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Lecture 6
Lecturer: Constantinos Daskalakis Scribe: Brian Basham, Matthew Johnson

NOTE: The content of these notes has not been formally reviewed by the
lecturer. It is recommended that they are read critically.

1 Graph Coloring

Given a graph G = (V,E) and a set of colors {1, 2, . . . , q}, we wish to sample a random coloring uni-
formly from all possible proper colorings on the vertices of G. A coloring is legal if for every edge
e = (v1, v2) ∈ E, v1 and v2 have distinct colors.

We define ∆ to be the maximal degree of any vertex of G.

• q ≥ ∆ + 1 =⇒ ∃ a coloring of G. We can see this by simply choosing a color for each vertex in
some fixed order, and at every step there is at least one color not among the neighbors of v.

• q < ∆: In general, it is an NP-Hard problem to decide if there is a coloring of G or not.

• q = ∆: Brook’s Theorem states that there exists a coloring of G iff there is no ∆ + 1-clique in G
and ∆ > 2, or if there is no odd cycle in G and ∆ = 2.

From this point on we will focus on the case q ≥ ∆ + 1, so we know that there exists at least one
coloring of G. We now wish to sample a coloring uniformly. We start by considering the natural Markov
chain on the colorings of a graph G.

Definition 1. The natural Markov chain on a set of colorings of G = (V,E) and a set of colors
{1, 2, . . . , q} is defined as follows. We let X0 be an arbitrary coloring of G. Xt+1 is obtained by Xt by
choosing v ∈ V uniformly at random and choosing a uniform c ∈ {1, 2, . . . , q}, changing the color of v
to c if the result would be a legal coloring and otherwise keeping the colors of all vertices the same.

This Markov chain is symmetric because each possible change is reversible with the same probability,
and is aperiodic because it contains self-loops. However, it is not irreducible. Consider ∆ = 2, q = 3,
and G is a complete graph on 3 vertices. Any coloring cannot be transformed to another coloring using
this process.

Exercise (1 point): Prove that the natural Markov chain is irreducible if q ≥ ∆ + 2.

Conjectures (10 points each):

(a) If q ≥ ∆ + 2 the natural Markov chain has τmix = O(n log n)

(b) If q = ∆ + 1,∃ a Markov chain with polynomial mixing time.

Today: The natural Markov chain has τmix = O(n log n) for q ≥ 4∆ + 1.
Tomorrow: We will improve the bound to q ≥ 2∆ + 1 using Path Coupling.

Theorem 1. The mixing time of the natural Markov chain is τmix = O(n log n) for q ≥ 4∆ + 1

Proof:
We use coupling. We choose arbitrary colorings X0 and Y0 of G, and we couple (Xt, Yt) by picking

the same v and t uniformly at random at all times t.
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We denote by dt = d(Xt, Yt) the number of vertices where Xt and Yt differ in color.

There are three types of possible moves. Good moves (those that decrease dt), bad moves (that
increase dt), and neutral moves (dt doesn’t change).

• Good Moves (dt+1 = dt − 1): This occurs when v is a vertex that disagrees and c is a color that
does not appear in the neighborhood of v in either Xt or Yt. There are at most 2∆ colors in the
neighborhood of v in either coloring, so there are at least dt(q − 2∆) good pairs of v, c.

• Bad Moves (dt+1 = dt + 1) This occurs when v is a vertex that is the same color in Xt and Yt and
c is a color that appears among the neighbors of v in only one of Xt or Yt but not both. We bound
this by counting the disagreeing neighbors. If c appears among the neighbors of v in only one
coloring, then that vertex must disagree in Xt and Yt. There are at most dt disagreeing vertices
each with at most ∆ neighbors and two choices of colors, for a total of at most 2∆dt bad moves.

• Neutral moves (dt+1 = dt) Everything that isn’t a Good or Bad move is a Neutral move.

We notice that (#Good Moves−#Bad Moves ≥ q − 4∆)

E[dt+1|(Xt, Yt)] = dt −
#Good Moves

qn
+

#Bad Moves
qn

≤ dt(1−
q − 4∆
qn

)

=⇒ E[dt|(X0, Y0)] ≤ d0(1− q − 4∆
qn

)t

≤ ne−t q−4∆
qn

≤ ε when t ≥ q

q − 4∆
n(log n+ log

1
e

)

By Markov’s Inequality,

Pr[Xt 6= Yt|(X0, Y0)] = Pr[dt ≥ 1|(X0, Y0)] ≤ E[dt|(X0, Y0)] ≤ ε
for t ≥ q

q−4∆n(log n+ log 1
e )

So τ(ε) = q
q−4∆n(log n+ log 1

e ),

τmix = O( q
q−4∆n log n) = O(n log n) for q ≥ 4∆ + 1. �

2 Path Coupling

We will develop the method of Path Coupling, which we will use to achieve a mixing time of O(n log n)
when q ≥ 2∆ + 1.

