Coupling From The Past (CFTP)

Goal: sample from the stationary distn of a MC exactly!

How: assume MC started at $t=-\infty$ and try to understand its value at present time by looking at "properties of recent steps of the chain."

L\rightarrow we'll try to identity such properties.

Preliminaries: Random function representation of MC

Def: Let P be an ergodic MC on Ω. A probability distribution \mathcal{P} over functions from Ω to Ω is a random function representation of P if:

\[\forall x, y \in \Omega : \mathbb{P}_{\mathcal{P}}[f(x) = y] = P(x,y). \]

Remark: Observe that \mathcal{P} defines a coupling as follows

\[(X,Y) \rightarrow (f(X), f(Y)). \]

- In fact, it is a complete coupling since it defines a step for all states in Ω simultaneously.
e.g. random walk on n-cycle: \(\Omega = \{0, 1, \ldots, n-1\} \)

\[
P(i, j) = \begin{cases}
\frac{1}{2}, & \text{if } j = (i+1) \text{ (mod } n) \\
\frac{1}{2}, & \text{if } j = (i-1) \text{ (mod } n) \\
0, & \text{otherwise}
\end{cases}
\]

Random mapping representation:

consider functions: \(f(i) = i + 1 \text{ mod } n \)

\(f'(i) = i - 1 \text{ mod } n \)

\(F \) chooses \(f \) w.p.r. \(\frac{1}{2} \)

\(f' \) w.p.r. \(\frac{1}{2} \)

Proposition: Every transition matrix \(P \) has a random mapping representation

Proof: Let \(\Omega = \{x_1, x_2, \ldots, x_n\} \) and for all \(j, k \) define \(F_{j, k} = \sum_{i=1}^{k} P(x_i, x_k) \)

- Random mapping representation:
 - pick \(r \in [0, 1] \) uniformly at random
 - define \(f \) as follows:

\[
f(x_j) = x_k \text{ if } F_{j, k-1} < r \leq F_{j, k}
\]

- Clearly:

\[
Pr[f(x_j) = x_k] = \frac{F_{j, k} - F_{j, k-1}}{1} = P(x_j, x_k)
\]

Main: Coupling from the past

- Observe that an equivalent way to describe the evolution of the MC is to choose random functions \(f_t \sim F \) i.i.d.
 - for all \(t = 0, 1, \ldots \)
 - then:

\[
X_t = f_t \circ f_{t-2} \circ \ldots \circ f_0(X_0)
\]
Suppose \((f_i)_{i=0}^\infty\) are i.i.d. samples from \(F\).

Define: \(F_i^j = f_{j-1} \circ f_{j-2} \circ \ldots \circ f_i \circ f_{i+1} \circ f_i\), for \(j > i\).

\(F_0^t\): "forwards" simulation of MC for \(t\)-steps
\(F_0^{-t}\): evolution of MC from time \(-t\) to time 0
(i.e., from the past simulation)

Def: The coalescence time \(T_c\) is

\[T_c = \min \{ t : F_0^t \text{ is a constant function} \} \]

- Since \(F_0^{T_c}\) is a constant function, i.e., in the grand coupling defined by \(F\), all paths of the MC starting at all points of \(\mathcal{X}\) have met at time \(T_c\).

- Reasonable, albeit false intuition: \(F_0^{T_c}(x)\) is distributed according to \(\pi\), for all \(x \in \mathcal{X}\).

- Remarkably, intuition is correct for the "from the past" simulation!!
Formally, define the stopping time:

\[T = \min \{ t : F_{-t}^0 \text{ is a constant function} \} . \]

Theorem [Propp & Wilson '96]: Suppose \(T \) is finite with probability 1.

Then \(F_{-\infty}^0 := F_{-T}^0 (x) \) is distributed according to \(\pi \).

Gaining Intuition: Forward vs from the past simulation.

