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Why do we shuffle the card deck? 

Card Shuffling 

We want to start the game with a uniform random permutation 
of the deck. 

i.e. each permutation should appear with probability 
1/52! ≈ 1/2257 ≈ 1/1077. 

Obtaining a random permutation: 
-  mathematician’s approach: dice with 52! facets in 1-to-1 
correspondence with the permutations of the deck  

algorithm – how can we analyze it? 

- shuffling ≈ imaginary dice 



Card Shuffling 

- Top-in-at-Random:	


- Riffle Shuffle: 

- Random Transpositions 

Pick two cards i and j uniformly at random with replacement, and 
switch cards i and j; repeat. 

Take the top card and insert it at one of the n positions in the deck 
chosen uniformly at random; repeat. 

Simulating the perfect dice; approaches: 



Simulating the perfect dice; approaches: 
Card Shuffling 

- Top-in-at-Random:	


- Riffle Shuffle: 

- Random Transpositions 

Pick two cards i and j uniformly at random with replacement, and 
switch cards i and j; repeat. 

Take the top card and insert it at one of the n positions in the deck 
chosen uniformly at random; repeat. 

a. Split the deck into two parts according to the binomial distribution 
Bin(n, 1/2). 
b. Drop cards in sequence, where the next card comes from the left 
hand L (resp. right hand R) with probability             (resp.             ). |L|

|L|+|R|
|R|

|L|+|R|
c. Repeat. 



Number of repetitions to sample a uniform permutation? 

Best Shuffle? 

- Top-in-at-Random:	


- Riffle Shuffle: 

- Random Transpositions 

almost 

about 300 repetitions	


(say within 20% from uniform) 

 8 repetitions	


about 100 repetitions	
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Input:  a. very large, but finite, set  Ω ;    
 b. a positive weight function  w : Ω → R+. 

The MCMC Paradigm 

Goal: Sample x ∈ Ω,  with probability  π(x) ∝ w(x). 

in other words: π(x) = w(x)
Z

the “partition function” 
Z =

�
x∈Ω w(x)

MCMC approach: 
construct a Markov Chain (think sequence of r.v.’s)            
converging to    , i.e. π

(Xt)t

as t → +∞Pr[Xt = y | X0 = x] → π(y) (independent of x) 

Crucial Question: Rate of convergence to     (“mixing time”) π



State space: Ω  =  {all possible permutations of deck}  

e.g. Card Shuffling 

Weight function  w(x) = 1  (i.e. sample a uniform permutation) 

Can visualize shuffling method as a weighted directed graph on Ω 
whose edges are labeled by the transition probabilities from state 
to state.  

Different shuffling methods    different connectivity, transition prob. 

Repeating the shuffle is performing a random walk on the graph of 
states, respecting these transition probabilities. 



Def: Time needed for the chain to come to within 1/2e  of     in 
total variation distance. 

Mixing Time of Markov Chains 

π

I.e. 

Pr[Xt = y | X0 = x]

τmix := min
t

�
�ptx − π�TV ≤ 1

2e
, ∀x

�



[ total variation distance 

] 

π

ptx

Ω

�π − ptx�TV :=
1

2

�

y∈Ω

|π(y)− ptx(y)|



Time needed for the chain to come to within 1/2e  of     in total 
variation distance. 

Mixing Time of Markov Chains 

π

I.e. 

1/2e:  arbitrary choice, but captures mixing 

Pr[Xt = y | X0 = x]

τmix := min
t

�
�ptx − π�TV ≤ 1

2e
, ∀x

�

Lemma: �ptx − π�TV ≤ e
−
�

t
τmix

�



State space: Ω  =  {all possible permutations of deck}  

Back to Card Shuffling 

Weight function  w(x) = 1  (i.e. sample a uniform permutation) 

- Top-in-at-Random:	


- Riffle Shuffle: 

- Random Transpositions 

about 300 repetitions	


 8 repetitions	


about 100 repetitions	
 τmix ∼ 1

2
n lnn

τmix ≤ 1

2
n lnn+ �(1 + ln 2)n�

τmix ∼ 3

2
log2 n



Applications of MCMC 
►  Combinatorics 

  Examining typical members of a combinatorial set (e.g. random graphs, 
random SAT formulas, etc.) 

