Flow Encodings:

- Recall from last time: If we route commodity $x \rightarrow y$ through unique path Y_{xy}, and stationary distr' is uniform, then for the flow to result in polynomial mixing time we need:

 \[|\text{paths}(e)| \leq \text{poly}(n) \cdot |\mathcal{E}|, \forall e \]

paths through edge
/ \natural \text{ size of problem}

Remarks: $\Rightarrow (\ast)$ is still required in the average sense, if we use several paths for each commodity.

\Rightarrow if stationary distr' not uniform, (\ast) can be suitably reweighted.

Immediate Execution Issue: $|\mathcal{E}|$ is unknown, and is often what we are after.

\Rightarrow so need to check (\ast) implicitly.

\Rightarrow Idea: charge every element of paths(e) to some point in \mathcal{E}, each point in \mathcal{E} is charged once!

Def [Flow Encoding]: An encoding for a flow f (that only uses single path Y_{xy} for each commodity $x \rightarrow y$) is a set of functions $\{\eta_e : \text{paths}(e) \rightarrow \mathcal{D}_e\}$ such that:

1. η_e is injective, for all e

2. $\pi(x) \cdot \pi(y) \leq \mathbb{E} \cdot \pi(z) \cdot \pi(\eta_e(x,y))$, $\forall (x,y), \forall e \in \mathcal{E}$, $e \in (2,2)$

- automatically true with $\mathbb{E} = 1$, if stationary distr' is uniform
- in general, it says that the η_e's are weight-preserving up to a factor \mathbb{E} (we want this as small as possible)

Remark: Sometimes it is OK if the η_e's are not perfect injections, but we use a little "extra information" to invert them (see proof of next claim).
Claim: If there is an encoding \(f \) as above, then \(p(f) \leq b \cdot \max_{P(z,z')} \frac{1}{P(z,z')} \).

Proof: For arbitrary \(e = (z, z') \):

\[
f(e) = \sum_{(x,y) \in \text{paths}(z)} \pi(x) \pi(y) \leq \sum_{(x,y) \in \text{paths}(z)} \pi(x) \pi(e(x,y)) \leq \pi(z) = \frac{P(z)}{P(z, z')}.
\]

- we used the fact that \(e \) is an injection.
- if \(e \) becomes an injection w/ a little "extra information" this results in an additional factor in this inequality.

Example: Lazy RW on \([0,4]^n\)

Last time: Analyzed RW by splitting flow evenly on all shortest paths between \(x, y \) for all \((x,y) \); then appealed to symmetries of the cube to analyze the flow, and we used that \(|S| = 2^n \).

This time: Pretend we don't know that \(N = |S| = 2^n \), and use flow encodings.

- \(g_{xy} \): left-to-right bit fixing path (e.g. 010

\[
\text{L} \rightarrow 110 \quad \text{L} \rightarrow 100 \rightarrow 101
\]

- Clearly, \(\ell(f) = n \)

- Analyze \(p(f) \) using flow encodings:

 - Suppose \(e = (z, z') \), where \(z, z' \) are different at \(i \)

 - Let \(g_{xy} \) be for some pair \(x,y \)

 - Clearly \(x \) agrees with \(z \) in bits \(i \ldots n \) and \(y \) agrees with \(z \) in bits \(1 \ldots i-1 \)

 - So can define \(e(x,y) = x_1 x_2 \ldots x_{i-1} y_i y_{i+1} \ldots y_n \)

 - \(e \) is an injection because given \(e(x,y) \) and \(z \)

 I can invert \(x,y \).

 - Also, stationary distn is uniform, so encoding is weight-preserving with \(b = 1 \).
So x_2 is a flow encoding, so claim gives:

$$f(t) \leq \max_{P(2,2) \geq 0} \frac{1}{P(2,2)} = 2n$$

So obtained $g(t) \cdot \ell(t) \leq 2n^2$ (up to a constant factor.

Example 2: Matchings in Unweighted Undirected Graphs

[Jerrum & Sinclair '89: Approximating the Permanent, SICOMP 18, 1989]

Input:
- $G = (V, E)$: unweighted, undirected
- Parameter $\lambda \geq 1$ (essentially same technology is used for $\lambda < 1$)
- $\Omega = \{m\text{ matchings of } G\}$

Goal: Sample from Gibbs dist'n on Ω:

$$\pi(M) = \frac{1}{Z} \lambda^{\text{#edges in } M}$$

$$Z = Z(\lambda) = \sum_k m_k \lambda^k, m_k = \text{#matchings with } k \text{ edges.}$$

λ-matching polynomial.

