Fundamental Thm of MC's

Let \(\phi_t(X_t) \) be a MC on a finite state space \(S \);

- \(P \) be its transition matrix where \(P \) is irreducible & periodic

Then: i) \(\exists! \pi \) s.t. \((\pi = \pi \cdot P) \land (\pi(x) > 0, \forall x \in S) \)

ii) \(\forall x \in S \) : \(P^t_x \rightarrow \pi \)

• Proof: Two parts:
 - a) \(\exists! \pi \) s.t. \(\pi = \pi \cdot P \) & \(\pi(x) > 0, \forall x \)
 - b) assuming such a \(\pi \) exists \(P^t_x \rightarrow \pi, \forall x \)

(\(\alpha + \beta \)) \Rightarrow the uniqueness of \(\pi \) in \(\alpha \)

why? suppose exist \(\pi' \) s.t. \(\pi' = \pi' \cdot P \)

\[\pi' = \sum_{x \in S} \pi'_x e_x \]

\[\pi' P^t = \sum_{x \in S} \pi'_x e_x P^t \rightarrow \pi \]

on the other hand \(\pi' P^t = \pi' \)

• Implementation: postpone \(\rightarrow \) for later, do \(\rightarrow \) now

• Def. (TV distance)

\(\mu, \eta \) probability dist'n's on \(S \); their total variation distance is

\[||\mu - \eta||_{TV} = \frac{1}{2} \sum_{x \in S} |\mu(x) - \eta(x)| \]

Lemma:

\[||\mu - \eta||_{TV} \leq \max_{A \subseteq S} |\mu(A) - \eta(A)| \]

Note: If \(X, Y \) are r.v.'s on \(S \) distributed according to \(\mu, \eta \) then \(||X - Y||_{TV} \leq ||\mu - \eta||_{TV} \).
\[\nu, \eta \text{ probability distn's over } \Omega; \text{ a distribution } w \text{ over } \Omega \times \Omega \]
called a coupling of \(\nu\) and \(\eta\) if

\[
\nu(x) = \sum_{y \in \Omega} w(x, y) \\
\eta(y) = \sum_{x \in \Omega} w(x, y)
\]

(i.e. the marginals of \(w\) w.r.t. the first resp. second coordinate are \(\nu\) and \(\eta\) respectively)

Lemma (the Coupling Lemma)

\(\nu, \eta\) probability distn's over \(\Omega\).

\(\triangleright\) for any coupling \(w\) of \(\nu, \eta\) it \((X, Y)\) distributed according to \(w\) then:

\[
Pr[X \neq Y] \geq \|\nu - \eta\|_{tv}
\]

\(\triangleright\) exists coupling s.t.

\[
Pr[X \neq Y] = \|\nu - \eta\|_{tv}.
\]

(this is called optimal coupling)

Proof of the Coupling Lemma

\(\triangleright\) \(\forall z \in \Omega: \nu(z) = Pr[X = z] = Pr[X = z, X \neq Y] + Pr[X = z, Y = z]

By symmetry:

\[
\eta(z) = \leq Pr[Y = z, X \neq Y] + \eta(z)
\]

Hence:

\[
2\|\nu - \eta\|_{tv} = \sum_{z: \nu(z) > \eta(z)} Pr[X = z, X \neq Y] + \sum_{z: \eta(z) > \nu(z)} Pr[Y = z, X \neq Y] \leq 2 \cdot Pr[X \neq Y]
\]

These events are disjoint and their union is the event \(X \neq Y\)
- Look at lower envelope (total mass below it is exactly $1 - \|\mu - \eta\|_{TV}$)
- Define coupling of μ, η as follows:
 - $\mu(x) = \mu(x), \eta(y) = \eta(y)$ for all x, w.r.t. $\min(\mu(z), \eta(z))$ set $X = Y = Z$
 - Complete the coupling in an arbitrary way

Clearly: $\Pr[X = Y] = 1 - \|\mu - \eta\|_{TV}$

- Ready to implement step 3 of the proof of the Fundamental Theorem
- Fix arbitrary $x, y \in \Omega$
- Consider two copies of the chain $(X_t)_t$ and $(Y_t)_t$ starting at x and y respectively
- Let (X_t, Y_t) be an independent coupling of the chains modified as follows:

 If at some time s $X_s = Y_s$ then $X_t = Y_t$, for all $t \geq s$ (sticky chain coupling)

- In other words, $(X_t, Y_t)_t$ is a chain on $\square \times \square$ with transition matrix:

 $$q_t((x_1, y_1), (x_2, y_2)) = \begin{cases} \Pr(x_1 \neq y_1, \eta(x_2) = \eta(y_2)), & \text{if } x_1 \neq y_1 \\ \Pr(x_1 = y_1) & \text{if } x_1 = y_1 \land y_1 = y_2, \\ 0 & \text{otherwise} \end{cases}$$

- Let T be the (random) first time that the chains meet, i.e. $T = \min\{t : X_t = Y_t\}$
- By the coupling lemma, for all t:

 $$\mathbb{E} \left[\Pr[X_t = z] - \Pr[Y_t = z] \right] \leq 2 \cdot \Pr[X_t \neq Y_t] = 2 \cdot \Pr[T > t]$$

- Hence:

 $$\|P^{(t)}_x - P^{(t)}_y\|_{TV} \xrightarrow{t \to \infty} 0, \forall x \neq y$$

- Lemma: $\|P^{(t)}_x - P^{(t)}_y\|_{TV} \leq \max_{X_2, Y_2} \|P^{(t)}_{(X_2)} - P^{(t)}_{(Y_2)}\|_{TV}$

- **Lemma:** $P^{(t)}_x \xrightarrow{t \to \infty} \Pi$ is the only place where aperiodicity is used!!
\[\pi = \sum_{y=1}^{2} \pi_y e_y, \text{ where } \sum_{y=1}^{2} \pi_y = 1, \pi_y \geq 0 \]

\[\pi = \pi \cdot p^t = \sum_{y=1}^{2} \pi_y e_y p^t = \sum_{y=1}^{2} \pi_y p_y^{(H)} \]

\[\| x^{(t)} - \pi \|_V = \| p_x^{(t)} - \sum_{y=1}^{2} \pi_y p_y^{(H)} \|_V = \| \sum_{y=1}^{2} \pi_y p_x^{(H)} - \sum_{y=1}^{2} \pi_y p_y^{(H)} \|_V \leq \sum_{y=1}^{2} \pi_y \| p_x^{(H)} - p_y^{(H)} \|_V \leq \sum_{y=1}^{2} \pi_y \cdot D^{(t)} = D^{(t)} \]
pick arbitrary x

* define \(q_x(x) = 1 \) and, for \(y \neq x \), \(q_x(y) = \text{expected } \pi \text{ visits to before coming back to } x \).

* \(\pi \propto 1 \) \(\pi \propto q_x(y) \) is stationary; i.e., the normalized vector \(q_x \) is a stationary distribution of the chain.

(proceeding to step 2 of the proof of the fundamental theorem)