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Abstract

We study from an algorithmic viewpoint anonymous games [Mil96, Blo99, Blo05, Kal05]. In
these games a large population of players shares the same strategy set and, while players may
have different payoff functions, the payoff of each depends on her own choice of strategy and
the number of the other players playing each strategy (not the identity of these players). We
show that, the intractability results of [DGP09a] and [Das11] for general games notwithstanding,
approximate mixed Nash equilibria in anonymous games can be computed in polynomial time,
for any desired quality of the approximation, as long as the number of strategies is bounded
by some constant. In addition, if the payoff functions have a Lipschitz continuity property, we
show that an approximate pure Nash equilibrium exists, whose quality depends on the number
of strategies and the Lipschitz constant of the payoff functions; this equilibrium can also be
computed in polynomial time. Finally, if the game has two strategies, we establish that there
always exists an approximate Nash equilibrium in which either only a small number of players
randomize, or of those who do, they all randomize the same way. Our results make extensive use
of certain novel Central Limit-type theorems for discrete approximations of the distributions of
multinonial sums.
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1 Introduction

The concept of Nash equilibrium is paramount in Game Theory. It is not the only solution concept,
or the most sophisticated, or even the most widely accepted one, but it is the golden standard against
which all other solution concepts are measured. In his 1999 paper [Mye99], Myerson argues that
the Nash equilibrium lies at the foundations not just of Game Theory, but of all modern economic
thought. This is because the exacting brand of rationality that it exudes became the standard way
of looking at economic problems. Another reason is because Nash’s proof inspired the seminal price
equilibrium results of Arrow and Debreu [AD54]. Nash’s existence theorem is crucial in this regard
because it establishes the concept’s universality—the fact that it is guaranteed to exist in every
conceivable situation—in the absence of which no solution concept can be taken seriously.

Seen in this light, the recent result that finding a Nash equilibrium in a game is a computation-
ally intractable problem [DGP06, DGP09b, DGP09a] is quite disturbing. It suggests that, assuming
that the world of computation is the way it is broadly believed to be, the coveted universality of the
Nash equilibrium is suspect, indeed that it may be false in practice, since there are games whose
Nash equilibria, even though they exist, are inaccessible within any conceivable time scale.

Computer scientists have over the past decades learned to live with this kind of complexity.
Once a problem of interest is shown to be intractable, more modest goals are pursued: One seeks
to solve important special cases of the problem, or to solve them approximately. That is what
we accomplish in this paper: we identify a very broad and significant special class of games, the
anonymous games studied in the past (see [Mil96, Blo99, Blo05, Kal05] and the definition below),
and develop algorithms for finding approximate Nash equilibria in such games. By “approximate
Nash equilibrium” we mean a strategy profile in which each player cannot improve her lot by more
than a fixed amount denoted ε.

But applying such approaches to problems in Game Theory is rife with subtlety. For hard
optimization problems such as the traveling salesman problem, algorithms achieving some approx-
imation ε is meaningful, no matter how large ε may be—because doing better may be difficult. In
contrast, unless ε is minuscule (so small that no reasonable person would lift a finger, so to speak, to
acquire it), an approximate Nash equilibrium is not interesting; the reason is, playing best response
is always easy in games, and thus approximate Nash equilibria with significant ε lack stability—that
is to say, they are no equilibria at all. Consequently, approximations of the Nash equilibrium are of
interest only if the approximation gap ε can be made arbitrarily small. An efficient approximation
algorithm that can be made to work for arbitrarily small ε is called a polynomial-time approxima-
tion scheme or PTAS for short (see Section 4 for the formal definition). Whether there is a PTAS
for finding Nash equilbria is the central open problem in this area. A positive answer would go a
long way towards moderating the negative implications of the complexity result [DGP06]. Here we
do not settle this important question, but we do develop a PTAS for a large and important class
of games, namely the anonymous games.

A second difficulty in applying complexity concepts to games has to do with input size and
representation. Games are useful modeling tools in Economics, and, especially, in Computer Science
in the context of the Internet, often only to the extent that they may involve large numbers of
players. However, multi-player games are a challenge to deal with computationally. An algorithm
works on an input containing all relevant information about the problem being solved. To describe
an n-player game, in which each player has ξ ≥ 2 strategies, takes nξn numbers—an astronomical
amount of information when n is reasonably large. Consequently, generic multiplayer games are of
no computational interest; one must focus on broad and well-motivated classes of games that can
be represented succinctly—that is, by an amount of information polynomial in n, the number of
players. Indeed, over the past decade several classes of such “succinct games” have been identified.
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One such class are graphical or network games, in which players are nodes in a sparsely connected
network, and the payoff of each player depends on the actions only of its neighbors in the network.
However, approximate Nash equilibria in network games seem very hard to find [Das11].

Anonymous games comprise a second interesting class of games which can be represented suc-
cinctly. In anonymous games all players have the same action set {1, 2, . . . , ξ}, and our working
hypothesis is that ξ is finite, often two. In an anonymous game with n players and ξ strategies,
the payoff of a player depends only on two things: (a) the strategy played by the player; and (b)
the number of other players who play each of the strategies. Imagine, for example, a population
of commuters living in a suburb and deciding each morning between driving and taking the train.
Each player has an individual way of evaluating highway congestion and crowded train cars, but
only the numbers of other players matter in this evaluation, not their identities. An anonymous
game can be represented by fewer than ξnξ numbers, which, for fixed ξ, is a polynomial in n; com-
pare with nξn for general games. Notice, incidentally, that anonymous games generalize the more
familiar class of symmetric games (i.e. games invariant under all player permutations) for which it
had been known for some time that Nash equilibria can be computed exactly in polynomial time
when ξ is a constant [PR05].

In this paper we prove several results regarding approximate Nash equilibria in anonymous
games:

1. We develop a PTAS for finding approximate mixed Nash equilibria in any anonymous game,
as long as the number ξ of strategies is constant (Theorem 2). The running time is polynomial
in the game description but exponential in the approximation 1/ε and the number of pure
strategies ξ. Our algorithm is derived by a novel and rather comprehensive methodology that
may be of interest in its own right: Any mixed strategy profile generates a distribution over
the set of partitions of the players to strategies. We establish that, essentially, if two mixed
strategy profiles generate distributions that are close (in one particular metric over distribu-
tions called variational distance), and one of them is a Nash equilibrium, then the other is
an approximate Nash equilibrium (Lemma 4). We then invoke a theorem from probability
theory (Theorem 3) stating that any mixed strategy profile can be discretized, in the sense
that the probabilities are multiples of a given fraction 1

k , so that the generated distribution
does not move much in variational distance. The conclusion is that an approximate Nash
equilibrium can be found by exhaustively enumerating all strategy profiles with probabilities
that are multiples of 1

k . These are exponentially many, but using maximum flow techniques
they can be searched over in polynomial time.

2. For the case of anonymous games with two strategies, we show that there is always an approx-
imate Nash equilibrium with a dichotomous structure: Either very few players randomize,
or of those who do they all randomize the same way (Theorem 7). Our structural result
is reminiscent of Nash’s theorem that symmetric games always have a Nash equilibrium
where all players play the same mixed strategy [Nas51]. It is surprising that a similar result
to Nash’s can be proven for approximate Nash equilibria in anonymous games, despite the
weaker symmetry structure present in these games. Again, such an equilibrium can be found
in polynomial time using maximum flow techniques. Indeed, exploiting the structural result
we show that we can significantly improve the running time of our PTAS (Theorem 6).

3. Both algorithms discussed so far involve exhaustive enumeration. As a result, they are quite
robust: We argue that they can be generalized to more complex situations, in which, for
example, players are divided into types, and utilities depend on the number of players of each
type using each strategy.
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4. At the same time, these algorithms are oblivious. They enumerate over a set of (permuted)
candidate equilibria with the property that, for every anonymous game, there exists an el-
ement in this set that, appropriately permuted, is an ε-Nash equilibrium of the game. The
algorithms are called “oblivious” because they look at the input not in order to guide the
search for an approximate Nash equilibrium, but only to check whether the enumerated pro-
files are approximate equilibria. Nevertheless obliviousness should come at a cost. Indeed, we
show that any oblivious algorithm must pay exponential in 1/ε running time (Theorem 8).

5. In view of this lower bound for oblivious algorithms we devise a non-oblivious algorithm for 2-
strategy anonymous games whose running time is polynomial in the game-description times
a factor of (1/ε)O(log2 1/ε) (Theorem 10). The algorithm is based on a strong probabilistic
theorem for sums of independent indicators (Theorem 9) and it enumerates over a set of
moments of mixed strategy profiles rather than of mixed strategy profiles.

6. Finally, we address the question of whether pure approximate Nash equilibria exist in anony-
mous games, inspired by positive answers for special kinds of anonymous games [Mil96]. In
a large anonymous game, it is natural to assume that the payoff functions have some kind of
continuity property, namely that the payoffs don’t jump by more than a small parameter λ
(the Lipschitz constant of the game) if only one other player changes their strategy. We point
out through a fixed point argument that such games always have an approximate pure Nash
equilibrium with ε = O(λξ) (Theorem 1 in Section 3), and this equilibrium can be found
efficiently. Since it might be expected that λ is small, about 1

n (we assume that payoffs have
been normalized to lie in [0, 1]), this may be considered a reasonable approximation.

Related Work

For the long history of algorithms for computing exact and approximate Nash equilibria in general
games see the survey in [MM96], and see [DGP09b] for the recently established intractability of the
problem. An approximation scheme for Nash equilibria in general games is provided in [LMM03].
For 2 player games, or a constant (non-scaling) number of players, their algorithm is sub-exponential
(but not polynomial), and is based on an existence theorem establishing, through sampling the Nash
equilibrium, that there always exists an approximate Nash equilibrium with small (logarithmic)
support, i.e. in which the players’ mixed strategies are distributions over a logarithmic size subset
of the pure strategies. Their algorithm then enumerates all such strategy profiles until it finds an
approximate Nash equilibrium, guaranteed to exist by the existence theorem. So their algorithm is
oblivious. In comparison to [LMM03], our approximation schemes are computationally efficient, and
apply to different games: anonymous, with a large (scaling) number of players, and a constant (non-
scaling) number of strategies. Moreover, they perform a different kind of enumeration, based on
probabilistic cover constructions (Theorems 3, 5, and 9) and exploiting the symmetry of anonymous
games, and they are not necessarily oblivious (Theorem 10).

Anonymous games have been studied quite extensively in the Economics literature, see [Mil96,
Blo99, Blo05, Kal05]. One very special genre of anonymous games are the so-called congestion
games, first considered by Rosenthal [Ros73], and more recently studied extensively from the points
of view of the quality of the Nash equilibria (see the survey [Rou05]) and the complexity of com-
puting [FPT04, ARV08], or approximating them [CS11, CFGS12].

A weaker form of Theorem 1, Corollary 1, and Theorem 6 of this paper were given in [DP07].
Theorem 2 was given in [DP08], Theorems 6 and 7 in [Das08a], and Theorems 8 and 10 in [DP09].
The probabilistic approximation theorems employed in our proofs are, as indicated when they
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are stated, from [DP08], [Das08a] and [DP09]. See also [DP13] for a survey of these probabilistic
theorems, with minor improvements (which can also be used to slightly improve our running times).

