Lemma in n dimensions and prove it using the
following constructive steps:

• Colored Envelope Construction

• Definition of the Walk

• Identification of the Starting Simplex

• Direction of the Walk

1 Framework

Recall that in the 2-dimensional case we had a square which was divided into triangles. We had also
defined a legal coloring scheme for the triangle vertices lying on the boundary of the square. Now let us
extend those concepts to higher dimensions.

1.1 Canonical Triangulation of the Hypercube

We begin by introducing the n-simplex as the n-dimensional analog of the triangle in 2 dimensions as
shown in Figure 1. The n-simplex is simply the n-dimensional polytope formed by the convex hull of
n+ 1 points in general position.

Next we introduce the hypercube [0, 1]n as the n-dimensional analog of our original square in 2
dimensions. We divide the hypercube into cubelets of equal size. That is, we divide each dimension of
the hypercube [0, 1]n into integer multiples of 2−m for some positive integer m as shown in Figure 2.
This division into cubelets provides us with a set of vertices for the hypercube, namely all points in the
hypercube whose coordinates are multiples of 2−m.

Now we define a simplicization of the hypercube on these vertices by splitting each cubelet into
simplices. We define our simplicization of the cubelets such that if two cubelets share a facet, the
simplicization defined in the two cubelets coincides on that facet. We do this by ensuring all simplices
of the cubelet use the vertices [0]n and [1]n. An example simplicization for a cubelet in 3 dimensions
where all tetrahedra share the vertices (0, 0, 0) and (1, 1, 1) is shown in Figure 3.

Formally, every simplex corresponds to a permutation of the coordinates. The points contained in
each simplex are all of the points inside the hypercube which satisfy the following definition:
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Triangulation 

High-dimensional analog of triangle? 

in 2 dimensions: a triangle in n dimensions: an n-simplex 
i.e. the convex hull of  n+1 points 
in general position 

Figure 1: The n-simplex as the high-dimensional analog of the triangle.

Divide each dimension 
into integer multiples 
of  2-m, for some 
integer m. 

Figure 2: Dividing the hypercube into cubelets.

Definition 1. For a permutation π : [n]→ [n],

Tπ := {x ∈ [0, 1]n | xπ(1) ≤ xπ(2) ≤ ... ≤ xπ(n)}.
Claim 1. The unique integral corners of Tπ are the following n+ 1 points:

xπ(1) xπ(2) . . . xπ(n−2) xπ(n−1) xπ(n)

vπ1 = 0 0 . . . 0 0 0
vπ2 = 0 0 . . . 0 0 1
vπ3 = 0 0 . . . 0 1 1
vπ4 = 0 0 . . . 1 1 1

...
vπn = 0 1 . . . 1 1 1

vπn+1 = 1 1 . . . 1 1 1

Proof: Any other integral point in the hypercube that does not respect the ordering must violate the
inequality in Definition 1. Suppose vertex v of the hypercube [0, 1]n belongs to set Tπ and is not listed
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note that all tetrahedra in this division 
use the corners 000 and 111 of the cube 

in 3 dimensions… 

Figure 3: Simplicization of a 3-dimensional cubelet.

above. Vertex v must necessarily contain vπ(i) = 1 and vπ(i+1) = 0 for some i ∈ {1, ..., n − 1} which
implies vπ(i) 6≤ vπ(i+1), a contradiction. Therefore, vertex v cannot belong to set Tπ.

�

Claim 2. Tπ is a simplex.

Proof: We can easily express any point x ∈ Tπ as a convex combination of the integral corners
vπ1 , v

π
1 , ..., v

π
n+1 of Tπ via the following procedure:

Let y = x

αn+1 = yin+1 ≥ 0 where in+1 = arg min
i

yi

y ← y − αn+1v
π
n+1

αn = yin ≥ 0 where in = arg min
i/∈{in+1}

yi

y ← y − αnvπn
...

α2 = yi2 ≥ 0 where i2 = arg min
i/∈{i3,i4,...,in+1}

yi

y ← y − α2v
π
2

α1 = 1−
n+1∑
j=2

αj

⇒
n+1∑
j=1

αjv
π
j = x where

n+1∑
j=1

αj = 1 ⇒ Tπ is a simplex.

