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Lecture 4
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NOTE: The content of these notes has not been formally reviewed by the
lecturer. It is recommended that they are read critically.

1 Introduction

In the previous lecture we proved that an irreducible and aperiodic Markov chain converges to its unique
stationary distribution. Our proof used the idea of coupling two copies of the Markov Chain that start
from arbitrary states x and y, move on the state space independently from each other, until they meet
and stick together forever. We argued that such a sticky coupling satisfies

max
x
||ptx − π||T V

≤ max
x,y

Pr[Tx,y > t], (1)

where Tx,y is a random variable that equals the time that it takes the two coupled copies that start at
x, y to meet, i.e. Tx,y = min {t : Xt = Yt|X0 = x, Y0 = y}.

Today we move one step forward and examine more general couplings for showing convergence to the
stationary distribution. We are also concerned with bounding the rate of convergence to the stationary
distribution.

Definition 1. A coupling of a Markov chain is a pair process (Xt, Yt)t on R|Ω×Ω| such that:

• (Xt, .)t and (., Yt)t are faithful copies of the Markov chain,

• Xt = Yt => Xt+1 = Yt+1, i.e. if the two copies are on the same state at some time t they are on
the same state also at the next time, t+ 1.

Couplings are useful because a comparison between distributions is reduced to a comparison between
random variables, and therefore upper bounds on distance can be obtained easily.

Lemma 1. ∆(t) ≤ maxx,y Pr[Tx,y > t], where ∆(t) := maxx ||ptx − π||T V
is the worst possible distance

from the stationary distribution after t steps, and Tx,y = min {t : Xt = Yt|X0 = x, Y0 = y}.

Proof: Recall from last lecture that
∆(t) ≤ D(t),

where
D(t) = max

x,y
||ptx − pty||T V

.

Using these and the coupling lemma we have:

∆(t) ≤ max
x,y
||ptx − pty||

≤ max
x,y

Pr[Xt 6= Yt|X0 = x, Y0 = y]

= max
x,y

Pr[Tx,y > t] (2)

�
The above lemma provides an upper bound on the distance of the Markov Chain from its stationary

distribution in t steps.
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2 Example: Simple Random Walk on {0, 1}n

The n-dimensional hypercube is a graph whose vertices are the binary n-tuples {0, 1}n. Two vertices
are connected by an edge when they differ in exactly one coordinate. We define a random walk on a
hypercube as follows:

• with probability p = 0.5 we do not move;

• with probability p = 0.5 we pick a coordinate uniformly at random and we flip its value.

This Markov Chain is aperiodic and irreducible. Hence it convergences to its unique stationary distri-
bution; in this case, this is the uniform distribution over {0, 1}n (why?).

To bound the mixing time of this chain consider two copies (Xt)t and (Yt)t starting at arbitrary
vertices of the cube and couple them as follows at all t:

• pick a coordinate c uniformly at random;

• if Xt and Yt are equal at coordinate c, then with probability p = 0.5 do nothing in both Xt and
Yt, and with probability 0.5 flip the value of coordinate c in both Xt and Yt;

• if Xt and Yt differ at coordinate c, then pick value 0 or 1 uniformly at random, and set coordinate
c to that value in both Xt and Yt.

Our goal is to study the time Tx,y. Notice that this is upper bounded by the Coupon Collector’s
time for n coupons, and therefore

Pr[Tx,y > n ln(n) + cn] ≤ e−c.

Applying Lemma 1 we have:

∆(n log(n) + cn) ≤ Pr[Tx,y > n log(n) + cn] ≤ e−c.

Setting τ(ε) := n(log(n) + log(1/ε)) we get

∆(τ(ε)) ≤ ε.

Remark: The fact that our chain was lazy with probability 1/2 was very convenient to design our
coupling. How would you modify the coupling if the probability of being lazy was smaller than 1/2?
What would be the effect on the mixing time?

3 Rates of Convergence

In this section, we study the rate of convergence of a Markov Chain to its stationary distribution π. We
show first that the convergence is monotonic and proceed to show that the convergence is exponential.
Recall the following definitions from last lecture:

∆(t) = max
x
||ptx − π||T V

; (3)

D(t) = max
x,y
||ptx − pty||T V

. (4)

Given these definitions and the triangle inequality we have shown that:

∆(t) ≤ D(t) ≤ 2∆(t) (5)

Lemma 2. ∆(t) is non-increasing in t.
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Proof: Let us consider two faithful copies of an aperiodic, irreducible Markov chain (Xt)t and (Yt)t,
where (Xt)t starts from an arbitrary initial state X0 = x and (Yt)t starts from a state drawn from the
stationary distribution π. (In particular, for all t, Yt is distributed according to π).

Now pick an arbitrary time T . Using the coupling lemma we couple the evolution of Xt with Yt so
that at time T we have:

||XT − YT ||T V
= Pr[XT 6= YT ]. (6)

Conditioning on XT and YT we couple the next step (T + 1) as follows:

• if XT = YT then sample XT+1 according to the chain and set YT+1 = XT+1;

• otherwise, the XT+1 and YT+1 are sampled independently.