2 Notation

Games. An anonymous game is a triple G = (n, ξ, {ui`}i∈[n],`∈[ξ]) where [n] = {1, . . . , n}, n ≥ 2, is
the set of players, [ξ] = {1, . . . , ξ}, ξ ≥ 2, a common set of strategies available to all players, and ui`
the payoff (or utility) function of player i when she plays strategy `. This maps the set of partitions

Πξ
n−1 = {(x1, . . . , xξ) | x` ∈ N0 for all ` ∈ [ξ] ∧

∑ξ
`=1 x` = n− 1} to the interval [0, 1]. That is, it

is assumed that the payoff of each player depends on her own strategy and only the number of the
other players choosing each of the ξ strategies. Restricting the payoffs to [0, 1] is, of course, no loss
of generality. But, once this has been assumed, additive approximations, described next, become
meaningful. Games whose payoffs lie in [0, 1] are sometimes called normalized.

Our working assumptions are that n is large and ξ is fixed. Hence, anonymous games are
succinct games in the sense that their representation requires specifying at most ξnξ (i.e., a fixed
polynomial in the number of players) numbers, as opposed to the nξn (i.e. exponential in the
number of players) numbers required for general games of n players and ξ strategies. Arguably,
succinct games are the only multiplayer games that are computationally meaningful; see [PR05] for
an extensive discussion of this point.

An anonymous game will be called λ-Lipschitz for some real λ > 0 iff, for all i, `, |ui`(x)−ui`(y)| ≤
λ · ||x − y||1 for all x, y ∈ Πξ

n−1, where ||x − y||1 is the `1 distance between x and y as vectors in
Rξ. We will generally not require our anonymous games to be λ-Lipschitz except for our results of
Section 3 on pure Nash equilibria.

Finally, we denote by ∆ξ
n−1 the convex hull of the set Πξ

n−1. That is, ∆ξ
n−1 = {(x1, . . . , xξ) | x` ≥

0 for all ` ∈ [ξ] ∧
∑ξ

`=1 x` = n − 1}. We also use the shorthand ∆ξ for the set ∆ξ
1 of distributions

over [ξ]. A mixed strategy is an element of ∆ξ.

Approximate Equilibria. A pure strategy profile is a mapping S from [n] to [ξ]. A pure strategy
profile S is an ε-approximate pure Nash equilibrium for some ε ≥ 0 iff

uiS(i)(x[S, i]) + ε ≥ ui`(x[S, i]), for all i ∈ [n] and ` ∈ [ξ],

where x[S, i] ∈ Πξ
n−1 is the partition (x1, . . . , xξ) where xt is the number of players j ∈ [n] − {i}

such that S(j) = t.
Similarly a mixed strategy profile is a mapping δ from [n] to ∆ξ, and we denote by δi the mixed

strategy of player i in this profile, and by δ−i the collection of all mixed strategies but i’s in δ. A
mixed strategy profile δ is an ε-approximate mixed Nash equilibrium for some ε ≥ 0 iff

Ex∼δ−i,`∼δiu
i
`(x) + ε ≥ Ex∼δ−iu

i
t(x), for all i ∈ [n] and t ∈ [ξ],

where for the purposes of the above expectations ` is drawn from [ξ] according to δi and x is drawn

from Πξ
n−1 by drawing n− 1 random samples from [ξ] independently according to the distributions

δj , j 6= i, and forming the induced partition.
A stronger notion of approximation is that of an ε-Nash equilibrium, or ε-well-supported Nash

equilibrium. This is a mixed strategy profile δ satisfying the following condition.

For all i ∈ [n] and `, `′ ∈ [ξ]: Ex∼δ−iu
i
`(x) > Ex∼δ−iu

i
`′(x) + ε =⇒ δi(`

′) = 0,

where, as above, for the purposes of the expectations x is drawn from Πξ
n−1 by drawing n−1 random

samples from [ξ] independently according to the distributions δj , j 6= i, and forming the induced
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partition. It is easy to verify that an ε-Nash equilibrium is also an ε-approximate mixed Nash
equilibrium but the converse need not be true. In this paper we focus on ε-Nash equilibria. Hence
our algorithms for ε-Nash equilibria readily compute also ε-approximate mixed Nash equilibria.

Dynamic Programming. It is worth noting that given a mixed strategy profile δ it is not
immediate how to compute a player’s expected payoff computationally efficiently, since there are
exponentially many pure strategy profiles contributing to the expectation. However, we can do
this computation efficiently using dynamic programming. We explain the idea for ξ = 2, but the
computation is similar for general ξ. Suppose that, given δ, we want to compute player n’s expected
payoff from strategy 1. The expected payoff can be written as:

un1 ((0, n− 1)) · Pr[X = 0] + un1 ((1, n− 2)) · Pr[X = 1] + . . .+ un1 ((n− 1, 0)) · Pr[X = n− 1],

where X is the random variable representing how many of the players 1, . . . , n− 1 play strategy 1
under mixed strategy profile δ−n.

Hence, it suffices to compute the probabilities Pr[X = 0], . . . ,Pr[X = n− 1] efficiently. Notice
that X can be written as the sum X =

∑n−1
i=1 Xi, where Xi is a Bernoulli random variable indicating

whether player i plays strategy 1, which happens with probability δi(1) independently of the values
of the other random variables. To compute the probabilities Pr[X = 0], . . . ,Pr[X = n−1] efficiently,
we fill the entries of a (n − 1) × n table T (i, `), where i ∈ {1, . . . , n − 1} and ` ∈ {0, . . . , n − 1}
as follows. Entry T (i, `) is supposed to contain the value Pr[

∑
j≤iXj = `]. Thus we first set

T (1, 1) = δ1(1), T (1, 0) = δ1(2) and T (i, `) = 0, for all i and ` > i. To complete the rest of
the table we work bottom up, filling layer T (2, ·) first, then layer T (3, ·), etc. To fill layer T (i, ·),
i ∈ {2, . . . , n− 1}, we use the formula:

T (i, `) =


δi(1) · T (i− 1, `− 1) + δi(2) · T (i− 1, `), if 0 < ` < i;

δi(1) · T (i− 1, i− 1), if ` = i;

δi(2) · T (i− 1, 0), if ` = 0;

0, if ` > i.

Clearly, filling in table T (·, ·) as prescribed above takes polynomial time. Once this is complete,
we can read off the values Pr[X = 0], . . . ,Pr[X = n − 1] by looking at the last layer of the table.
Namely, Pr[X = `] ≡ T (n− 1, `), for all ` ∈ {0, . . . , n− 1}.
Probability Tools. The mixed strategy δi of player i ∈ [n] defines a random unit vector Xi
ranging in {e1, . . . , eξ}, where e` is the unit vector along dimension ` of Rξ. We let Xi take values
according to the measure Pr[Xi = e`] = δi(`), for all `. With this convention, if (X1, . . . ,Xn) is a
mixed strategy profile, then the expected payoff of player i ∈ [n] for using pure strategy ` ∈ [ξ] is
just

Eui`

∑
j 6=i
Xj

 ,

where for the purposes of the expectation the variables X1, . . . ,Xn are taken to be independent.
We will also define the total variation distance between two distributions P and Q over a finite

set A as follows.

||P−Q||TV =
1

2

∑
α∈A
|P(α)−Q(α)|.

Similarly, if X and Y are two random variables ranging over a finite set, their total variation
distance, denoted

||X − Y ||TV,
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is defined to be the total variation distance between their distributions.
We will use the following simple lemma.

Lemma 1. Let X1, . . . ,Xn be mutually independent random vectors, and Y1, . . . ,Yn also be mutually
independent random vectors. Then∥∥∥∥∥

n∑
i=1

Xi −
n∑
i=1

Yi

∥∥∥∥∥
TV

≤
n∑
i=1

‖Xi − Yi‖TV.

Proof of Lemma 1: The coupling lemma says that for any coupling of X1, . . . ,Xn,Y1, . . . ,Yn:∥∥∥∥∥
n∑
i=1

Xi −
n∑
i=1

Yi

∥∥∥∥∥
TV

≤ Pr

[
n∑
i=1

Xi 6=
n∑
i=1

Yi

]

≤
n∑
i=1

Pr[Xi 6= Yi]. (1)

We proceed to fix a specific coupling. For all i, the optimal coupling theorem says that there exists
a coupling of Xi and Yi such that Pr[Xi 6= Yi] = ‖Xi − Yi‖TV. Using these individual couplings for
each i we define a grand coupling of X1, . . . ,Xn,Y1, . . . ,Yn such that Pr[Xi 6= Yi] = ‖Xi − Yi‖TV,
for all i. This coupling is faithful because X1, . . . ,Xn are mutually independent and Y1, . . . ,Yn are
also mutually independent. Under this coupling Eq (1) implies:∥∥∥∥∥

n∑
i=1

Xi −
n∑
i=1

Yi

∥∥∥∥∥
TV

≤
n∑
i=1

Pr[Xi 6= Yi] ≡
n∑
i=1

‖Xi − Yi‖TV. (2)

2

Discussion. Range of Utility Functions: Throughout this paper we restrict our attention to
normalized anonymous games, i.e. anonymous games whose payoffs lie in [0, 1]. We noted above
that this restriction is without loss of generality and is made so that the approximation size is
meaningful. All our algorithms can be readily generalized to anonymous games whose payoffs lie in
some general [umin, umax] by applying an affine transformation to the utility functions of the latter
to bring their range into [0, 1]. Using the simple transformation that subtracts umin and divides
every payoff by 1

umax−umin
and we obtain the following:

Proposition 1. Any game G whose payoffs lie in [umin, umax] can be affinely transformed in poly-
nomial time into a game G′ with the same players whose payoffs lie in [0, 1] and such that any
ε-Nash equilibrium of G′ is a ε · (umax − umin)-Nash equilibrium of G.

Types: Anonymous games can be generalized to typed anonymous games in the obvious way.
In a typed anonymous game, every player i ∈ [n] has a type ti from a set of types T , and each
player’s payoff depends on (a) his/her own strategy; and (b) the number of other players of each
type playing each strategy; but it is not assumed that the players of the same type have the same
payoff function. Clearly anonymous games are a special case of typed anonymous games where the
set of types contains a single element. All algorithms presented in this paper can be extended to
typed anonymous games.

Order Notation: Let f(x) and g(x) be two positive functions defined on some infinite subset of
R+. One writes f(x) = O(g(x)) if and only if, for sufficiently large values of x, f(x) is at most a
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constant times g(x). That is, f(x) = O(g(x)) if and only if there exist positive real numbers M
and x0 such that

f(x) ≤ Mg(x), for all x > x0.

Similarly, we write f(x) = Ω(g(x)) if and only if there exist positive reals M and x0 such that

f(x) ≥ Mg(x), for all x > x0.

