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Lecture 8
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NOTE: The content of these notes has not been formally reviewed by the
lecturer. It is recommended that they are read critically.

1 Coupling from the Past

So far we have developed techniques that enable us to sample approximately from the stationary dis-
tribution. The goal of Coupling from the Past is to sample exactly from the stationary distribution.
We already know how to do this naively (π(x) = w(x)/Z), but we are aiming for something less compu-
tationally expensive. The main idea behind Coupling from the Past is to try to simulate the following
scenario: the Markov Chain has been running since time −∞, and we are about to sample its state at
present time. If this scenario were true, we would be sampling from the stationary distribution of the
chain, since the chain would have already mixed by now.

2 Preliminaries: Random Function Representation of a MC

Definition 1. Let P (.; .) define an ergodic Markov Chain on Ω. A distribution F over functions
f : Ω→ Ω is called a Random Function Representation of P iff:

PrF [f(x) = y] = P (x, y)

In other words, the probability of mapping x to y is the transition probability P (x, y) in the Markov
Chain.

Example 1. Walk on the n-cycle. Define:

P (i, j) =


1/2, j = i+ 1 (mod n);

1/2, j = j − 1 (mod n);

0, otherwise;

i.e. the chain goes right with probability 1/2 and left with probability 1/2.

To obtain a random function representation of the Markov Chain consider the following functions:

f(i) = i+ 1 (mod n);

and f ′(i) = i− 1 (mod n).

Now consider the distribution F that samples f with probability 1/2, and f ′ with probability 1/2.

Remark 1. Observe that F defines a valid coupling step for every pair of states. Indeed, consider the
random pair obtained through F as follows:

(x, y)
f∼F→ (f(x), f(y)).

It is not hard to check that the random pair obtained as above is a valid coupling of one step of
the Markov Chain from states x and y. In fact, F defines a grand (or complete) coupling of the
Markov Chain in the following sense: F simultaneously couples a one-step transition of the Markov
Chain starting from all states in Ω (see Figure 1).
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Figure 1: F defines a grand coupling of the Markov Chain, since it couples a one-step transition of the
Markov Chain starting from all states in Ω.

Proposition 1. Every transition matrix P (., .) has a Random Function representation.

Proof: Let Ω = {x1, x2, . . . , xn} and define Fj,k
def
=
∑k
i=1 P (xj , xi). Fj,k is the probability that xj

transitions to a state indexed by an index less than or equal to k. We can then define a grand coupling
F as follows:

• pick r ∈ [0, 1] uniformly at random;

• ∀xj ∈ Ω, set f(xj) = xk if Fj,k−1 < r ≤ Fj,k.

Hence, PrF [j is mapped to k] = Fj,k − Fj,k−1 = P (xj , xk).
�

Notice that, given the Random Function representation of a Markov Chain, we can figure out the
Markov Chain as follows:

P (j, k) = PrF [f(j) = k] .

The converse is not necessarily true - a Markov Chain may have many Random Function representations.
For our use of such representations in coupling from the past (discussed next), it will be crucial to choose
a good one.

3 Main: Coupling from the Past

Given a Random Function Representation (RFR) of a Markov Chain, we can simulate the forward

evolution of the chain for t steps as follows: pick a sequence (fτ )
t−1
τ=0 where fτ are i.i.d samples from the

RFR F . The t-th step of the Markov Chain is then Xt = ft−1 ◦ ft−2 ◦ . . . ◦ f0(X0). Since applying a
random f to the current state defines a valid step of the Markov Chain, Xt is a valid sample from the
t-step evolution of the Markov Chain.

Now let us associate a random sample ft ∼ F to all times t = −∞, . . . ,+∞. We can then define the
quantity:

F ji = fj−1 ◦ fj−2 ◦ . . . ◦ fi+1 ◦ fi, for j ≥ i.
F t0 is then a forward simulation of the Markov Chain for t steps, in the sense that

ptx0
(x) = Pr [Xt = x|X0 = x0] = Pr[F t0(x) = x].

Similarly, F 0
−t captures the evolution of the chain from time −t to 0 (the present). We call F 0

−t simulation
from the past.
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Definition 2. The coalescence time of a Markov Chain is the following stopping time:

Tc
def
= min

{
t : F t0 is the constant function

}
.

If F t0 has become constant at time t = Tc, all states are mapped to a single state through FTc
0 . In

other words, under the grand coupling defined by F , copies of the chain starting at time 0 from all states
in Ω will meet at time Tc. Given our intuition about coupling, it is reasonable to expect that the unique
element in the range of FTc

0 (·) is distributed according to the stationary distribution π. This intuition
fails miserably, as our example (discussed shortly) shows. Quite remarkably though the intuition is true
if we consider the simulation from the past F 0

−t. This motivates the definition of the following stopping
time.

Definition 3. Similarly to the coalescence time for the forward simulation, define the stopping time for
simulation from the past as follows

T
def
= min

{
t : F 0

−t is the constant function
}
.

The main theorem of today’s lecture is the following.

Theorem 1. [Propp & Wilson ’96] Suppose that the random function representation F of a Markov

Chain guarantees that T is finite with probability 1. Then Z0
−∞

def
= F 0

−T (x) is distributed according to π.

