6.896: Probability and Computation Spring 2011 lecture 3

Constantinos (Costis) Daskalakis costis@mit.edu

recap

Markov Chains

Def: A *Markov Chain* on Ω is a stochastic process ($X_0, X_1, ..., X_t, ...$) such that

 $p_x^{(t)} \in \mathbb{R}^{1 \times |\Omega|}_+$: distribution of X_t conditioning on $X_0 = x$.

then

$$p_x^{(t+1)} = p_x^{(t)} P$$
$$p_x^{(t)} = p_x^{(0)} P^t$$

Graphical Representation

Represent Markov chain by a graph G(P):

- nodes are identified with elements of the state-space $\boldsymbol{\Omega}$
- there is a directed edge between states x and y if P(x, y) > 0, with edge-weight P(x,y); (no edge if P(x,y)=0;)
- self loops are allowed (when P(x,x) > 0)

Much of the theory of Markov chains only depends on the topology of G(P), rather than its edge-weights.

irreducibility

aperiodicity

Mixing of Reversible Markov Chains

Theorem (Fundamental Theorem of Markov Chains) : If a Markov chain *P* is *irreducible* and *aperiodic* then:

a. it has a unique stationary distribution $\pi = \pi P$;

b. $p_x^t \to \pi$ as $t \to \infty$, for all $x \in \Omega$.

examples

Random Walk on undirected Graph G=(V, E)

$$P(x,y) = \begin{cases} 1/deg(x), & \text{if } (x,y) \in E\\\\0, & \text{otherwise} \end{cases}$$

P is irreducible iff *G* is connected;

P is aperiodic iff *G* is non-bipartite;

P is reversible with respect to $\pi(x) = \frac{\deg(x)}{2|E|}$.

Card Shufflings

Showed convergence to uniform distribution using concept of doubly stochastic matrices.

Designing Markov Chains

Input: A positive weight function $w : \Omega \to \mathbb{R}^+$.

Goal: Define MC (X_t)_t such that $p_x^t \to \pi$, where $\pi(x) = \frac{w(x)}{Z}$

The Metropolis Approach

- define a graph $\Gamma(\Omega, E)$ on Ω .
- define a *proposal distribution* $\kappa(x, \cdot)$ s.t.

 $\kappa(x, y) = \kappa(y, x) > 0$, for all $(x, y) \in E, x \neq y$ $\kappa(x, y) = 0$, if $(x, y) \notin E$

The Metropolis Approach

- define a graph $\Gamma(\Omega, E)$ on Ω .
- define a *proposal distribution* $\kappa(x, \cdot)$ s.t.

 $\kappa(x, y) = \kappa(y, x) > 0$, for all $(x, y) \in E, x \neq y$ $\kappa(x, y) = 0$, if $(x, y) \notin E$

the Metropolis chain: When chain is at state x

- Pick neighbor *y* with probability $\kappa(x, y)$
- Accept move to y with probability

$$\min\left\{1, \frac{w(y)}{w(x)}\right\} \equiv \min\left\{1, \frac{\pi(y)}{\pi(x)}\right\}$$

the Metropolis chain: When process is at state x

- Pick neighbor y with probability $\kappa(x, y)$
- Accept move to y with probability $\min\left\{1, \frac{w(y)}{w(x)}\right\}$

Transition Matrix:

$$P(x,y) = \kappa(x,y) \min\left\{1, \frac{w(y)}{w(x)}\right\} \equiv \kappa(x,y) \min\left\{1, \frac{\pi(y)}{\pi(x)}\right\}$$

Claim: The Metropolis Markov chain is reversible wrt to $\pi(x) = w(x)/Z$.

Proof: 1point exercise

back to the fundamental theorem

Mixing of Reversible Markov Chains

Theorem (Fundamental Theorem of Markov Chains) : If a Markov chain *P* is *irreducible* and *aperiodic* then:

a. it has a unique stationary distribution $\pi = \pi P$; b. $p_x^t \to \pi$ as $t \to \infty$, for all $x \in \Omega$.

Proof: see notes.