Finally, we write f(x) = Θ(g(x)) if and only if f(x) = O(g(x)) and g(x) = O(f(x)).
We are casual in our use of order notation throughout the paper in that we do not specify which

(among the possibly several) variables in our bounds are assumed to scale (and how they scale),
as long as it is clear from context. Whenever we write O(f(n)) or Ω(f(n)) in some bound where
n ranges over the integers, we mean that there exists a constant c > 0 such that the bound holds
true for sufficiently large n if we replace the O(f(n)) or Ω(f(n)) in the bound by c · f(n). On the
other hand, whenever we write O(f(1/ε)) or Ω(f(1/ε)) in some bound where ε ranges over (0, 1],
we mean that there exists a constant c > 0 such that the bound holds true for sufficiently small ε
if we replace the O(f(1/ε)) or Ω(f(1/ε)) in the bound with c · f(1/ε).

3 Approximation in Pure Strategies

We show that, if an anonymous game is Lipschitz, there always exists an approximate pure Nash
equilibrium whose approximation quality depends on the number of strategies and the Lipschitz
constant of the game, as described by the following theorem. Our result recalls Milchtaich’s ex-
istence proof of a pure Nash equilibrium in a special case of anonymous games called congestion
games with player-specific payoff functions [Mil96], even though our proof is different and more
involved.

Theorem 1. Every λ-Lipschitz anonymous game with ξ strategies has an ε-approximate pure Nash
equilibrium, where ε = O(λξ). In particular, the number of players does not affect the approximation
guarantee.

Proof of Theorem 1: We outline the proof first. There are three steps. In the first, we ignore the
nth player and construct a “best response” map φ from Πξ

n−1 to itself. φ maps a partition x into
a partition y that arises if the first n− 1 players best respond to x. By interpolating φ we obtain
an “interpolated best response map” φ̂, mapping ∆ξ

n−1 to itself. This map is continuous, and thus
has a fixed point. If we were dealing with a continuum of players, we would already be done, as
we would have a partition of players into strategies that is a best response to itself. But we have
atomic players, and the fixed point will in general not have integral coordinates. Moreover, we
have excluded player n from the definition of φ̂. In the second step, we use the Shapley-Folkman
lemma [Sta69] to “round” the fixed point of φ̂ into a pure strategy profile that is an approximate
best response to itself, utilizing the Lipschitz condition. Finally, we show that the last player can
be incorporated in this picture without affecting the utilities much further, again by Lipschitzness.

We proceed with the details of our argument. We start by defining a function φ : Πξ
n−1 → Πξ

n−1

as follows: For any x ∈ Πξ
n−1, φ(x) is defined to be (y1, . . . , yξ) ∈ Πξ

n−1 such that, for all i ∈ [ξ],
yi is the number of players p ∈ {1, . . . , n − 1} (notice that player n is excluded) such that, for all
j < i, upi [x] > upj [x], and, for all j > i, upi [x] ≥ upj [x]. In other words, φ(x) is the partition of n− 1
into [ξ] induced if players [n− 1] best respond to x, where ties are broken lexicographically.

We next interpolate φ to obtain a continuous function φ̂ : ∆ξ
n−1 → ∆ξ

n−1. To do so, we first

choose a simplicization of ∆ξ
n−1 whose vertices are the points of Πξ

n−1. There are several ways
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to obtain such a simplicization—we use the method described in [LT82] so that all simplices in
the simplicization have L1 diameter O(ξ). Next, we define the interpolated function φ̂ in terms

of the simplicization as follows. For all x ∈ ∆ξ
n−1, find the simplex of the simplicization where x

belongs; if x belongs to multiple simplices pick an arbitrary one. Let x1, . . . , xξ be the vertices of
that simplex, and suppose that x =

∑
j∈[ξ] αjx

j , for some α1, . . . , αξ ≥ 0 such that
∑

j αj = 1. We

define φ̂ at x to be

φ̂(x) ≡
∑
j∈[ξ]

αjφ(xj).

Notice that φ̂ (as defined above) is continuous. Since ∆ξ
n−1 is convex and compact, Brouwer’s

fixed point theorem implies that φ̂ has a fixed point x∗ = φ̂(x∗). Suppose that x∗ belongs to a
simplex of our simplicization with vertices x1, . . . , xξ. Then it must be that

x∗ =

ξ∑
j=1

γjx
j ,

for some γ1, . . . , γξ ≥ 0 and
∑

j γj = 1, and because x∗ is fixed it must be that:

x∗ =

ξ∑
j=1

γjφ(xj). (3)

The term φ(xj) in Equation (3) is induced by some pure strategy profile where each of the
first n − 1 players chooses a strategy that is her best response to xj (with the aforementioned
tie-breaking rule). In this strategy profile all first n − 1 players would be happy if the aggregate
behavior of the other players were xj . A useful observation is this: Suppose that a player is playing
her best response to xj but is facing some other x ∈ Πξ

n−1 instead. Then, because the game is
λ-Lipschitz the regret experienced by the player for not playing her best response to x is at most
2λ||xj − x||1. Inspired by this observation, we show that there exists some x ∈ Πξ

n−1 such that:
(i) ||x− x∗||1 = O(ξ); and (ii) x is induced by a pure strategy profile where each of the first n− 1
players chooses a strategy that is her best response to one of x1, . . . , xξ. This is almost what we
need to get the desired approximate pure Nash equilibrium, as we will see next.

But let us first establish the existence of some x satisfying (i) and (ii). For all i ∈ [n− 1], let

Ti = {e` | strategy ` is a best response of player i to xj for some j ∈ {1 . . . , ξ}} ⊆ Πξ
1,

where e` is the unit vector along dimension ` of Rξ. I.e. Ti is the set of pure best responses of
player i to at least one of x1, . . . , xξ. We establish the following.

Lemma 2. There exists some x ∈ Πξ
n−1 such that: (i) ||x − x∗||1 ≤ 2ξ; and (ii) x =

∑
i∈[n−1] vi,

where vi ∈ Ti for all i ∈ [n− 1].

Proof of Lemma 2: Equation (3) implies that x∗ is in the convex hull of the Minkowski sum
T1 + T2 + · · ·+ Tn−1. (Indeed, for all j, φ(xj) belongs to the Minkowski sum.) It follows from the
Shapley-Folkman lemma that there exists some P ⊂ [n− 1] with |P| = ξ such that

x∗ = z + w, where z ∈
∑
i∈P

Conv(Ti) and w ∈
∑

i∈[n−1]\P

Ti,

where ‘
∑

’ represents Minkowski addition, and Conv(·) is taking the convex hull of its argument.
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Let then x = z′ +w, where z′ is an arbitrary point in
∑

i∈P Ti. We notice that ||z − z′||1 ≤ 2ξ.
Hence, ||x−x∗||1 ≤ 2ξ. Moreover, by construction x ∈

∑
i Ti, concluding the proof of the lemma.2

Let v1, . . . , vn−1 and x =
∑

i∈[n−1] vi be as in Lemma 2. Also, let vn ∈ Πξ
1 be player n’s best

response to x. We argue that the pure strategy profile P̃ defined by the vi’s is a O(λξ)-approximate
pure Nash equilibrium. Indeed, notice first that ||x − xj ||1 = O(ξ) for all j, since ||x − x∗||1 ≤ 2ξ
and x∗ is in the simplex of our simplicization with vertices x1, . . . , xξ (and the simplices in our
simplicization have L1 diameter O(ξ)). Now, fix some player i ∈ [n − 1]. Player i plays a best
response to one of x1, x2, . . . , xξ, but is facing instead x− vi + vn. Given that x− vi + vn is within
O(ξ) from all of x1, x2, . . . , xξ and our earlier observation, it follows that vi is an O(λξ)-approximate
best response to x− vi + vn. Finally, player n is playing a best response to x and he is facing x so
he is happy. This concludes the proof.2

Remark 1. Theorem 1 appeared first in [DP07] with a weaker approximation guarantee of O(λξ2).
The approach was essentially the same as the proof given above, except that the analysis was wasteful
by an extra factor of ξ. Indeed it was conjectured in [DP07] that an approximation of O(λξ) should
be possible. This was recently proved by Azrieli and Shmaya [AS13] with a different construction
that invoked the Shapley-Folkman lemma. Inspired by their use of that lemma, here we notice that
the analysis in [DP07] can be tightened to recover the approximation guarantee of O(λξ). The two
proofs are otherwise quite different.

The immediate implication of Theorem 1 is the following algorithmic result.

Corollary 1. In a λ-Lipschitz anonymous game with ξ strategies and n players an ε-approximate
pure Nash equilibrium, where ε = O(λξ) as in Theorem 1, can be found in total number of bit
operations of Uξnξ × (n + ξ)poly(log n), where U is the number of bits required to represent a
payoff value of the game, i.e. in total number of bit operations that is (n+ ξ)poly(logn) times the
description complexity of the game.

Proof of Corollary 1: Theorem 1 guarantees that some pure strategy profile S is an ε-approximate
pure Nash equilibrium. However we cannot afford to exhaustively search over pure strategy profiles
as there are too many of them. We search instead over partitions in Πξ

n. For each partition x =
(x1, . . . , xξ) ∈ Πξ

n we need to answer the following algorithmic question: Is there an ε-approximate
pure Nash equilibrium S such that the number of players playing strategy i in S is exactly xi for all i?
We answer this question by computing a maximum flow on a related flow network. The nodes of
the network are the elements of the set {s}∪{t}∪[n]∪[ξ], where s is the source node of the network,
t is the sink node of the network, there is a directed edge from s to every node in [n] of capacity
1, an edge from every node i ∈ [ξ] to t of capacity xi, and an edge of capacity 1 from p ∈ [n] to
i ∈ [ξ] iff playing i is an ε-pure best response for player p against x− ei, where ei is the unit vector
along dimension i of Rξ. If the maximum flow in this network is n then the answer to the above
question is ‘yes’, and any integral maximum flow gives an assignment of players p to strategies i
that comprises an ε-approximate pure Nash equilibrium.

The total number of bit operations required is nξ−1 × Unξ(n + ξ)poly(logn), as we need to

perform at most |Πξ
n| ≤ nξ−1 max-flow computations on graphs of n+ ξ + 2 vertices, O(nξ) edges,

and capacities of dlog ne bits. We use Orlin’s algorithm [Orl13] for max-flow computations.2

4 Approximation in Mixed Strategies

The approximation in pure strategies achieved in Section 3 is interesting only if the game is λ-
Lipschitz for a reasonably small constant λ. In games with significant discontinuities in the utilities,
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one needs to resort to mixed strategies. Our main algorithmic result is a polynomial-time approx-
imation scheme (PTAS) for anonymous games with a large number n of players and a constant
number ξ of strategies. More precisely, we obtain a family of algorithms (Aε)ε, indexed by the
approximation parameter ε, such that for all ε > 0 Algorithm Aε computes an ε-Nash equilibrium
of a given anonymous game of n players and ξ strategies in time ng(ξ,1/ε), where g is some function
of ξ and ε, which does not depend on n. The algorithm is called a polynomial-time approxima-
tion scheme, since whenever ξ and ε are absolute constants the running time of the algorithm is
polynomial in the description of the game.

Theorem 2. There is a PTAS for the mixed Nash equilibrium problem for normalized anonymous
games with a constant number of strategies. More precisely, there exists some function g such that,
for all ε ≥ 0, an ε-Nash equilibrium of a normalized anonymous game of n players and ξ strategies
can be computed in time ng(ξ,1/ε) · U , where U is the number of bits required to represent a payoff
value of the game.