Before we attempt a proof, let’s gain some intuition about the difference between Coupling from the
Past and the forward simulation of a Markov Chain. Consider the Markov Chain with two states α and
b shown in Figure 2. This Markov Chain has the following stationary distribution:

π(α) = 1/3;

π(b) = 2/3.

Figure 2: A simple Markov Chain with two states.

A random function representation of this chain is shown in Figure 3. Figure 4 shows a forward
simulation that results in coalescence time Tc = 3 and the constant function FTc

0 (x) = b. In particular,
it is not hard to check the following.

Claim 1. If F t0(·) is constant, then its range is {b}.

On the other hand, Figure 5 shows two simulations from the past, which result in T = 2 and T = 1
and converge to the constant functions F 0

−T (x) = α and F 0
−T (x) = b, respectively. It is not hard to

check that the probability that F 0
−T (x) = α and F 0

−T (x) = b is precisely 1/3 and 2/3 respectively.
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Figure 3: A random function representation of the Markov Chain from Figure 2. Each function is chosen
with probability 1/2.

Figure 4: An example forward simulation of the Markov Chain from Figure 2, resulting in Tc = 3.

Figure 5: Two “from the past” simulations of the Markov Chain from Figure 2. The one on the left
results in T = 2 and F 0

−T (x) = α, while the one on the right results in T = 1 and F 0
−T (x) = b

.

3.1 Forward versus From the Past simulation

The crucial difference between the forward & from the past simulation is that in the forward simulation,
were we to continue the simulation beyond time Tc, the unique element in the range of F t0(x) would
change. This is not the case for the simulation from the past, where the range remains constant even if
we simulate beyond −T . Formally:

F 0
−t(x) = F 0

−T (x), ∀t > T ;

F t0(x) & FTc
0 (x) are not necessarily the same constant functions for t > Tc.

On the other hand,

Exercise (1 pt): Show that T and Tc have the same distribution. In other words, the number of steps
we need to simulate forward until F t0 becomes a constant and the number of steps we need to simulate
backwards until F 0

−t becomes a constant have the same distribution.
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We are now ready to prove the main theorem of today’s lecture, Theorem 1.

3.2 Proof of Theorem 1

Proof: Since T is finite with probability 1, Z0
−∞ is well-defined with probability 1. Similarly define

the stopping time:

T ′ = min
{
t : F 1

−t is a constant function
}
,

and define the random variable Z1
−∞ = F 1

−T ′(x).

Claim 2. T ′ is finite with probability 1 (and hence the random variable Z1
−∞ is well-defined with prob-

ability 1). Moreover, if π0 is the distribution of Z0
−∞ and π1 is the distribution of Z1

−∞, then π0 ≡ π1.

Proof: The claim can be easily established via a coupling argument that shifts the time right by
1. Intuitively, both Z0

−∞ and Z1
−∞ are the constant value of a function obtained via from the past

simulation of the chain from some past time −t to some fixed present time 0 or 1 respectively. �

We now proceed with the proof of Theorem 1. We couple the sampling of Z0
−∞ and Z1

−∞ as follows:

• pick f0 randomly from F ;

• pick {ft}t<0 independently at random from F ;

• wait until T ′ and set Z1
−∞ = F 1

−T ′(x), where x can be chosen arbitrarily;

• wait until T and set Z0
−∞ = F 0

−T (x), where x can be chosen arbitrarily.

It is easy to see that this coupling satisfies the following:

• T ′ ≤ T . Indeed, if T has happened, then T ′ must have also happened (since if F 0
−t is a constant

function, then F 1
−t is also constant function);

• Z1
−∞ = f1(Z0

−∞).

But Claim 2 implies that Z1
−∞ and Z0

−∞ have the same distribution π1 = π0. This common distribution
must hence be a fixed point of the “equation” π′ = f(π′) for f ∼ F . The unique fixed point of this
equation is the stationary distribution π of the Markov Chain. Therefore π0 = π1 = π. �

Remark 2. Note that our proof crucially depended on the fact that extending the simulation from the
past beyond time −T ′ did not alter the distribution of F 1

−t, a property that does not hold for the forward
simulation. This property is precisely what enables the theorem for the simulation from the past.

4 An Exact Sampling Algorithm

We can now use Theorem 1 to sample exactly from the stationary distribution of a Markov Chain. The
algorithm is as follows:

t← 0
F 0
t ← i d e n t i t y func t i on

repeat
t← t− 1
sample random ft ∼ F
F 0
t ← F 0

t+1 ◦ ft
u n t i l F 0

t i s a constant func t i on
return the unique s t a t e in the range o f F 0

t (.)
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Claim 3. Suppose F guarantees that coalescence time is finite with probability 1. Then with probability
1 the procedure shown above terminates and outputs a value that is distributed according to π.

Proof: Follows immediately from Theorem 1. �

Implementation issues: The algorithm outlined above is not practical. Checking whether the func-
tion F 0

t is constant requires us to apply it to all the states in Ω, and Ω could be prohibitively large.
Nevertheless, in many settings we can check if F 0

t is constant implicitly making the algorithm efficient.

Next time: We will see how to use Theorem 1 constructively for state spaces Ω that are endowed with
a partial order. In particular, we will show that if the partial order has a unique minimum and a unique
maximum element, we can construct monotone grand couplings that allow us to perform the check by
simply checking whether the minimum and maximum elements of Ω are mapped to the same state.
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