�

Claim 3.
⋃
π

Tπ = [0, 1]n.

Proof: Trivially, any point x ∈ [0, 1]n satisfies at least one of the permutations, each of which is a
simplex from Claim 2; therefore, the union of simplices equals the hypercube.

�
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Theorem 1. {Tπ}π is a triangulation of [0, 1]n.

Proof: A triangulation of [0, 1]n is a collection of simplices with disjoint interiors whose union equals
the hypercube. We demonstrated the latter in Claim 3. To show our simplices have disjoint interiors,
we must argue no simplices can intersect at internal point. Obviously, any internal point must strictly
satisfy the inequalities from Definition 1. There is no way an internal point can satisfy more than one
set of strict inequalities on the permutations of the coordinates. For example, in the 2-dimensional case
if an internal point (x1, x2) satisfies x1 < x2 then it cannot also satisfy x2 < x1.

�
We apply this triangulation to every cubelet in our hypercube division. We can think of each cubelet

as living in [0, 1]n, and we can scale and translate the cubelet to the corresponding location in the
hypercube division. In order for our simplicization of cubelets to be a simplicization of the entire
hypercube, the following property must hold:

Figure 4: Projection of simplicies in the lower cubelet (black) onto its top face and projection of simplicies in the upper
cubelet (blue) onto its bottom face.

Claim 4. If two cubelets share a face, their simplicizations agree on a common simplicization of the
face.

Proof: Suppose cubelets C1 and C2 share a facet. WLOG we can think of each cubelet as living in
[0, 1]n and assume that their shared face is xn = 0 for C1 and xn = 1 for C2. The projections of the
n-simplices of C1 onto the face xn = 0 produce the (n− 1)–simplices

T 1
π′ = {x ∈ [0, 1]n | xn = 0, xπ′(1) ≤ xπ′(2) ≤ ... ≤ xπ′(n−1)},

for all possible permutations π′ : [n − 1] → [n − 1]. Clearly, these simplices define the canonical
simplicization of [0, 1]n−1. Observe that if we project all simplices of C2 onto the face xn = 1 we obtain
the set of simplices

T 2
π′ = {x ∈ [0, 1]n | xi = 1, xπ′(1) ≤ xπ′(2) ≤ ... ≤ xπ′(n−1)},

for all possible permutations π′ : [n − 1] → [n − 1], which also define the canonical simplicization of
[0, 1]n−1. Hence, the simplicization of C1 and C2 defines the same partition of their shared facet into
(n− 1)-dimensional simplices. �
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For illustration consider the 3-dimensional case and suppose we have two cubelets stacked on top of
one another as depicted in Figure 4. We can think of each cubelet as living in [0, 1]3. The faces of the
two cubelets meet when x3 = 1 for the bottom cubelet and when x3 = 0 for the top cubelet. When this
occurs, we have freedom in the permutation of the other coordinates in two cubelets. Each permutation
defines a projection onto the face where the cubelets meet. Since we simplicize our cubelets on the long
diagonal (i.e. all simplicies use the vertices (0, 0, 0) and (1, 1, 1)), the projections of the top and bottom
cubelet coincide at the shared face as shown in Figure 4. One can easily see this holds for the x1 and x2

dimensions of the 3-d case.

Cycle of a Simplex 
Letting                                     denote the unit vector along dimension i, and  ei, i = 1, . . . , n,

e0 = (−1,−1, . . . ,−1)

we can cycle around the corners of           as follows: Tπ

vπ
2

vπ
3

vπ
4

vπ
n

vπ
n+1

+eπ(n)

+eπ(n−1)

+eπ(n−2)

+eπ(1)

+e0

Claim: Hamming weight is increasing from          to             . vπ
1 vπ

n+1

vπ
1

the 0n corner of 
the cubelet 

the 1n corner 
of the cubelet 

Figure 5: Cycle around the simplex vertices.