$\#P$-complete for all $\lambda > 0$

- Statistical Physics Motivation: monomer-dimer model
 - (edges in matching: diatomic molecules)
 - (vertices: monatomic molecules)

Marker Chain:
- make it lazy
 - use 3 kinds of transitions: edge addition, edge deletion, edge exchange
 - use Metropolis Rule to make sure that stationary dist'n matches Gibbs distribution.
MC step if at state M:
- with prob. 1/2, stay at M (laziness)
- o.w. choose an edge $e = (u,v) \in E$ u.a.r.
- if u,v unmatched in M, goto $M+e$ (edge addition)
- if $e \in M$, go to $M-e$, w/ probability $1/2$ (edge deletion)
 and stay at M w/ prob 1/2
- if exactly one of u or v is matched in M, go to $M+e-e'$ (edge exchange)
 where e' is edge adjacent to u or v
- if both u,v matched, do nothing

Chain follows Metropolis rule, hence stationary distn' is Gibbs distn'.

Flow:
- Let x,y be matchings; color x red, y blue.
 - want to specify S_{xy}
 - superimpose $x,y : X+Y$

 L comprises of simple paths of alternating red, blue edges
 - simple cycles of
 - edges that are both red & blue

 e.g. $I \quad I \quad I$

 solid edge: red
 dashed edge: blue

 - fix (for our analysis) a total ordering of all simple paths & cycles that are
 subgraphs of G and designate
 a "start vertex" in all of them (the start vertex of a path should be an endpoint)

 this ordering induces an ordering on the paths and cycles that appear on $X+Y$
- define \(f_{xy} \) as follows:

 - process paths & cycles in order specified by master index:

 - to process a path: let \(e_1, e_2, \ldots, e_k \) be its edges where \(e_1 \) is adjacent to start vertex, process it via the following transitions

 i> if \(e_1 \) is red, remove it, then exchange \(e_3 \) for \(e_2 \), exchange \(e_5 \) for \(e_4 \), etc, if \(e_4 \) is blue, add \(e_4 \) in the end.

 ii> if \(e_1 \) is blue, exchange \(e_2 \) for \(e_1 \), \(e_4 \) for \(e_3 \), etc, if \(e_3 \) is blue, add it in the end.

 - to process a cycle: let \(e_1, e_2, \ldots, e_k \) be its edges, where \(e_1 \) is red edge adjacent to start vertex; process cycle as follows: remove \(e_1 \), exchange \(e_3 \) for \(e_2 \), \(e_5 \) for \(e_4 \), etc; finally add \(e_4 \).

- flow encodings: suppose transition \(t = (z, z') \) corresponds to edge exchange; we proceed to define \(n_t \) (for other types of transitions the encoding is similar)

 - suppose \(t \) involves exchanging \(e' \) for \(e \), where \(e, e' \in E \)

 - let \(x, y \in \mathcal{X} \) be matchings for which the path \(f_{xy} \) uses transition \(t = (z, z') \)

 - define

 \[
 n_t(x, y) = \begin{cases}
 x \oplus y \oplus (z \cup z') & \text{if } f_{xy} \text{ uses } t \text{ when processing a path} \\
 x \oplus y \oplus (z \cup z') \setminus \{e_1\} & \text{if } f_{xy} \text{ uses } t \text{ when processing a cycle whose first (red)edge is } e_1
 \end{cases}
 \]

 (case 1)
- Demystifying $\eta_t(x,y)$:

- Suppose transition $t = (z,z')$ is used in γ_{xy} when processing a path or cycle S' in $x+y$.

- Easy to check: z,z' differ only in e,e' (z has e and not e')
 z',z have all edges that are colored both red and blue in $x+y$ appear in z,z'.

- For all connected components of $x+y$ that precede S' in the total ordering z,z' have only kept the blue edges of these components.

- For all connected components of $x+y$ following S' in the total ordering z,z' have the red edges of these components.

- With regards to S':
 z has kept all blue edges before e, except all red edges after e.
 z' has kept all blue edges before e', and all red edges after e', except e'. (removing e' in the case that S' is a cycle is crucial for this to hold.)

- So easy to check that $\eta_t(x,y)$ is a matching.