We provide the proof of Theorem 2 in Section 4.2, after presenting the main technical lemma needed
for the proof in Section 4.1. Before proceeding let us give some intuition. The basic idea of our
algorithm is extremely simple and intuitive: Instead of performing the search for an approximate
mixed Nash equilibrium over the full set of mixed strategy profiles, we restrict our attention to
mixed strategies assigning to each strategy in their support probability mass which is an integer
multiple of 1

z , where z is a large enough natural number. We call this process discretization.
Searching the space of discretized mixed strategy profiles can be done efficiently. Indeed, there are
less than (z + 1)ξ−1 discretized mixed strategies available to each player, so at most n(z+1)ξ−1−1

partitions of the number n of players into these discretized mixed strategies. And checking if there
is an approximate Nash equilibrium consistent with such a partition can be done efficiently using a
max-flow argument similar to the one used in the proof of Corollary 1 (see full details in the proof
of Theorem 2 in Section 4.2).

The challenge, however, lies somewhere else: We need to establish that restricting our search
to some moderate z (independent of n) suffices. We do this in two steps. The first is to relate the
approximation performance of two mixed strategy profiles to some measure of their probabilistic
distance. This is achieved by the following lemma.

Lemma 3. Let (X1, . . . ,Xn) and (Y1, . . . ,Yn) be two mixed strategy profiles of a normalized anony-
mous game of n players and ξ strategies. Then for all i ∈ [n] and ` ∈ [ξ]:∣∣∣∣∣∣Eui`

∑
j 6=i
Xj

− Eui`

∑
j 6=i
Yj

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j 6=i
Xj −

∑
j 6=i
Yj

∣∣∣∣∣∣
∣∣∣∣∣∣
TV

. (4)

Proof of Lemma 3: Observe that

Eui`

∑
j 6=i
Xj

 =
∑

x∈Πξn−1

ui`(x) Pr

∑
j 6=i
Xj = x

 ,
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and a similar equality holds for Eui`
(∑

j 6=i Yj
)

. Hence, the LHS of (4) equals∣∣∣∣∣∣∣
∑

x∈Πξn−1

ui`(x)

Pr

∑
j 6=i
Xj = x

− Pr

∑
j 6=i
Yj = x


∣∣∣∣∣∣∣

≤
∑

x∈Πξn−1

|ui`(x)| ·

∣∣∣∣∣∣Pr

∑
j 6=i
Xj = x

− Pr

∑
j 6=i
Yj = x

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j 6=i
Xj −

∑
j 6=i
Yj

∣∣∣∣∣∣
∣∣∣∣∣∣
TV

,

where in the last line we used that |ui`(x)| ≤ 1 and the definition of total variation distance. 2

The immediate corollary of Lemma 3 is the following.

Lemma 4. Suppose (X1, . . . ,Xn) is a Nash equilibrium of a normalized anonymous game of n
players and ξ strategies and (Y1, . . . ,Yn) a mixed strategy profile satisfying:

1. the support of Yi is a subset of the support of Xi, for all i; and

2. for some ε ≥ 0,
∣∣∣∣∣∣∑j 6=iXj −

∑
j 6=i Yj

∣∣∣∣∣∣
TV
≤ ε, for all i.

Then (Y1, . . . ,Yn) is a 4ε-Nash equilibrium.

Proof of Lemma 4: Fix some player i. We want to show that every strategy ` in the support of Yi
is a 4ε-approximate best response to (Yj)j 6=i. Since the support of Yi is a subset of the support of
Xi and (X1, . . . ,Xn) is a Nash equilibrium we know that ` is a best response to (Xj)j 6=i. Hence, for
all `′, we have:

Eui`

∑
j 6=i
Xj

 ≥ Eui`′

∑
j 6=i
Xj

 .

But Lemma 3 implies

Eui`

∑
j 6=i
Yj

 ≥ Eui`

∑
j 6=i
Xj

− 2ε; and

Eui`′

∑
j 6=i
Xj

 ≥ Eui`′

∑
j 6=i
Yj

− 2ε.

Putting the above together, we get the expected utility that i gets for playing ` against (Yj)j 6=i is
within an additive 4ε from the expected utility obtained by playing `′. Since `′ was arbitrary, this
concludes the proof. 2

Given Lemmas 3 and 4, the route to arguing that a moderate discretization size z, independent
of n, suffices for our search for ε-Nash equilibria, is establishing this: Let e` be the unit vector
along dimension ` of the ξ-dimensional Euclidean space. Then the distribution of the sum of n
independent random unit vectors with values ranging over {e1, . . . , eξ} can be approximated by the
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distribution of the sum of another set of independent unit vectors whose probabilities of obtaining
each value are multiples of 1

z , and so that the total variation distance of the two distributions
depends only on z (in fact, a decreasing function of z) and the dimension ξ, but not on the number
n of vectors. The intention is for the original random vectors to correspond to the strategies of
the players in an (unknown) Nash equilibrium, and the discretized ones to a discretized mixed
strategy profile. In the next section we present a probabilistic approximation theorem achieving
the afore-mentioned approximation, and show how it can be used to obtain a PTAS for anonymous
games in Section 4.2.

4.1 An Approximation Theorem for Sums of Multinomial Distributions

We present the main probabilistic tool required for our PTAS. Its proof can be found in [DP08].

Theorem 3 ([DP08]). Let {pi ∈ ∆ξ}i∈[n], and let {Xi ∈ Rξ}i∈[n] be a set of independent ξ-
dimensional random unit vectors such that, for all i ∈ [n], ` ∈ [ξ], Pr[Xi = e`] = pi,`, where e` is
the unit vector along dimension `; also, let z > 0 be an integer. Then there exists another set of
probability vectors {p̂i ∈ ∆ξ}i∈[n] such that

1. |p̂i,` − pi,`| = O
(

1
z

)
, for all i ∈ [n], ` ∈ [ξ];

2. p̂i,` is an integer multiple of 1
2ξ

1
z , for all i ∈ [n], ` ∈ [ξ];

3. if pi,` = 0, then p̂i,` = 0, for all i ∈ [n], ` ∈ [ξ];

4. if {X̂i ∈ Rξ}i∈[n] is a set of independent random unit vectors such that Pr[X̂i = e`] = p̂i,`, for
all i ∈ [n], ` ∈ [ξ], then ∣∣∣∣∣

∣∣∣∣∣∑
i

Xi −
∑
i

X̂i

∣∣∣∣∣
∣∣∣∣∣
TV

= O

(
f(ξ)

log z

z1/5

)
(5)

and, moreover, for all j ∈ [n],∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i 6=j
Xi −

∑
i 6=j
X̂i

∣∣∣∣∣∣
∣∣∣∣∣∣
TV

= O

(
f(ξ)

log z

z1/5

)
, (6)

where f(ξ) some function of ξ.

The theorem states that, for all finite ε ∈ [0, 1], there is a way to quantize any set of n independent
random vectors into another set of n independent random vectors, whose probabilities of obtaining
each value are integer multiples of ε, so that the total variation distance between the distribution
of the sum of the vectors before and after the quantization is bounded by O(f(ξ)2ξ/6ε1/6). The
crucial, and perhaps surprising, property of this bound is the lack of dependence on the number
n of random vectors. In particular, notice that a naive rounding of the probabilities into integer
multiples of ε would result in total variation distance of Θ(n · ξ · ε), which fails to give a polynomial
time approximation scheme (as will become clear in the proof of Theorem 2 in the next section).
It is crucial to obtain a bound that is independent of n such as the one guaranteed by Theorem 3.
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4.2 Proof of Theorem 2

The proof follows from the technical tools presented earlier using flow arguments.

Proof of Theorem 2: Take an arbitrary mixed Nash equilibrium (p1, . . . , pn) of an n-player ξ-strategy
anonymous game, where pi ∈ ∆ξ for all i. Theorem 3 guarantees the existence of a mixed strategy
profile (p̂1, . . . , p̂n) satisfying Properties 1 through 4 of the theorem. Then Lemma 4 guarantees that
this mixed strategy profile is an O

(
f(ξ)z−1/6

)
-Nash equilibrium of the game. And, if z = (f(ξ)/ε)6,

it is a δ-Nash equilibrium, for δ = O(ε).
The above discussion shows that there is a discretized mixed strategy profile {p̂i}i that satisfies

Property 2 of Theorem 3 and is a δ-Nash equilibrium for z chosen as above. The algorithmic
challenge is, however, that there is an exponential number of such discretized mixed strategy
profiles so we cannot afford to do exhaustive search over them. We do instead the following.

Notice first that there is at most K := ξ+(2ξz)ξ−1 ≤ 2ξ
2

(f(ξ)/ε)6ξ “quantized” mixed strategies
with each probability being an integer multiple of 1

2ξ
1
z . Let K be the set of such quantized mixed

strategies. We start our algorithm by guessing the partition of the number n of players into
quantized mixed strategies; let θ = {θσ}σ∈K be the guessed partition, where θσ represents the
number of players choosing the discretized mixed strategy σ ∈ K. Now we need to determine if
there exists an assignment of quantized mixed strategies to the players in [n], with θσ of them being
assigned σ ∈ K, so that the resulting mixed strategy profile is a δ-Nash equilibrium. To answer this
question it is enough to solve the following max-flow problem. Let us consider the bipartite graph
([n],K, E) with edge set E defined as follows: (i, σ) ∈ E, for i ∈ [n] and σ ∈ K, if θσ > 0 and σ is a
δ-best response for player i, if the partition of the other players into the mixed strategies in K is the
partition θ, with one unit subtracted from θσ.1 Note that to define E expected payoff computations
are required. By straightforward dynamic programming (see Section 2), the expected utility of
player i for playing pure strategy s ∈ [ξ] given the mixed strategies of the other players can be
computed with O(ξnξ+1) operations on numbers with at most b(n, z, ξ) := O(n(ξ+log2 z)+U) bits,
where U is the number of bits required to specify the values in the range of the payoff functions.2

To conclude the construction of the max-flow instance we add a source node u connected to all
the left hand side nodes and a sink node v connected to all the right hand side nodes. We set the
capacity of the edge (σ, v) equal to θσ, for all σ ∈ K, and the capacity of all other edges equal to 1.
If the max-flow from u to v has value n then there is a way to assign discretized mixed strategies to
the players so that θσ of them play mixed strategy σ ∈ K and the resulting mixed strategy profile
is a δ-Nash equilibrium. There are at most (n + 1)K−1 possible guesses for θ; hence, the search
takes overall time

O
(

(nKξ2nξ+1b(n, z, ξ) + p(n+K + 2)) · (n+ 1)K−1
)
,

where p(n+K+ 2) is the time needed to find an integral maximum flow in a graph with n+K+ 2
nodes and edge capacities encoded with at most dlog2 ne bits. Hence, the overall running time is

n
O

(
2ξ

2
(
f(ξ)
ε

)6ξ
)
· U.

1For our discussion, a mixed strategy σ of player i is a δ-best response to a set of mixed strategies for the other
players iff the expected payoff of player i for playing any pure strategy in the support of σ is no more than δ worse
than her expected payoff for playing any other pure strategy.