Next we introduce a natural way to traverse the vertices of each simplex in our simplicization. Let
ei, ∀i ∈ {1, ..., n}, denote the unit vector along dimension i, and e0 = (−1,−1, ...,−1). Starting at the
all zero corner vπ1 , we can move around the n+ 1 corners of the simplex by adding unit vectors until we
reach the all ones corner vπn+1, at which point we can add e0 to return to the start.

vπ1 + eπ(n) → vπ2

vπ2 + eπ(n−1) → vπ3
...

vπn + eπ(1) → vπn+1

vπn+1 + e0 → vπ1

Claim 5. The Hamming weight is increasing from vπ1 through vπn+1.

Proof: It’s trivial to see the Hamming weight increases by 1 at each step since we’re adding a unit
vector along dimension i at each step.

vπ1 + eπ(n) = (0, 0, ..., 0, 0, 0) + (0, 0, ..., 0, 0, 1) = (0, 0, ..., 0, 0, 1) = vπ2

vπ2 + eπ(n−1) = (0, 0, ..., 0, 0, 1) + (0, 0, ..., 0, 1, 0) = (0, 0, ..., 0, 1, 1) = vπ3

vπ3 + eπ(n−2) = (0, 0, ..., 0, 1, 1) + (0, 0, ..., 1, 0, 0) = (0, 0, ..., 1, 1, 1) = vπ4
...

vπn + eπ(1) = (0, 1, ..., 1, 1, 1) + (1, 0, ..., 0, 0, 0) = (1, 1, ..., 1, 1, 1) = vπn+1
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1.2 Legal Coloring

Legal Coloring in 2-d 

no red 

no blue 

no yellow 

x1

x2

Figure 6: Sperner’s coloring condition in 2 dimensions.

Recall for Sperner’s coloring condition in 2 dimensions, we had 3 colors: blue (name this color 1),
red (color 2), and yellow (color 0). As shown in Figure 6, none of the vertices along the left edge of
the square could use blue, none of the vertices along the bottom edge could use red, and the remaining
boundary vertices (i.e. the top and right edges of the square) could use yellow. We did not restrict the
color of the internal vertices.

Definition 2. (P2): None of the vertices on the left (x1 = 0) side of the square uses blue, no vertex on
the bottom side (x2 = 0) uses red, and no vertex on the other two sides uses yellow.

For Sperner’s coloring condition in n dimensions, we have n+1 colors: 0, 1, 2, ..., n. We color vertices
on the boundary of the hypercube according to the following:

Definition 3. (Pn): For all i ∈ {1, ..., n}, none of the vertices on the face xi = 0 of the hypercube uses
color i; moreover, color 0 is not used by any vertex on a face xi = 1, for some i ∈ {1, ..., n}.

For example, in the 3-dimensional case (P3) we have 4 colors: 0, 1, 2, 3. Vertices on the left face of
the cube (i.e. x1 = 0) cannot use color 1, vertices on the front face (i.e. x2 = 0) cannot use color 2,
and vertices on the bottom face (i.e. x3 = 0) cannot use color 3. As shown in Figure 7, vertices on the
remaining three faces cannot use color 0.

2 N-Dimensional Sperner’s Lemma

Theorem 2 (Sperner 1928 [1]). Suppose that the vertices of the canonical simplicization of the hypercube
[0, 1]n are colored with colors 0, 1, ..., n so that the following property is satisfied by the coloring on the
boundary.

(Pn): For all i ∈ {1, ..., n}, none of the vertices on the face xi = 0 uses color i; moreover, color 0 is
not used by any vertex on a face xi = 1, for some i ∈ {1, ..., n}.

Then there exists a panchromatic simplex in the simplicization. In fact, there is an odd number of
those.

Remark 1. We need not restrict ourselves to the canonical simplicization of the hypercube (that is,
divide the hypercube into cubelets and divide each cubelet into simplices in the canonical way shown
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Legal Coloring (3-d) 

x1

x2

x3

no use of 0 

no use of 1 

no use of 3 
no use of 2 

Figure 7: Sperner’s coloring condition in 3 dimensions.

above). The conclusion of the theorem is true for any partition of the cube into n-simplices, as long as
the coloring satisfies the property stated above.

The reason we state Sperner’s lemma in terms of the canonical triangulation is in an effort to pro-
vide an algorithmically-friendly version of the computational problem related to Sperner, in which the
triangulation and its simplices are easy to define, the neighbors of a simplex can be computed efficiently
etc. We follow-up on this in the next lecture. Moreover, our set-up allows us to make all the steps in
the proof of Sperner’s lemma constructive (except for the length of the walk, see below).