  Probabilistic Constructions (e.g. graphs w/ specified degree distributions) 

►  Approximate Counting (sampling to counting) 
  Counting the number of matchings of a graph/#cliques/#Sat assignments 
  E.g. counting number of people in a large crowd Ω 

► Partition  Ω into two parts, e.g. those with Black hair B and its  
complement 

► Estimate p:=|B|/|Ω|   (by taking a few samples from the population) 
► Recursively estimate number of people with Black hair 
► Output estimate for size of Ω:   

►  Volume and Integration 
►  Combinatorial optimization (e.g. simulated annealing) 

�NB

�N := �NB · 1/p
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Administrivia 

Everybody is welcome 
If registered for credit (or pass/fail): 

- Scribe two lectures 
- Collect 20 points in total from problems given in lecture 

- Project: 

open questions will be 10 points, decreasing 
# of points for decreasing difficulty 

Survey or Research (write-up + presentation) 

If  just auditing: - Strongly encouraged to register as listeners 

this will increase the chance we’ll get a 
TA for the class  and improve the 
quality of the class 
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► Ω = {configurations of a physical system comprising particles} 

►  Every configuration x, has an energy  H(x) 
►  Probability of configuration  x  is 

π(x) =
e−β·H(x)

Z

inverse temperature 

(Gibbs distribution) 



► Ω = {configurations of a physical system} 

+ 

+ 

- 

- 

+ 

- 
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+ + 
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+ + 

- + 

π(x) =
e−β·H(x)

Z

(Gibbs distribution) 

(a.k.a. Spin Glass Model, or simply a Magnet) 

H(x) = −
�

i∼j

xixj

+: spin up 
-: spin down 

favors configurations where neighboring sites have same spin	
π

Phenomenon is intensified as temperature decreases (β increases) 



► Ω = {configurations of a physical system} 

+ 
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- + 

π(x) =
e−β·H(x)

Z

(a.k.a. Spin Glass Model, or simply a Magnet) 

H(x) = −
�

i∼j

xixj

+: spin up 
-: spin down 

known fact:	
 Exists critical   βc   such that   

β < βc :  system is in disordered state (random sea of + and -) 
β > βc :  system exhibits long-range order  
              (system likely to exhibit a large region of + or of -) spontaneous  

magnetization 



►  Examine typical configurations of the system at a temperature 
►  Compute expectation w.r.t. to     . (e.g. for the Ising model the 

mean magnetization) 
►   Estimate the partition function Z (related to the entropy of the 

system) 

π(x) =
e−β·H(x)

Z

π

Uses of sampling: 



►  Start from arbitrary configuration. 
►  At every time step t: 

  Pick random particle 
  Sample the particle’s spin conditioning on the spins of the 

neighbors 

+, w.pr.   e2β
e2β+e−2β

+ 

- 

+ 

+ -, w.pr.   e−2β

e2β+e−2β



Theorem [MO ’94]: The mixing time of Glauber dynamics on                     
the                    box is 

√
n×

√
n

O(n log n), if β < βc

eΩ(
√
n), if β > βc

where        is the critical (inverse) temperature. βc

(i.e. high temperature) 

(i.e. low temperature) 
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evolution 

ACCGT… 

AACGT… ACGGT… 

ACTGT… TCGGT… 

ACTGT… ACCGT… 
TCGGA… TCCGT… 

TCCGA… 
ACCTT… 

TCAGA… GCCGA… 

time 

- 3 million years 

today 



the computational problem 

ACCGT… 

AACGT… ACGGT… 

ACTGT… TCGGT… 

ACTGT… ACCGT… 
TCGGA… TCCGT… 

TCCGA… 
ACCTT… 

TCAGA… GCCGA… 

- 3 million years 

today 

time 



ACTGT… ACCGT… 
TCGGA… 

ACCTT… 

TCAGA… GCCGA… 

? 