2To compute a bound on the number of bits required for the expected utility computations, note that every non-
zero probability value that is computed along the execution of the algorithm must be an integer multiple of ( 1

2ξ
1
z
)j

for some j ≤ n−1, since the mixed strategies of all players are from the set K. Further note that the expected utility
is a weighted sum of at most nξ payoff values, with U bits required to represent each value, and all weights being
probabilities.
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2

4.3 Extension to Typed Anonymous Games

We can extend Theorem 2 to typed anonymous games as follows.

Theorem 4. There is a PTAS for the mixed Nash equilibrium problem for normalized typed anony-
mous games with a constant number of strategies and types. More precisely, there exists some
function g such that, for all ε ≥ 0, an ε-Nash equilibrium of a normalized anonymous game of n
players, ξ strategies and t types can be computed in time ng(ξ,1/(ε),t) · U , where U is the number of
bits required to represent a payoff value of the game.

Proof of Theorem 4: The proof is similar to that of Theorem 2 except that we need to treat every
type separately, exploiting the following straightforward generalizations of Lemmas 3 and 4.

Lemma 5. Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be two mixed strategy profiles of a normal-
ized anonymous game of n players, ξ strategies and type-set T . Then for all i ∈ [n] and ` ∈ [ξ]:

∣∣Eui` (X )− Eui` (Y)
∣∣ ≤∑

t∈T
2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

j 6=i, tj=t
Xj −

∑
j 6=i,, tj=t

Yj

∣∣∣∣∣∣
∣∣∣∣∣∣
TV

. (7)

Lemma 6. Suppose (X1, . . . ,Xn) is a Nash equilibrium of a normalized anonymous game of n
players, ξ strategies and type-set T , and (Y1, . . . ,Yn) a mixed strategy profile satisfying:

1. the support of Yi is a subset of the support of Xi, for all i; and

2. for some ε ≥ 0, for all t ∈ T :
∣∣∣∣∣∣∑j 6=i, tj=tXj −

∑
j 6=i, tj=t Yj

∣∣∣∣∣∣
TV
≤ ε, for all i.

Then (Y1, . . . ,Yn) is a 4ε|T |-Nash equilibrium.

Now take an arbitrary mixed Nash equilibrium (p1, . . . , pn) of a normalized n-player ξ-strategy
anonymous game with type-set T , where pi ∈ ∆ξ for all i. Theorem 3 (applied to the mixed
strategy profile restricted to each type separately) guarantees the existence of a mixed strategy
profile (p̂1, . . . , p̂n) such that:

1. |p̂i,` − pi,`| = O
(

1
z

)
, for all i ∈ [n], ` ∈ [ξ];

2. p̂i,` is an integer multiple of 1
2ξ

1
z , for all i ∈ [n], ` ∈ [ξ];

3. if pi,` = 0, then p̂i,` = 0, for all i ∈ [n], ` ∈ [ξ];

4. if {X̂i ∈ Rξ}i∈[n] is a set of independent random unit vectors such that Pr[X̂i = e`] = p̂i,`, for
all i ∈ [n], ` ∈ [ξ], then for all t ∈ T :∣∣∣∣∣∣

∣∣∣∣∣∣
∑
i,ti=t

Xi −
∑
i,ti=t

X̂i

∣∣∣∣∣∣
∣∣∣∣∣∣
TV

= O

(
f(ξ)

log z

z1/5

)
(8)

and, moreover, for all j ∈ [n],∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i 6=j,ti=t
Xi −

∑
i 6=j,ti=t

X̂i

∣∣∣∣∣∣
∣∣∣∣∣∣
TV

= O

(
f(ξ)

log z

z1/5

)
. (9)
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Through Lemma 6 the above conditions guarantee that this mixed strategy profile is aO
(
|T |f(ξ)z−1/6

)
-

Nash equilibrium of the game. And, if we choose z = (f(ξ)|T |/ε)6, it is a δ-Nash equilibrium, for
δ = O(ε).

The above discussion shows that there is a mixed strategy profile {p̂i}i that is discretized as
above and is a δ-Nash equilibrium of the game. To find such a mixed strategy profile we proceed
in a similar fashion as in the proof of Theorem 2. Briefly:

• There is at most K := ξ + (2ξz)ξ−1 ≤ 2ξ
2

(f(ξ)|T |/ε)6ξ “quantized” mixed strategies with
each probability being an integer multiple of 1

2ξ
1
z , for the afore-given choice of z; call K their

set.

• We guess how many players of each type use each of these discretized mixed strategies; for all
t ∈ T and σ ∈ K, θtσ represents the number of players of type t using the discretized mixed
strategy σ.

• To decide if these guesses are consistent with a δ-Nash equilibrium, we set up a maximum
flow problem for each type. The flow network for type t ∈ T is set up as follows:

– Consider a bipartite graph whose left side has one node for every player of type t and
right side has one node for every element of K.

– There is an edge from player i of type t to discretized mixed strategy σ ∈ K iff σ is a
δ-best response for player i when the players of type t′ 6= t play as specified by θt

′
, for

all t′ 6= t, and the players of type t that are different than i play according to θt, with
one unit subtracted from θtσ.

– Add a source node u connected to all the left hand side nodes and a sink node v connected
to all the right hand side nodes.

– Set the capacity of edge (σ, v) equal to θtσ, for all σ ∈ K, and the capacity of all other
edges equal to 1.

• If, for all t ∈ T , the maximum flow in the flow network for type t has value |i | ti = t|, then
there is a way to assign discretized mixed strategies to the players so that θtσ players of type
t play mixed strategy σ ∈ K and the resulting mixed strategy profile is a δ-Nash equilibrium.

The running time analysis proceeds in the same way as in the proof of Theorem 2. 2

5 The Structure of Approximate Equilibria

The PTAS of Theorem 2 exploits the probabilistic approximation theorem for sums of multinomial
distributions presented in Theorem 3. Indeed the probabilistic approximation results in a small
enough discretized set that we can search over in time polynomial in the number of players (albeit
exponential in the approximation parameter ε). Is it possible to improve the running time by
obtaining a stronger probabilistic approximation? In this section we show that the answer is
“yes” for 2-strategy anonymous games. We obtain a significantly faster algorithm by exploiting a
stronger probabilistic approximation. As a corollary we also get an interesting structural theorem
for approximate equilibria in these games, which is reminiscent of Nash’s theorem on the existence
of symmetric equilibria in symmetric games [Nas51].
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5.1 A Stronger Approximation, and a Faster Algorithm

We present a probabilistic approximation theorem for sums of independent indicators that is tighter
than Theorem 3 (which nevertheless applies to the more general case of sums of independent cate-
gorical random variables). Roughly speaking the theorem guarantees that the sum of a collection
of independent indicators can be in one of two modes: (i) a dense mode whereby the sum is ε-close
to a shifted Binomial distribution; or (ii) a sparse mode whereby the sum is ε-close to the shifted
sum of just O(1/ε3) independent indicators, for all ε. The benefit is that both cases correspond to
qualitatively simpler types of distributions. We exploit their simplicity to search over them quickly.

Theorem 5 ([Das08a, Das08b]). Let {pi}ni=1 be arbitrary probability values, pi ∈ [0, 1] for i =
1, . . . , n; {Xi}ni=1 be independent indicator random variables such that Xi has expectation E[Xi] =
pi; and k be a positive integer. Then there exists another set of probability values {qi}ni=1, qi ∈ [0, 1],
i = 1, . . . , n, which satisfy the following properties:

1. if {Yi}ni=1 are independent indicator random variables such that Yi has expectation E[Yi] = qi,
then, ∣∣∣∣∣

∣∣∣∣∣∑
i

Xi −
∑
i

Yi

∣∣∣∣∣
∣∣∣∣∣
TV

= O(1/k), (10)

and, for all j = 1, . . . , n,

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i 6=j

Xi −
∑
i 6=j

Yi

∣∣∣∣∣∣
∣∣∣∣∣∣
TV

= O(1/k), (11)

where the constant in the O(·) notation does not depend on n or p1, . . . , pn.

2. the set {qi}ni=1 is such that:

(a) if pi = 0 then qi = 0, and if pi = 1 then qi = 1;

(b) one of the following is true:

i. either there exists some S ⊆ [n] and some value q which is an integer multiple of
1
kn , such that, for all i /∈ S, qi ∈ {0, 1}, and, for all i ∈ S, qi = q;

ii. or, there exists some S ⊂ [n], |S| < k3 such that, for all i /∈ S, qi ∈ {0, 1}, and, for
all i ∈ S, qi is an integer multiple of 1

k2
.

As promised earlier, we exploit Theorem 5 to improve the running time of our approximation
scheme. Compared to Theorem 2, the approximation scheme presented below has an important
qualitative difference: in the running time the approximation quality ε does not affect the degree of
the polynomial that depends on the input size. Such PTAS’s are called in the algorithmic literature
efficient PTAS’s. The proof of Theorem 6 follows the same approach used for Theorem 2, namely
searching for approximate Nash equilibria in the set of strategy profiles of the form 2(b)i or 2(b)ii
of Theorem 5.

Theorem 6. For all ε ≥ 0, an ε-Nash equilibrium of a normalized anonymous game of n players
and 2 strategies can be computed in time (1/ε)O(1/ε2) · poly(n) · U, where U is the number of bits
required to represent a payoff value of the game.

Proof of Theorem 6: Consider a mixed Nash equilibrium (p1, . . . , pn), where pi is the probability
that player i plays strategy 2. It follows from Lemma 4 that a mixed strategy profile (q1, . . . , qn)
satisfying Properties 1 and 2 of Theorem 5 is a O(1/k)-Nash equilibrium. Hence there is an ε-Nash

16



equilibrium {qi}i satisfying Property 2b in the statement of Theorem 5 for k = O(1/ε). The problem
is, of course, that we do not know such a mixed strategy profile and also do not know whether
it is of the kind specified by Property 2(b)i or the kind specified by Property 2(b)ii. Moreover,
we cannot afford to do exhaustive search over all mixed strategy profiles satisfying Property 2(b)i
or 2(b)ii, since there is an exponential number of those. We do instead the following two searches,
corresponding to each of the two cases; one of them is guaranteed to find an ε-Nash equilibrium.

Search corresponding to 2(b)i: We can first guess the cardinality m of the set S (at most n+ 1
choices), the value q (kn+ 1 choices), and the number m′ of qi’s in [n] \ S which are equal to 1 (at
most n+1 choices). Then we only need to determine if there is a set of players S ⊆ [n] and another
set of players S′ ⊆ [n] \ S such that, if all players in S are assigned mixed strategy q, all players
in S′ mixed strategy 1 and all players in [n] \ S \ S′ mixed strategy 0, then the resulting mixed
strategy profile is an ε-Nash equilibrium. To answer this question it is enough to solve a max-flow
problem. Let us define the constants θ0 = n −m −m′, θq = m and θ1 = m′, and consider a flow
network with node-set {s} ∪ {t} ∪ [n] ∪ {0, q, 1} and edge-set as follows. There is a directed edge
of capacity 1 from node i ∈ [n] to node σ ∈ {0, q, 1} iff θσ > 0 and mixed strategy σ is an ε-best
response for player i, when the partition of the other players into the mixed strategies 0, q and 1 is
the partition θ, with one unit subtracted from θσ.3 Moreover, there is a directed edge of capacity
1 from s to all nodes in [n] and a directed edge of capacity θσ from σ to t for all σ ∈ {0, q, 1}. If
the max-flow from s to t in this network has value n then there is a way to select S and S′ by
looking at the edges used by an integral maximum flow. As far as the running time goes, notice
that to define the edge-set of the flow network expected payoff computations are required. By
straightforward dynamic programming (see Section 2), the expected utility of a player for playing
some pure strategy given the mixed strategies of the other players can be computed with O(n3)
operations on numbers of b(n, k) = O(n log2 (kn) +U) bits, where U is the number of bits required
to specify a payoff value of the game.4 Since there are O(n3k) possible guesses for (m, q,m′), the
search takes overall time

O
(
(n4b(n, k) + p1(n)) · n3k

)
, (12)

where p1(n) is the time needed to solve a max-flow problem on a graph with n + 5 nodes, O(n)
edges, and edge capacities with at most dlog2 ne bits.