Remark 2. Sperner’s Lemma was originally stated for a coloring of a simplicization of the n-simplex,
as stated below:

Theorem 3 (Original Statement of Sperner’s Lemma). Color the vertices of any simplicization of the n-
simplex (a convex combination of points v0, v1, ..., vn) with colors 0, 1, ..., n so that the facet not containing
vertex vi does not use color i. Then there exists a panchromatic simplex in the simplicization.

Our legal coloring of the hypercube [0, 1]n corresponds essentially to a legal coloring of the n-simplex
defined as in the original statement of Sperner’s lemma. Here is why: let v0 = 0n, vi = ei, for all
i = 1, . . . , n, where ei is the unit vector along dimension i. For all i = 1, . . . , n, color i is disallowed
in the facet of the cube that touches point 0n and is opposite to point vi. Moreover, all facets of the
hypercube adjacent to 1n are considered to be opposite to point v0; hence color 0 is disallowed there.

We proceed to prove the n-dimensional version of Sperner’s Lemma by generalizing every step of the
2-dimensional case.

3 Proof of Sperner’s Lemma

3.1 Envelope Construction

Recall that in the 2-dimensional case, we introduced an outer boundary (envelope) containing our original
square. We colored this envelope in a canonical way, called the envelope coloring, which does not violate
the legal coloring rules. Figure 8 shows the square shown of Figure 6 enclosed inside an envelope. The
envelope coloring is defined as follows (suppose that the envelope is identified with the facets of [0, 1]2):

• in the region of the boundary where yellow (color 0) is disallowed in a legal coloring, color all
vertices with blue (color 1), except for the boundary of this region with x1 = 0 (because blue is
disallowed there);
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The Canonically Colored Envelope 

For convenience 
introduce an outer 
boundary, that does 
not create new tri-
chromatic triangles. 

Figure 8: Envelope construction in 2 dimensions.

• given this, where blue (color 1) is disallowed, color with red (color 2), except for the boundary of
this region with x2 = 0;

• given this, where red (color 2) is disallowed, color with yellow (color 0).

In the last lecture, we proved that introducing the envelope maintains the legality of the coloring, and
that the introduction of the envelope does not create any new trichromatic triangles that did not exist
before the envelope was added.

Envelope construction in 3-d 

x1

x2

x3

no use of 

no use of 1 

no use of  3 
no use of  2 

use color 1, except 
for the boundary 
with x1=0 

1 

1 

use color 2, except 
for the boundary 
with x2= 0 

use color 0 
use color 3, except 
for the boundary 
with x3= 0 

Figure 9: Envelope construction in 3 dimensions.

Definition 4 (Envelope Coloring). The envelope coloring is the coloring of the vertices of the simpli-
cization of the hypercube that lie on the boundary of [0, 1]n in the following greedy manner (the steps are
ordered):

• where 0 is disallowed, color with 1, except for the boundary of this region with x1 = 0;

• where 1 is disallowed, color with 2, except for the boundary of this region with x2 = 0;
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• ...

• where i is disallowed, color with i+ 1, except for the boundary of this region with xi+1 = 0;

• ...

• where n is disallowed, color with 0.

As an example, consider the 3-dimensional case shown in Figure 9. Color 0 is not allowed on the cap
of the cube (i.e. the top, right, and back faces). We color the boundary there with color 1 except for the
boundary with the left face of the cube (i.e. x1 = 0), since color 1 is not allowed on the left face of the
cube (i.e. x1 = 0). We color the envelope there with color 2 except for the boundary with the front face
of the cube (i.e. x2 = 0). Color 2 was not allowed on the front face of the cube (i.e. x2 = 0). We color
the envelope there with color 3 except for the boundary with the bottom face of the cube (i.e. x3 = 0).
Finally, color 3 was not allowed on the bottom face of the cube (i.e. x3 = 0). We color the boundary
there with color 0.

Claim 6. Suppose that we start off with a legal coloring of the hypercube and introduce an envelope
around it, colored according to the envelope coloring rule defined above. No new panchromatic simplices
are introduced by the envelope addition.

Homework [2 points]
Prove Claim 6 for the n-dimensional case.