Definition 2. : A pre-metric on Ω is a connected, undirected graph with positive edge weights such that
all edges are shortest paths. More specifically, if x, y ∈ Ω are adjacent in the pre-metric, the weight of the
edge between them w(x, y) should be equal to the least weight of any path from x to y in the pre-metric.

We can extend any pre-metric to a metric on Ω by considering the shortest path distances among
edges of the pre-metric. We let the induced metric be d.

Idea of Path Coupling : We define a coupling only for pairs of states that are adjacent in the pre-
metric such that the distance under our new metric is expected to reduce by some constant factor. We
then extend this to a full coupling that still reduces the expected distance by the same factor.
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Theorem 2. Path Coupling Theorem
Suppose ∃ coupling Pr[X ′, Y ′|X,Y ], defined only for pairs of states (X,Y ) that are adjacent in the

pre-metric, such that
E[d(X ′, Y ′)|X,Y ] ≤ (1− α)d(X,Y ) (∗)

Then we can extend this coupling to a full coupling such that (∗) holds for all (X,Y ) ∈ Ω.

Proof: Let x and y be arbitrary states that are non-adjacent in the pre-metric. We fix an arbitrary
shortest path between these states,

x = z0 → z1 → z2 → · · · → zk = y

We need to specify Pr[Z ′0, Z
′
k|z0, zk] that is a valid coupling. We first sample Z ′0, Z

′
1 from Pr[Z ′0, Z

′
1|z0, z1].

We then sample a value of Z ′2 from the marginal distribution of Pr[Z ′1, Z
′
2|z1, z2] conditioning on the

sampled value of Z ′1. We then sample a value for Z ′3, Z
′
4, . . . Z

′
k conditioning on the previous value each

time, and we have now sampled (Z ′0, Z
′
K) = (X ′, Y ′).

Claim 1. The above procedure is i) well defined and ii) a valid coupling.

Proof: We show by induction that Pr[Z ′i = w] = P (zi, w)∀i, w ∈ Ω, where P (zi, w) is the Markov
Chain transition probability from zi to w. This means that zi → Z ′i is a valid Markov Chain step.

For Z ′0, Z
′
1 this is true because Pr[Z ′0, Z

′
1|z0, z1] defines a valid coupling.

We now assume the claim is true for Z ′i, and we will show that it is true for Z ′i+1.

Pr[Z ′i+1 = w] =
∑
z′i

P (Z ′i = zi)
Pr[Z ′i = z′i, Z

′
i+1 = w|zi, zi+1]∑

w∗ Pr[Z
′
i = z′i, Z

′
i+1 = w∗|zi, zi+1]

=
∑
z′i

P (zi, z
′
i)

Pr[Z ′i = z′i, Z
′
i+1 = w|zi, zi+1]∑

w∗ Pr[Z
′
i = z′i, Z

′
i+1 = w∗|zi, zi+1]

by induction.

=
∑
z′i

P (zi, z
′
i)
Pr[Z ′i = z′i, Z

′
i+1 = w|zi, zi+1]

P (zi, z′i)
because Pr[Z ′i, Z

′
i+1|zi, zi+1] is a valid coupling.

=
∑
z′i

Pr[Z ′i = z′i, Z
′
i+1 = w|zi, zi+1]

= P (zi+1, w) because Pr[Z ′i, Z
′
i+1|zi, zi+1] is a valid coupling.

�
Thus ii) is established, and we have implicitly shown i). We also notice that the distribution of every
(Z ′i, Z

′
i+1) is identical to Pr[Z ′i, Z

′
i+1|zi, zi+1]∀i. Now we can finish the proof.

E[d(Z ′0, Z
′
k)|z0, zk] ≤ E[

k−1∑
i=0

E[d(Z ′i, Z
′
i+1)|z0, zk]

≤
k−1∑
i=0

E[d(Z ′i, Z
′
i+1|z0, zk] by linearity of expectation.

≤
k−1∑
i=0

(1− α)d(zi, zi+1)

= (1− α)
k−1∑
i=0

d(zi, zi + 1)

= (1− α)d(z0, zk)

as desired. We have established the Path Coupling Theorem. �
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