Search corresponding to 2(b)ii: We can guess the cardinality m of the set S (there are k3

choices), the number m′ of qi’s in [n] \ S which are equal to 1 (at most n + 1 choices), and a
partition of m ≡ |S| into the integer multiples of 1

k2
in [0, 1]; let {φi/k2}i∈[k2]∪{0} be the partition.

Then we only need to determine if there is a set of players S ⊆ [n] of cardinality m, a set of players
S′ ⊆ [n] \ S of cardinality m′, and an assignment of mixed strategies to the players in S with φi/k2
of them being assigned i/k2 so that, if additionally the players in S′ are assigned mixed strategy 1
and the players in [n]\S \S′ are assigned mixed strategy 0, then the corresponding mixed strategy
profile is an ε-Nash equilibrium. We answer this question in the same way we did in the previous
case, i.e., by reducing the problem to a max-flow problem. Let us define the vector {θi/k2}i∈[k2]∪{0}
by setting θi/k2 = φi/k2 for all i 6= 0, 1, θ0/k2 = φ0/k2 + n−m−m′ and θk2/k2 = φk2/k2 +m′. The

3As above, a mixed strategy σ of a player i is an ε-best response to a set of mixed strategies for the other players
iff the expected payoff of player i for playing any pure strategy in the support of σ is no more than ε worse than her
expected payoff for playing any other pure strategy.

4To compute a bound on the number of bits required for the expected utility computations, note that every
non-zero probability value that is computed along the execution of the algorithm must be an integer multiple of
( 1
kn

)j for some j ≤ n − 1, since the mixed strategies of all players are from the set {0, q, 1}. Further note that the
expected utility is a weighted sum of n payoff values, with U bits required to represent each value, and all weights
being probabilities.
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flow network has vertex set {s, t}∪ [n]∪{i/k2}ni=0 and edge set as follows: There is a directed edge
from j ∈ [n] to σ ∈ {i/k2}ni=0 iff θσ > 0 and mixed strategy σ is an ε-best response for player j
when the partition of the other players into the mixed strategies i/k2 is the partition θ, with one
unit subtracted from θσ. Moreover, there is a directed edge of capacity 1 from s to all nodes in [n]
and a directed edge of capacity θσ from node σ to t, for all σ ∈ {i/k2}i∈[k2]∪{0}. If the maximum
flow from s to t has value n then there is a way to select S, S′ and φ by looking at the edges used
by an integral maximum flow. As far as the running time goes, to define the edge-set of the flow
network we need expected payoff computations. Every such computation can be carried out with
O(n3) operations on numbers of at most b′(n, k) = O(n log(k2) +U) bits.5 Since there are at most
k3 · (n+ 1) · ((k + 1)e)k

2
choices for (m,m′, φ), this step takes overall time

O
((
n(k2 + 1)n3b′(n, k) + p2(n, k)

)
· (n+ 1)k3((k + 1)e)k

2
)
, (13)

where p2(n, k) is the time needed to solve a max-flow problem on a graph with n + k2 + 3 nodes,
at most (n+ 1)(k2 + 2)− 1 edges, and edge capacities of at most dlog2 ne bits.

From (12) and (13), it follows that the overall running time is at most

poly(n) · U · (1/ε)O(1/ε2).

2

Remark 2. Theorem 6 generalizes to typed anonymous games with 2 strategies per player improving
the running time of the algorithm of Theorem 4. The generalization amounts to guessing the number
of players of each type that uses each of the discretized mixed strategies and setting up a maximum
flow problem for each type separately, as discussed in the proof of Theorem 4.

5.2 The Structural Result

Recall that the algorithm of Theorem 6 effectively searches for an ε-Nash equilibrium in the set of
mixed strategy profiles satisfying Property 2(b)i or 2(b)ii of Theorem 5. The immediate corollary
of this realization is the following structural result for approximate Nash equilibria. The result is
reminiscent of Nash’s theorem for symmetric games, namely that every game that is symmetric with
respect to all player permutations has a Nash equilibrium where every player plays the same mixed
strategy. In the case of anonymous games the symmetry of the game is much weaker since players
have different utility functions. Despite this, we show that there always exists an approximate
equilibrium where either a small number of players randomize or every randomizing player plays
the same mixed strategy.

Theorem 7. For all ε > 0, a normalized n-player 2-strategy anonymous game has an ε-Nash
equilibrium such that for some integer k = O(1/ε):

1. either at most k3 players randomize, and their mixed strategies use probabilities that are
integer multiples of 1/k2; or

2. all players who randomize use the same mixed strategy, and the probabilities used by this
mixed strategy are integer multiples of 1

kn .

5The bound on the number of bits follows from the fact that every non-zero probability value that is computed
along the execution of the algorithm must be an integer multiple of ( 1

k2
)j for some j ≤ n − 1, since the mixed

strategies of all players are from the set {i/k2}i∈[k2]∪{0}. Further, note that the expected utility is a weighted sum
of n payoff values, with U bits required to represent each value, and all weights being probabilities.

18



6 Oblivious Algorithms: A Computational Lower Bound

The algorithms presented in Theorems 2 and 6 share the following properties. First, the approxima-
tion guarantee ε appears in the exponent of the running time. Second, they can both be extended
to anonymous games with types (see Theorem 4 and Remark 2). Finally, they both enumerate
over a predetermined set of unordered n-tuples of mixed strategies, and only use the input game’s
description to find out which tuple can be “permuted” to a Nash equilibrium. So both algorithms
belong to the following, more general class of algorithms, called oblivious approximation algorithms.

Definition 1. An oblivious ε-approximation algorithm for anonymous games is defined in terms of
a sequence of distributions, indexed by the number of players n. The n-th distribution in the sequence
is a distribution over unordered n-tuples of mixed strategies, i.e. collections of mixed strategies that
are unassigned to players. For a given n-player (possibly typed) anonymous game, the algorithm
samples from the n-th distribution an unordered n-tuple of mixed strategies and determines whether
there is an assignment of these strategies to the players of the game so that the resulting mixed
strategy profile (with each player using her assigned mixed strategy) is an ε-Nash equilibrium. If
not, it continues sampling from the n-th distribution until an ε-Nash equilibrium is found.

The expected running time of the algorithm is the inverse of its probability of success times the
time needed to determine whether an unordered n-tuple of mixed strategies can be permuted to an
ε-Nash equilibrium.

Our algorithms from Theorems 2 and 6 can be viewed as oblivious algorithms with the following
components: (i) The distribution over unordered n-tuples of mixed strategies is the uniform dis-
tribution over unordered n-tuples of mixed strategies discretized as specified by Theorems 3 and 5
respectively (in particular, satisfying Property 2 of Theorem 3 for z = (f(ξ)/ε)6 and, respectively,
Property 2b of Theorem 5 for k = O(1/ε)); (ii) determining whether an unordered n-tuple of mixed
strategies can be permuted to an ε-Nash equilibrium is carried out with max-flow computations.

Note that the running time of both algorithms, as well as their generalizations to typed anony-
mous games, contains (1/ε)Θ(ξ), i.e. some polynomial function of 1/ε, in the exponent. The question
is this: Can we remove this polynomial dependence on the approximation from the exponent? We
show that the answer is “no”. In particular, we show that any oblivious ε-approximation algorithm
for 3 type, 2 strategy anonymous games whose expected running time is polynomial in the number
of players must have expected running time exponential in (1

ε )
1/3.

Theorem 8. For any constants c, ε ≥ 0, no oblivious ε-approximation algorithm for normalized
anonymous games with 2 strategies and 3 player types has probability of success larger than n−c ·
2−Ω(1/ε1/3).

We only sketch the proof here and postpone further details to Appendix A. We first establish
the following (Theorem 11 in Appendix A.1): given any ordered n-tuple (p1, . . . , pn) of probabilities,
we can construct a 3 type, 2 strategy anonymous game with n players of type A and two players
of their own type such that, in any ε-Nash equilibrium, the i-th player of type A plays strategy 2
with probability very close (depending on ε and n) to the prescribed pi. To obtain this game, we
need to understand how to exploit the difference in the payoff functions of the players of type A
to enforce different behaviors at equilibrium, despite the fact that in all other aspects of the game
the players of group A are indistinguishable.

The construction is based on the following idea: For all i, let us denote by µ−i :=
∑

j 6=i pj the
target expected number of type-A players different than i who play strategy 2; and let us give this
payoff to player i if she plays strategy 1, regardless of what the other players are doing. If i chooses
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2 instead, we give her expected payoff equal to the realized expected number of players different
than i who play 2 (which depends on the mixed strategies of the other players). By setting the
payoffs in this way we can ensure that (p1, . . . , pn) is an equilibrium of the game, since for every
player the payoff she gets from strategy 1 matches the expected payoff she gets from strategy 2, if
all players play according to the prescribed probabilities. However, enforcing that (p1, . . . , pn) is
also the unique equilibrium is a more challenging task. To do this we include two other players of
their own type: we use these players to ensure that the sum of the mixed stategies of the players
of type A matches the target

∑
pi at equilibrium, so that a player i deviating from her prescribed

strategy pi is pushed back towards pi. We show how this can be done in Appendix A.1. We also
provide guarantees not only for exact but also for ε-Nash equilibria of the resulting game.

The construction outlined above enables one to define a family of 2Ω(1/ε1/3) anonymous games of
O((1/ε)1/3) players with the property that no two games in the family share an ε-Nash equilibrium,
even as an unordered tuple of mixed strategies (Claims 4 and 5 in Appendix A.2). Then, by an
averaging argument, we can deduce that for any oblivious algorithm there is a game in the family
for which the probability of success is at most 2−Ω(1/ε1/3). The detailed proof of Theorem 8 is given
in Appendix A.2.

Remark 3. We can show an analog of Theorem 8 for oblivious ε-approximation algorithms for
anonymous games with 2-player types and 3 strategies per player. The details are omitted.

7 Beyond Oblivion: Moments of Mixed Strategy Profiles

In the previous section we identified a barrier for improving the running time of our approximation
algorithms. In this section we overcome this barrier, providing a PTAS for 2-strategy anonymous
games whose running time is some fixed polynomial in the number of players, n, times a factor

of (1
ε )
O(log2 1

ε ), where ε is the desired approximation. Our new PTAS is of course non-oblivious.
Indeed it is so in the following interesting way: Instead of sampling from a distribution over
unordered n-tuples of mixed strategies, our algorithm samples from a distribution over log(1/ε)-
tuples, representing the first log(1/ε) moments of these n-tuples. We can think of the these moment
vectors as more succinct aggregates of mixed strategy profiles than the unordered n-tuples of mixed
strategies considered earlier in this paper, as several of these unordered tuples may share the same
moments.