3.2 Definition of the Directed Walk

Like we did in the 2-d case, we show that a panchromatic simplex exists by defining a walk that jumps
from simplex to simplex of our simplicization, starting at some fixed simplex (independent of the coloring)
and is guaranteed to conclude at a panchromatic one. The simplices in our walk (except for the final
one) will contain all the colors in the set {2, 3, . . . , n, 0}, but will be missing color 1. Call such simplices
colorful. In particular, every such simplex will have exactly one color repeated twice. So it will contain
exactly two facets with colors {2, . . . , n, 0}. Call these facets colorful. Our walk will be transitioning
from simplex to simplex, by pivoting through a colorful facet.

The starting simplex of the walk belongs to the cubelet adjacent to the 0n vertex of the hypercube,
and corresponds to the permutation π = (1, 2, . . . , n−1, n) (refer to Figure 10). This has all the colors in
{2, 3, . . . , n, 0} but not color 1, and hence is a colorful simplex. One of its colorful facets lies on x1 = 0,
while the other is shared with some neighboring simplex. The walk enters that neighboring simplex
through the shared colorful facet. If the other vertex of that simplex has color 1 the walk is over, and
the existence of a panchromatic simplex has been established. If the other vertex is not colored 1, that
simplex has another colorful facet shared with one of its neighboring simplices. The walk traverses this
colorful facet to enter the neighboring simplex. In general, the walk enters a colorful simplex through
a colorful facet and exits via its other colorful facet if it exists; otherwise, the simplex is panchromatic
and the walk terminates.

To enumerate the possible evolutions of the walk, we observe the following.

• The walk cannot loop into itself in a ρ-shape, since that would require a simplex with three colorful
facets.

• The walk cannot exit the hypercube, since the only colorful facet on the boundary belongs to the
starting simplex, and the walk cannot reach that simplex from the inside of the hypercube. This is
because it would require a third colorful facet for the starting simplex or a violation of the above
assertion somewhere else on the walk.

• The walk cannot get into a cycle by returning to the starting simplex since that would need it to
enter the starting simplex from outside the hypercube.
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Starting Simplex 

x1

x2

x3

color 2 

color  3 

1 

1 

color 0 

π = (1, . . . , n− 1, n)

The starting simplex belongs to the cubelet 
adjacent to the 0n vertex of the hypercube, and 
corresponds to the permutation 

This simplex has a colorful facet, lying on the 
face x1=0 of the hypercube. 

Figure 10: The starting simplex of the directed walk.

The single remaining possibility is that the walk traces a path (i.e. no simplex is repeated) inside the
hypercube. Since there is a finite number of simplices, the walk must stop, and the only way this can
happen is by encountering color 1 when entering into a simplex through a colorful facet. Then, the
terminating simplex is panchromatic.

Lemma 1. There exists an odd number of panchromatic simplices.

Proof: After the original walk has terminated, we can start a new walk from some other simplex
that is not part of the original walk. If the starting simplex of this walk has no colorful facet, we stop
immediately. Otherwise, we start two simultaneous walks by crossing the two colorful facets of the
simplex. For each walk, if S is a colorful simplex encountered, exit S from the colorful facet not used to
enter S if such a facet exists; otherwise terminate the walk at the panchromatic simplex found. There
are two possibilities:

• either the two walks meet and none of the simplices encountered by the walks is panchromatic, or

• the two walks stop at a pair of distinct panchromatic simplices.

In either case, each subsequent (pair of) walks (i.e. other than the first walk) yield either 0 or 2
panchromatic simplices. Thus, the total number of panchromatic simplices in the hypercube is odd.

�
Abstractly, we can define a graph on the set of simplices where two simplices are neighbors iff they

share a colorful facet (refer to Figure 11). In such a graph each vertex has degree at most 2; hence, it is
a collection of cycles and paths. Each endpoint of a path is a panchromatic simplex, except the starting
simplex of our first walk. This also shows that the number of panchromatic simplices is odd.