- Now is it an injection? If we knew whether "$\setminus e,3"$ exists in definition of $\eta_t(x,y)$, we can recover $x@y$ as follows:
 $x@y = \eta_t(x,y) \oplus (z \cup z')$, for case 1.
 $x@y = (\eta_t(x,y) \cup \{e\}) \oplus (z \cup z')$, for case 2.
- and if we have $x \bowtie y$ we can obtain x and y by looking at $x \bowtie y, z, z'$

- edges in $z \setminus x \bowtie y$ are in both $x \bowtie y$
- can identify the order in which the components of $x \bowtie y$ were processed by looking at master ordering and $x \bowtie y$ (note: the c.c. that needs processing in $x \bowtie y$ are in $z \setminus x \bowtie y$)
- by looking at z, z' and the connected components of $x \bowtie y$ can identify which c.c. was being processed during the transition $t = (z, z')$, which c.c. were processed before, and which after
- then z, z', $x \bowtie y$ will identify what edges are blue and what are red in those components (see discussion in page 6).

However, cannot quite get $x \bowtie y$ by looking at $\eta_e(x, y), z, z'$

E.g.

Scenario 1:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>---</td>
<td>z</td>
<td>z'</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

vs Scenario 2:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>---</td>
<td>z</td>
<td>z'</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

in both cases: $\eta_e(x, y) = \begin{array}{c} 1 \\ \hline 1 \end{array}$

and z, z' are obviously the same.
- **Remedy**: Problem arises because cycle and path that was missing an edge of the cycle were processed in the same order (that was adjacent to start vertex).

- **Solution**: Master index specifies different start vertex for the same path but w/ opposite red/blue edge alternations, if the endpoints of the path are adjacent and the corresponding cycle's start vertex is adjacent to missing edge.

 E.g. suppose V_2 is the start vertex of the cycle $V_2, V_3, V_4, V_5,

 \[V_6 \]

 Consider the paths:

 \[V_6 \rightarrow V_3 \rightarrow V_4 \text{ and } V_6 \rightarrow V_5 \rightarrow V_4 \]

 \[\uparrow \text{ choose } V_2 \text{ as start vertex} \quad \uparrow \text{ choose } V_1 \text{ as start vertex} \]

- **Claim**: If we use the above convention for processing paths & cycles, given $N_x(x,y)$, z and z' we can always recover $x \oplus y$ and therefore x and y.

- **Proof**: Can figure out $x \oplus y$ except maybe one edge, if the current c.c. being processed during transition $t=(z,z')$ is a cycle; but looking at z, z' we can figure out the direction in which the component was being processed and using the convention above we can tell if it was a path or a cycle.
- \textbf{weight-preservation?}

- compare $|x| + |y|$ to $|z| + |n_e(x,y)|$

- not hard to see, that the latter has at most 2 fewer edges (possible edge deletion at beginning of cycle, a edge missing from current transition).

\[\Rightarrow \pi(x) \cdot \pi(y) \leq \lambda^2 \pi(z) \cdot \pi(n_e(x,y)) \quad (\star) \]

- analysis of τ_{mix}: for any transition $t = (z, z')$, $P(z, z') \geq \frac{1}{2 |E|}$ \quad (\star\star)

\[\Rightarrow p(t) \leq \lambda^2 \cdot \left(\frac{1}{2 |E|} \right)^{-1} = O(\lambda^2 \cdot |E|). \]

also clearly $\ell(t) \leq |v|$ (since $|x| \leq \frac{|v|}{2}$, $|y| \leq \frac{|v|}{2}$ and every vertex in $x \oplus y$ is processed once)

\[\Rightarrow \ell \geq \frac{1}{p(t) \cdot \ell(f)} \geq \Omega \left(\frac{1}{\lambda^3 |E| \cdot |v|} \right). \]

\[\Rightarrow \tau_{\text{x}}(x) \leq O \left(\lambda^3 |E| \cdot |v| \cdot \left(\log \pi(x)^{-1} + 2 \log |v| \right) \right). \]

- \textbf{starting x?}

start from a max-weight matching (can be found efficiently)

\[\pi(x) \geq \frac{1}{|E|} \geq \frac{1}{2 |E|} \]

\[\Rightarrow \tau_{\text{x}}^k(x) = O \left(\lambda^3 |E|^2 \cdot |v| \right). \]

\textit{exercise (1pt): Impose bound to $O(\lambda^2 |E|^2 \cdot |v|)$.}