But what is the intuition for considering moment vectors of mixed strategy profiles? Our
algorithm of Theorem 6 is founded on the probabilistic approximation presented in Theorem 5.
In its heart this approximation quantifies the following intuitive (albeit not quantitatively precise)
fact about sums of independent indicators: If two sums of independent indicators have close means
and variances, then their total variation distance should be small. However, the precise bound
obtained by quantifying this intuition is weak enough that the set of unordered n-tuples of mixed
strategies that our algorithm has to sample from is exponential in 1/ε; and our lower bound from the
previous section supports that this cannot be improved. Given this realization it seems intuitive
that a tighter probabilistic approximation and a faster algorithm may be found by considering
higher moments of mixed strategies. Indeed, our new PTAS is founded on the following theorem,
which provides a rather strong quantification of how the total variation distance between two sums
of indicators depends on the number of their first moments that are equal.

Theorem 9 ([DP09]). Let P := (pi)
n
i=1 ∈ (0, 1/2]n and Q := (qi)

n
i=1 ∈ (0, 1/2]n be two collections

of probability values in (0, 1/2]. Let also X := (Xi)
n
i=1 and Y := (Yi)

n
i=1 be two collections of
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independent indicators with E[Xi] = pi and E[Yi] = qi, for all i ∈ [n]. If for some d ∈ [n] the
following condition is satisfied:

(Cd) :
n∑
i=1

p`i =
n∑
i=1

q`i , for all ` = 1, . . . , d,

then

∣∣∣∣∣
∣∣∣∣∣∑
i

Xi −
∑
i

Yi

∣∣∣∣∣
∣∣∣∣∣
TV

≤ 20(d+ 1)1/42−(d+1)/2. (14)

The exact same conclusion holds if instead of the interval (0, 1/2] we use the interval [1/2, 1) in the
hypothesis of the theorem.

Remark 4. Condition (Cd) considers the power sums of the expectations of the indicators. Using
the theory of symmetric polynomials it can be shown that (Cd) is equivalent to the following condition
on the moments of the sums of the indicators (for the proof see [DP09]):

(Vd) : E

( n∑
i=1

Xi

)` = E

( n∑
i=1

Yi

)` , for all ` ∈ [d].

Theorem 9 provides the following strong approximation guarantee for two sums of indicator
random variables: If two sums of independent indicators with expectations bounded by 1/2 have
equal first d moments, then their total variation distance is 2−Ω(d). It is important to note that
this bound applies for all n and, in particular, does not rely upon summing up a large number of
indicators. This is very crucial as we explain in the next sections.

7.1 The Oblivious PTAS of Section 5, Revisited

The algorithm presented in the proof of Theorem 6 can be summarized as follows.

1. Choose k = O(1/ε), according to Theorem 7.

2. Guess the number t of players who randomize, the number t0 of players who use
mixed strategy 0 (i.e. play pure strategy 1), and the number t1 = n − t − t0 of
players who use mixed strategy 1 (i.e. play pure strategy 2).

3. Depending on the number t of players who mix do one of the following:

(a) If t > k3, guess an integer multiple i/kn of 1/kn and, solving a maximum
flow problem whose details are given in the proof of Theorem 6, check if
there is an ε-Nash equilibrium in which t players use mixed strategy i/kn,
t0 players use mixed strategy 0, and t1 players use mixed strategy 1.

(b) If t ≤ k3, guess the number of players ψi whose mixed strategy is i/k2, for
all i ∈ {1, . . . , k2 − 1}, and, solving a maximum flow problem whose details
are given in the proof of Theorem 6, check if there is a ε-Nash equilibrium
in which ψi players use mixed strategy i/k2, for all i, t0 players use mixed
strategy 0, and t1 players use mixed strategy 1.

Figure 1: The oblivious PTAS of Section 5
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There are clearly O(n2) possible choices for Step 2 of the algorithm. Moreover, the search of
Step 3a can be completed in time (see the proof of Theorem 6)

U · poly(n) · (1/ε) log2(1/ε),

which is quasi-linear in 1/ε.
On the other hand, Step 3b involves searching over all partitions of t balls into k2−1 bins. The

resulting running time for this step (see the proof of Theorem 6) is

U · poly(n) · (1/ε)O(1/ε2),

which is exponential in 1/ε.

7.2 Moment Search

It is clear that the exponential dependence of the running time of the algorithm of Figure 1 on
1/ε is due to Step 3b of the algorithm. Moment Search, presented below, utilizes Theorem 9 to
improve precisely this step of the algorithm. Indeed, rather than guessing the number of players
whose mixed strategy is every multiple of 1/k2 at Nash equilibrium, the algorithm only guesses the
first O(log 1/ε) moments of their mixed strategy profile at Nash equilibrium (Step 3c below). Then
it uses the players’ payoff functions to try to disentangle this moment vector into possible mixed
strategies that each player could be using at a Nash equilibrium resulting in the guessed moment
vector (Step 3d below).

Algorithm Moment Search
Input: A 2-strategy anonymous game G, the desired approximation ε.
Output: An ε-Nash equilibrium of G.

1. /*Replaces Step 1 of Figure 1*/ For technical reasons (that will be clear in the proof of
correctness of this algorithm), we choose a value of k = d cεe (where c is some universal
constant) that is by a factor of 2 larger than the value of k required by Theorem 7. This is
the value k that guarantees the existence of an ε/2-Nash equilibrium having the form 1 or 2
of the theorem.

2. /*Same as Step 2 of Figure 1*/ Guess the number t of players who randomize, the number t0
of players who use mixed strategy 0 (i.e. play pure strategy 1), and the number t1 = n− t− t0
of players who use mixed strategy 1 (i.e. play pure strategy 2);

3. Depending on the number t of players who mix do one of the following:

(a) /*Same as Step 3a of Figure 1*/ If t > k3, guess an integer multiple i/kn of 1/kn and,
solving a maximum flow problem whose details are given in the proof of Theorem 6,
check if there is an ε-Nash equilibrium in which t players use mixed strategy i/kn, t0
players use mixed strategy 0, and t1 players use mixed strategy 1.

(b) /*The following steps replace Step 3b of Figure 1. If the control of the algorithm is here
the algorithm has guessed that there exists an ε/2-Nash equilibrium in which at most t
players randomize in integer multiples of 1/k2.*/

If t ≤ k3, guess positive integers ts, tb such that ts + tb = t, where ts is the number of
players who mix with probability ≤ 1

2 (i.e. play pure strategy 2 with probability at most
1/2), and tb = n− t0− t1− ts is the number of players who mix with probability > 1

2 (i.e.
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play pure strategy 2 with probability larger than 1/2). (Note that we have to distinguish
between these groups of players because our approximation theorem (Theorem 9) is
making a distinction between the cases of probabilities lying in (0, 1/2] and [1/2, 1).)

(c) For d = d3 log2(320/ε)e, guess µ1, µ2, . . ., µd, µ
′
1, µ′2, . . ., µ′d, where, for all ` ∈ [d]:

µ` ∈

{
j

(
1

k2

)`
: ts ≤ j ≤ ts

(
k2

2

)`}
,

and

µ′` ∈

{
j

(
1

k2

)`
: tb

(
k2

2
+ 1

)`
≤ j ≤ tb(k2 − 1)`

}
.

For all `, µ` represents the `-power sum of the mixed strategies of the players who mix and
choose mixed strategies from the set {1/k2, . . . , 1/2}. Similarly, µ′` represents the `-power
sum of the mixed strategies of the players who mix and choose mixed strategies from the
set {1/2 + 1/k2, . . . , (k2 − 1)/k2}. Remark: Whether there actually exist probability
values π1, . . . , πts ∈ {1/k2, . . . , 1/2} and θ1, . . . , θtb ∈ {1/2 + 1/k2, . . . , (k2 − 1)/k2} such
that µ` =

∑ts
i=1 π

`
i and µ′` =

∑tb
i=1 θ

`
i , for all ` = 1, 2, . . . , d, will be determined later.

(d) For each player i = 1, . . . , n, find a subset

Si ⊆
{

0,
1

k2
, . . . ,

k2 − 1

k2
, 1

}
of permitted mixed strategies for that player in an ε

2 -Nash equilibrium, conditioned on
the guesses in the previous steps. By this, we mean determining the answer to the
following: “Given our guesses for the aggregates t0, t1, ts, tb, µ`, µ

′
`, for all ` ∈ [d],

what multiples of 1/k2 could player i be playing in an ε/2-Nash equilibrium?” Our test
exploits the anonymity of the game and uses Theorem 9 to achieve the following:

• if a multiple of 1/k2 can be assigned to player i and complemented by choices of
multiples for the other players, so that the aggregate conditions are satisfied and
player i is at 3ε/4-best response (that is, she experiences at most 3ε/4 regret), then
this multiple of 1/k2 is included in the set Si;
• if, given a multiple of 1/k2 to player i, there exists no assignment of multiples to

the other players so that the aggregate conditions are satisfied and player i is at
3ε/4-best response, the multiple is rejected from set Si.

Observe that the value of 3ε/4 used in our classifier is intentionally chosen midway
between ε/2 and ε. The reason for this value is that, if we only match the first d
moments of a mixed strategy profile, our estimation of the real approximation of that
strategy profile is distorted by an additive error ε/4 (coming from (14) and the choice of
d). Hence, with a threshold at 3ε/4 we make sure that: a. we are not going to “miss” the
mixed strategy of player i in the ε/2-Nash equilibrium that we know exists in multiples
of 1/k2 by virtue of our choice of k and Theorem 7; and b. any strategy profile that
is consistent with the aggregate conditions and the sets Si found in this step is going
to be an approximate Nash equilibrium of approximation 3ε/4 + ε/4 = ε. The fairly
involved details of our test are given in Appendix B.1, and the way its analysis ties in
with the search for an ε-Nash equilibrium is given in the proofs of Claims 6 and 7 of
Appendix B.2.
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(e) Find an assignment of mixed strategies v1 ∈ S1, . . ., vn ∈ Sn to players, such that:

• t0 players are assigned mixed strategy 0 and t1 players mixed strategy 1;

• ts players are assigned a mixed strategy in (0, 1/2], and we satisfy
∑

i:vi∈(0,1/2] v
`
i =

µ`, for all ` ∈ [d];

• tb players are assigned a mixed strategy in (1/2, 1), and we satisfy
∑

i:vi∈(1/2,1) v
`
i =

µ′`, for all ` ∈ [d].

Solving this assignment problem is non-trivial, but can be done by dynamic programming
in time

O(n3) ·
(

1

ε

)O(log2(1/ε))

,

because the sets Si are subsets of {0, 1/k2, . . . , 1}. The algorithm is given in the proof
of Claim 8 in Appendix B.2.

(f) If an assignment is found, then the vector (v1, . . . , vn) constitutes an ε-Nash equilibrium.