3.3 Directing the Walk

The above argument defines an undirected graph, whose vertex set is the set of simplices in the simpli-
cization of the hypercube and which comprises of paths, cycles and isolated vertices. We will see in the
next couple of lectures that in order to understand the precise computational complexity of Sperner’s
problem, we need to define a directed graph with the above structure (i.e. comprising of directed paths,
directed cycles and isolated nodes). We now devise a convention (and an efficient method) for checking
which of the two colorful facets of a colorful simplex corresponds to an incoming edge, and which facet
corresponds to an outgoing edge.

Given a colorful facet f of some simplex S, we need to decide whether the facet corresponds to the
inward or outward direction. To do this we define two permutations τf and σf as follows. Recall the
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Space of Simplices 

... 
Starting Simplex 

Proofs constructs a graph with degree ≤ 2 

= panchromatic 

Figure 11: The graph on the set of simplices created by our proof of Sperner’s lemma.

Direction of the walk 

Recall that we can cycle around the corners of           as follows: Tπ

vπ
1

vπ
2

vπ
3

vπ
4

vπ
n

vπ
n+1

+eπ(n)

+eπ(n−1)

+eπ(n−2)

+eπ(1)

+e0

where the Hamming weight is increasing from          to            . vπ
1 vπ

n+1

Figure 12: The canonical cycle through a simplex.

canonical cycle corresponding to a simplex (refer to Figure 12). Let w be the vertex not on the colorful
facet; w falls somewhere on this cycle. If w = vπk , let τf be the following permutation of 0, 1 . . . , n:
πn−k+1, πn−k, . . . , 0, πn, . . . , πn−k+2. In other words, suppose we start at w and travel around the cycle
to get back to w. Then τf is the permutation of indices that we encounter on the arrows as subscripts of
e. On the other hand, we define permutation σf : {2, 3, . . . , n, 0} → {2, 3, . . . , n, 0} as the order in which
the colors {2, 3, . . . , n, 0} appear in the cycle, starting with the vertex of the cycle after w up until the
vertex of the cycle before w.

The sign of a permutation is the parity of the number of pairwise inversions, i.e. (−1)#pairwise inversions.
Define the sign of facet f in simplex S as

signS(f) = sign(τf ) · sign(σf ).

We now prove two properties about the sign function of facets defined above.

Lemma 2. Suppose f is a colorful facet shared by simplices S and S′. Then

signS(f) · signS′f = −1,

i.e. simplices S and S′ assign different signs to their shared colorful facet f .
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Proof: There are two cases. First assume that S and S′ belong to the same cubelet. Then their
permutations π, π′ are identical, except for a transposition of one adjacent pair of indices. Hence if
w,w are the missing vertices from f in S and S′ respectively, w,w′ are located in the cycle of π, π′

respectively between indices i and i + 1 , while all the other shared vertices appear in the same order.
Hence, the color permutation σf is the same in S, S′, while the permutation τf has the pair of indices
i, i+ 1 transposed and hence has opposite sign in S, S′.

Now, assume that S and S′ are in adjacent cubelets. Then f lies on a facet xi = 1 of S and xi = 0 of
S′. The vertex not in f in S is 0n, while the vertex of S′ not in f is 1n. Moreover, to obtain the vertices
of f in S′, we can replace coordinate i in the vertices of f in S with 0. In other words, permutations
π, π′ are identical, except that i is moved from the last position in π to the first position in π′. It follows
that the color permutation σf is the same in S, S′, while there is exactly one transposition in going from
τf in S to τf in S′. �

Lemma 3. Let S be a colorful simplex and f, f ′ be its two colorful facets. Then

signS(f) · signS(f ′) = −1.

Proof: Let w,w′ be the vertices of S missing from f and f respectively. Without loss of generality, w
appears before w′ on the cycle, and they are separated by k arcs. Permutations τf and τf ′ differ by a
cyclic shift of k positions. Thus,

sign(τf ′) · sign(τf ) = (−1)k(n+1−k).

We now compare σf and σf ′ . Let σf = i2i3 . . . i1 . . . ik+1 . . . in and σf ′ = ik+1 . . . ini1i2 . . . ik. Thus,

sign(σf ′) · sign(σf ) = (−1)n−1+(n−k)(k−1).

Hence,
signS(f) · signS(f ′) = (−1)k(n−k+1)+n−1+(n−k)(k−1) = (−1)2k(n−k+1)−1 = −1.

�
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