- 3 million years 

today 

time 

the computational problem 



Markov Model on a Tree 

a 

c b 

1 

r 

4 5 3 2 

prc 

pra 

pab 

pa3 

pb1 pb2 
pc4 pc5 

- + - - - - + +--… - 

- 

+ 

+ + 

- 

- - - 

 1. State Space: Σ= {-1, +1} 

2. Mutation Probabilities on edges 
3. Uniform state at the root 

 -1: Purines (A,G) 
+1: Pyrimidines (C,T) 

 0. Tree T = (V, E) on n leaves 

+ 

+ 

+ 

+ - 

- 

- - + 

Lemma: Equivalent to taking independent samples from the Ising model 
(with appropriate temperatures related to mutation probabilities). 

uniform sequence 



The Phylogenetic Reconstruction Problem 
Input: k independent samples of the process at the 
leaves of an n leaf tree – but tree not known! 

Task: fully reconstruct the model,  
   i.e.  find tree and mutation probabilities 

       Goal:  complete the task efficiently 
       use small sequences (i.e. small k) 

s(1) s(4) s(5) s(3) s(2) 
- + + + - 
- + + - - 
+ - + - + 
- + + + - 
+ + + - - 

prc 

pc5 + 
In other words: Given k samples from the Ising 
model on the tree, can we reconstruct the tree?	


A: yes, taking k = poly(n) 



Can we perform reconstruction using 
shorter sequences? 

A: Yes, if “temperature” (equivalently the 
mutation probability) is sufficiently low”. 



Phylogenetics         Physics !! 

The phylogenetic reconstruction problem 
can be solved from very short sequences 

The Ising model on the tree 
exhibits long-range order 

phylogeny statistical physics 

[Daskalakis-Mossel-Roch 06] 



The transition at p* was proved by: 
[Bleher-Ruiz-Zagrebnov’95], [Ioffe’96],[Evans-Kenyon-Peres-Schulman’00],  
[Kenyon-Mossel-Peres’01],[Martinelli-Sinclair-Weitz’04], [Borgs-Chayes-Mossel-R’06].  
Also, “spin-glass” case studied by [Chayes-Chayes-Sethna-Thouless’86]. Solvability for  
p* was first proved by [Higuchi’77] (and [Kesten-Stigum’66]).  

The Underlying Phase Transition: Root 
Reconstruction in the Ising Model 

bias 

“typical”  
boundary 

no bias 

“typical”  
boundary 

LOW TEMP 

p < p* 

HIGH TEMP 

* 2 1
8

p −
=

p > p* 

Correlation of 
the leaves’ states 
with root state 
persists 
independent of 
height 

Correlation goes 
to 0 as height of 
tree grows 



Statistical physics Phylogeny 

Low Temp k = Θ(logn) 

High Temp k = Θ(poly(n)) [Mossel’03] 

[DMR’05] 

Resolution of Steel’s Conjecture 

p = p* 

Physics           Phylogenetics 



Low-temperature behavior of the 
Ising model… 



The  Root Reconstruction 
Problem (low temperature) 

p < p* p < p* think of every pixel as a +1/-1 
value, the whole picture being 
the DNA sequence of 
ancestral species 

every site (pixel) of 
ancestral DNA flips 
independently with 
mutation probability p   

the question is how correlated 
are the states at the leaves with 
the state at the root 

let’s try taking majority across leaves 
for every pixel 

Thm: Below p* correlation will persist, 
no matter how deep the tree is ! 

Thm: Above p* correlation goes to 0 as 
the depth of the tree grows. 

picture will look as clean independently of depth 

no way to get close to root picture, using 
leaf pictures 



Statistical physics Phylogeny 

Low Temp k = Θ(logn) 

High Temp k = Θ(poly(n)) [Mossel’03] 

[DMR’05] 

Resolution of Steel’s Conjecture 

p = p* 

Physics           Phylogenetics 

The point of this result is that phylogenetic reconstruction can 
be done with O(log n) sequences IFF the underlying Ising 
model exhibits long-range order.  