Consider the following MC:

\[\begin{array}{c}
\text{stationary distn.} \\
\pi (a) = \frac{1}{3} \\
\pi (b) = \frac{2}{3}
\end{array} \]

Random function representation:

\[\begin{array}{c}
\begin{array}{c}
\text{w pr. } \frac{1}{2}
\end{array} \\
\begin{array}{c}
\text{w pr. } \frac{1}{2}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{example forward simulation}
\end{array} \]

\[\begin{array}{c}
t = 0 \quad t = 1 \quad t = 2 \quad t = 3 \\
\begin{array}{c}
\text{w pr. } \frac{1}{2}
\end{array} \\
\begin{array}{c}
\text{w pr. } \frac{1}{2}
\end{array}
\end{array} \]

Claim: \(F_{-T}^0 (x) = b \)

\[\begin{array}{c}
\text{examples from the past simulations:}
\end{array} \]

\[\begin{array}{c}
t = 2 \quad t = 1 \quad t = 0 \\
\begin{array}{c}
\text{w pr. } \frac{1}{2}
\end{array} \\
\begin{array}{c}
\text{w pr. } \frac{1}{2}
\end{array}
\end{array} \]

\[\begin{array}{c}
T = 2 \quad F_{-T}^0 (x) = a
\end{array} \]

\[\begin{array}{c}
T = 1 \quad F_{-T}^0 (x) = b
\end{array} \]
Crucial difference between Forward & From the past simulation.

\[F_t^0 (x) = F_{-T}^0 (x), \quad \forall \ t > T \]

while \(F_t^0(x) \) & \(F_{-T}^0(x) \) are not necessarily the same constant functions.

Claim: Show that \(T \) & \(Tc \) have the same distribution.

Proof of theorem: Since \(T \) is finite w/prob 1, \(Z_{-\infty}^0 \) is well-defined w/ probability 1. Similarly, define the stopping time:

\[T' = \min \{ t : F_{-T}^1 \text{ is a constant fnf} \} \]

and \(Z_{-\infty}' = F_{-T'}^1 (x) \).

Claim 1: If \(\pi_0 \) is the distribution of \(Z_{-\infty}^0 \) and \(\pi_1 \) is \(-1-\)

\[\pi_0 \equiv \pi_1. \]

Proof: (Shift time to the right by 1)

Both \(Z_{-\infty}^0 \) and \(Z_{-\infty}' \) is the constant value of the function obtained via from the past simulation from some past time \(-t\) to some fixed time \(0 \) or \(1 \) respectively.

Can couple the sampling of \(Z_{-\infty}^0 \) and \(Z_{-\infty}' \) by coupling \(F_{-T}^0 \) & \(F_{-T}^1 \) to choose the same \(f_t \) at all \(t < 0 \).

It follows that i. \(T' \leq T \) (since if \(F_{-T}^0 \) is constant, then \(F_{-T}^1 \) is constant)

ii. \(Z_{-\infty}' = f(Z_{-\infty}) \) (\#)

\[\text{where } f \sim F \text{ is the random function chosen at} \]
An exact Sampling Algorithm

\[
\begin{align*}
& t = 0; \ F^0_t \leftarrow \text{identity function}; \\
& \text{Repeat} \\
& \quad \text{sample random } f_t \sim F \\
& \quad F^0_{t-1} \leftarrow F^0_t \circ f_t \\
& \quad t \leftarrow t - 1 \\
& \text{until } F^0_t \text{ is a constant function.} \\
& \text{return the unique state in the range of } F^0_t(\cdot).
\end{align*}
\]

Claim: Suppose \(F \) guarantees coalescence time is finite w/prob. 1. Then the above procedure terminates w/prob. 1 & the output is distributed according to \(\pi \).

Proof: follows immediately from our theorem.

Implementation Issues: to check if \(F^0_t \) is constant in the end of each iteration need to compute the value of the function for all \(x \in \Omega \), but \(\Omega \) could be huge. However, it can be implemented efficiently in many settings where these can be done implicitly.

Next time: apply coupling from the past to monotone settings.