Using the coupling lemma once more we have:

||XT+1 − YT+1||T V
≤ Pr[XT+1 6= YT+1] ≤ Pr[XT 6= YT ] = ||XT − YT ||T V

. (7)

Given that the Yt starts in the stationary distribution:

||XT+1 − YT+1||T V
= ||PT+1

x − π||
T V

(8)
||XT − YT ||T V

= ||PTx − π||T V
(9)

and therefore from the above ∆(T + 1) = ||XT+1 − YT+1||T V
≤ ||XT − YT ||T V

= ∆(T ). Since T was
arbitrary this concludes the proof. �

Definition 2. The mixing time of an irreducible, aperiodic Markov Chain is the first time beyond which
the distribution of the Markov Chain is guaranteed to stay within 1/2e from its stationary distribution
no matter where it started, i.e.,

τmix = min
{
t : ∆(t) ≤ 1

2e

}
; (10)

in general, we define:

τ(ε) = min{t : ∆(t) ≤ ε}. (11)

Notice that the Fundamental Theorem of Markov Chains and the above lemma imply that these
times exist and are finite. The following lemma shows that τmix captures the the rate of convergence to
the stationary distribution.

Lemma 3. ∆(t) ≤ exp
(
−
⌊

t
τmix

⌋)
, i.e. the distance from the stationary distribution reduces exponen-

tially with rate τmix.

Proof: We consider two faithful copies of an aperiodic and irreducible Markov chain (Xt)t and (Yt)t,
starting at arbitrary states x and y. By the coupling lemma, we can couple the first τ steps of the chains
so that:

||pτx − pτy ||T V
= Pr[Xt 6= Yt] (12)

Conditioning on the first τ steps of the chain, we construct a coupling for the next τ ′ time steps as
follows:

• if Xτ = Yτ then Xτ+s = Yτ+s for all s = 1, 2, 3, . . . , τ ′;

• otherwise, suppose Xt = x′ and Yt = y′, where x′ 6= y′; use the coupling lemma to couple the
chains (Xτ+s)s and (Yτ+s)s so that

||pτ
′

x′ − pτ
′

y′ ||TV = Pr[Xτ+τ ′ 6= Yτ+τ ′ |Xτ = x′ 6= y′ = Yτ ].
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Applying the coupling lemma once more we have:

||pτ+τ ′

x − pτ+τ ′

y ||
T V
≤ Pr[Xτ+τ ′ 6= Yτ+τ ′ |Xτ = x, Yτ = y]

≤ Pr[Xτ 6= Yτ ]Pr[Xτ+τ ′ 6= Yτ+τ ′ |Xτ 6= Yτ ]

≤ ||pτx − pτy ||T V
max
x′,y′
||pτ

′

x′ − pτ
′

y′ ||T V

≤ D(τ)D(τ ′).

Since the above is true for an arbitrary pair of states x, y:

D(τ + τ ′) = max
x,y
||pτ+τ ′

x − pτ+τ ′

y ||
T V
≤ D(τ)D(τ ′).

Now taking t = k · τmix, k ≥ 1, we get:

∆(k · τmix) ≤ D(k · τmix) ≤ D(τmix)k ≤ (2∆(τmix))k ≤ e−k. (13)

�

4 Shuffle Cards: Random Transpositions

Recall the random transposition shuffle from Lecture 1:

• Pick two cards C and C ′ uniformly at random;

• switch them;

• repeat.

It is easy to see that an equivalent description of the transposition shuffle is the following:

• pick a card C and a position P uniformly at random;

• exchange card C with whatever card is at position P ;

• repeat.

To bound the mixing time, we consider 2 copies of the Markov Chain (Xt)t and (Yt)t and couple them
to pick the same card C and position P at all time steps t. Denoting by d(t) the number of positions
where Xt and Yt differ, we analyze our coupling as follows:

• if card C is at the same position in Xt, Yt, then we have d(t+ 1) = d(t);

• if card C is at different positions in Xt and Yt then we distinguish the subcases:

– if the card at position P is the same in Xt and Yt, then d(t+ 1) = d(t);

– otherwise, d(t+ 1) ≤ d(t)− 1. (In what case can I improve by more than 1?)

Hence,

Pr[dt+1 < dt] =
(
dt
n

)2

. (14)

Hence, the expected time to decrease the distance by 1 is at most ( ndt
)2, and therefore, we can bound

E[Tx,y] ≤
n∑
d=1

(n
d

)2

= c · n2,
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for some constant c. Using Markov’s inequality we have, for all c′ > 0:

Pr[Tx,y ≥ c′n2] <
c

c′
. (15)

Choosing c′ = 2e · c we have

Pr[Tx,y ≥ 2e · cn2] <
1
2e
.

Hence,
τmix = O(n2).

2 points problem: Design a better coupling that gives τmix = O(n log(n)).
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