Theorem 10. Moment Search is a PTAS for n-player 2-strategy anonymous games with running
time U ·poly(n) · (1/ε)O(log2(1/ε)), where U is the number of bits required to represent a payoff value
of the game.

Proof. (Sketch; complete proof in Appendix B.2) Correctness follows from the following
observation. Theorem 7 and the choice of k guarantee that there exists a ε

2 -approximate Nash
equilibrium satisfying 1 or 2 of that theorem. Therefore, if t0, t1 and t are guessed correctly and
the control of the algorithm goes to Step 3a correctness follows as in the proof of Theorem 6.
Otherwise, if control goes to Step 3b and ts, tb are guessed correctly, Step 3d will find non-empty
Si’s for all players for the correct guesses in Step 3c (since in particular the ε/2-Nash equilibrium
will survive the tests of Step 3d—by Theorem 9 and the choice of d, at most ε/4 accuracy is lost if
the correct values for the moments are guessed); and thus Step 3e will find an ε-approximate Nash
equilibrium (ε instead of 3ε/4, because another ε/4 may be lost in this step). The full proof and
the running time analysis are provided in Appendix B.2.

Remark 5. Theorem 10 generalizes to typed anonymous games with 2 strategies per player. The
generalization amounts to guessing the moment vector of the mixed strategy profile of the players
of each type separately.

8 Conclusion and Open Problems

Multiplayer games are of great interest to the interface between Game Theory and Computer
Science, and yet they are problematic when seen from the computational standpoint because of
issues of representation. Anonymous games are an important class of multiplayer games that can
be represented very succinctly (the other important genre being graphical games). In this paper, we
develop a comprehensive methodology, both analytical and algorithmic, for equilibrium problems,
and use it to prove a number of positive results relating to the Nash equilibrium problem for
anonymous games:

• A Lipschitz continuity assumption on the utilities and a fixed point argument yields an
approximate pure Nash equilibrium (Theorem 1 and Corollary 1).
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• A polynomial-time approximation scheme for mixed Nash equilibrium can be obtained (Theo-
rem 2, and Theorem 6 for two-strategy anonymous games) by relating the quality of approxi-
mation to the total variation distance between mixed strategy profile distributions (Lemmas 3
and 4), and using novel probabilistic approximation theorems for Poisson Multinomial and
Poisson Binomial distributions (Theorems 3 and 5 respectively), which may have broader
application in equilibrium computations.

• We show that anonymous games with two strategies always possess approximate Nash equi-
libria in which either very few players randomize, or those who do randomize the same way
(Theorem 7); this leads to improved algorithms.

• Finally, also for two-strategy anonymous games, by using a more sophisticated argument
about moments of the strategy profile distribution (Theorem 9), we obtain a non-oblivious al-
gorithm with quasi-polynomial dependence on the approximation parameter (Theorem 10)—
no oblivious algorithm can so perform (Theorem 8).

Several problems arise:

1. Devise better approximation algorithms. More elaborate probabilistic approximation results,
or stronger results about the structure of equilibria of anonymous games are possibilities. Are
Nash equilibria of two-strategy anonymous games even guaranteed to be rational?

2. Is there a fully polynomial-time approximation scheme, that is one whose running time de-
pends polynomially on the approximation parameter?

3. Notice that it is not known whether finding an exact Nash equilibrium in an anonymous game
(with a scaling number of players and a non-scaling number of strategies) is PPAD-complete.
We conjecture that it is.

APPENDIX

A The Oblivious Lower Bound

For the purposes of the lower bound it is more convenient to work with anonymous games whose
payoffs lie in [−1, 1]. These games can be normalized using the affine transformation discussed
before Proposition 1, with a factor 2 increase in the approximation.

A.1 Constructing Anonymous Games with Prescribed Equilibria

Theorem 11. For all δ > 0 and k ∈ N such that 3δk < 1, and for any collection P := (pi)i∈[k],
where pi ∈ [3δk, 1] for all i, there exists a (k+2)-player 2-strategy anonymous game GP with payoffs
in [−1, 1] and three player types, A,B and C such that: (i) k players, 1, . . . , k, belong to type A,
1 player to type B, and 1 player to type C; and (ii) for all δ′ < δ, in every δ′-Nash equilibrium
of the game the following is satisfied: For every i, player i’s mixed strategy belongs to the set
[pi− 7k2δ, pi + 7k2δ]; moreover, at least one of the players belonging to types B and C play strategy
2 with probability 0.

Proof. Let us call B the player of type B and C the player of type C. Let us also use the notation:
µ =

∑
i∈[k] pi, and µ−i =

∑
j∈[k]\{i} pj , for all i. Now, let us assign the following payoffs to the

players B and C:
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• uB2 = 1
k · (tA − µ), where tA is the number of players of type A who play strategy 2;

• uB1 = 2δ;

• uC2 = 1
k · (µ− tA), where tA is the number of players of type A who play strategy 2;

• uC1 = 2δ;

The payoff functions of the players of type A are defined as follows. For all i ∈ [k]:

• ui1 = 1
k (µ−i · XB plays 1 · XC plays 1 − δk · XC plays 2), where XB plays 1, XC plays 1 and XC plays 2

are the indicators of the events ‘B plays 1’, ‘C plays 1’ and ‘C plays 2’ respectively.

• ui2 = 1
k (tA,−i · XB plays 1 · XC plays 1 − δk · XB plays 2), where tA,−i is the number of players of

type A who are different than i and play 2, and XB plays 1, XC plays 1 and XB plays 2 are the
indicators of the events ‘B plays 1’, ‘C plays 1’ and ‘B plays 2’ respectively.

Note that the range of all payoffs of the game thus defined is [−1, 1]. We claim the following:

Claim 1. For all δ′ < δ, in every δ′-Nash equilibrium of the game it must be that∑
i∈[k]

qi = µ± 3δk,

where q1, . . . , qk are the probabilities that players 1, . . . , k play strategy 2.

Proof of Claim 1: Let µ′ =
∑

i∈[k] qi. Suppose for a contradiction that in a δ′-Nash equilibrium

µ′ > µ+ 3δk; then
1

k
(µ′ − µ) > 3δ.

Note however that E[uB2 ] = 1
k (µ′ − µ) and E[uC2 ] = − 1

k (µ′ − µ). Hence, the above implies

E[uB2 ] > E[uB1 ] + δ, (15)

E[uC2 ] < E[uC1 ]− δ. (16)

Since δ′ < δ, it must be that Pr[B plays 2] = 1 and Pr[C plays 2] = 0. It follows then that for all
i ∈ [k]:

E[ui1] = 0,

E[ui2] = −δ.

Hence, in a δ′-Nash equilibrium with δ′ < δ, it must be that Pr[i plays 2] = qi = 0, for all i ∈ [k].
This is a contradiction since we assumed that µ′ =

∑
i∈[k] qi > µ+ 3δk, and µ is non-negative. Via

similar arguments we show that the assumption µ′ < µ− 3δk also leads to a contradiction. Hence,
in every δ′-Nash equilibrium with δ′ < δ, it must be that

µ′ = µ± 3δk.

2

We next show that in every δ′-Nash equilibrium with δ′ < δ, at least one of the players B and
C will not include strategy 2 in her support.
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Claim 2. For all δ′ < δ, in every δ′-Nash equilibrium of the game it must be that

Pr[B plays 2] = 0 or Pr[C plays 2] = 0.

Proof of Claim 2: Let q1, . . . , qk be the probabilities that players 1, . . . , k play strategy 2 in some
δ′-Nash equilibrium of the game with δ′ < δ. Let us consider the quantity M = 1

k (µ′ − µ), where
µ′ =

∑
i∈[k] qi. We distinguish the following cases:

• M ≤ δ: In this case, E[uB2 ] = 1
k (µ′−µ) ≤ δ ≤ 2δ−δ = E[uB1 ]−δ. Since δ′ < δ, Pr[B plays 2] =

0.

• M ≥ δ: In this case, E[uC2 ] = − 1
k (µ′ − µ) ≤ −δ ≤ 2δ − δ = E[uC1 ] − δ. Since δ′ < δ,

Pr[C plays 2] = 0.

2

Finally, we establish the following.

Claim 3. For all δ′ < δ, in every δ′-Nash equilibrium of the game it must be that for all i ∈ [k]:

µ′−i :=
∑

j∈[k]\{i}

qj = µ−i ± 4δk2,

where q1, . . . , qk are the probabilities that players 1, . . . , k play strategy 2.

Proof of Claim 3: Let us fix an arbitrary δ′-Nash equilibrium. From Claim 2 it follows that either
player B or C plays strategy 2 with probability 0. Without loss of generality, we will assume that
Pr[C plays 2] = 0 (the argument for the case Pr[B plays 2] = 0 is identical to the one that follows).

Let us now fix an arbitary player i ∈ [k]. We show first that under the assumption Pr[C plays 2] =
0, Pr[C plays 1] = 1, it must be that

µ−i ≤ µ′−i + δk. (17)

Assume for a contradiction that µ−i > µ′−i + δk. It follows then that

µ−i(1− Pr[B plays 2]) ≥ µ′−i(1− Pr[B plays 2])

+ δk(1− Pr[B plays 2])

⇒ µ−i Pr[B plays 1] ≥ µ′−i Pr[B plays 1]

+ δk(1− Pr[B plays 2])

⇒ µ−i Pr[B plays 1] Pr[C plays 1] ≥
µ′−i Pr[B plays 1] Pr[C plays 1]

− δkPr[B plays 2] + δk

⇒ E[ui1] ≥ E[ui2] + δ.

But we have fixed a δ′-Nash equilibrium with δ′ < δ; hence the last equation implies that qi = 0.
But this quickly leads to a contradiction since, if qi = 0, then using Claim 1 we have

µ′−i = µ′ ≥ µ− 3δk ≥ µ− pi = µ−i,

where we also used that pi ≥ 3δk. The above inequality contradicts our assumption that µ−i >
µ′−i + δk. Hence, (17) must be satisfied. Using then µ′ ≤ µ+ 3δk (which is implied by Claim 1) we
get

qi ≤ pi + 4δk.
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As i was arbitrary in the above discussion, it follows that

qj ≤ pj + 4δk, for all j. (18)

Now fix i ∈ [k] again. Summing (18) over all j 6= i, we get that

µ′−i ≤ µ−i + 4δk2. (19)

Combining (17) and (19) we get
µ′−i = µ−i ± 4δk2.

2

To conclude the proof of Theorem 11, we combine Claims 1 and 3, as follows. For every player
i ∈ [k], we have from Claims 1 and 3 that in every δ′-Nash equilibrium with δ′ < δ,

µ′−i = µ−i ± 4δk2 and µ′ = µ± 3δk.

By combining these equations we get
qi = pi ± 7δk2.

A.2 The Lower Bound

Given Theorem 11, we can establish our lower bound.

Proof of Theorem 8: Let us fix any oblivious ε-approximation algorithm for anonymous games with
2 strategies and 3 player types. The algorithm comes together with a distribution over unordered
sets of mixed strategies—parametrized by the number of players n—which we denote by Dn.

We will consider the performance of the algorithm on the family of games specified in the
statement of Theorem 11 for the following setting of parameters:

k = b(1/ε)1/3c, δ = 1.01ε, P ∈ T kε

where Tε :=
{
j · 15ε1/3 j = 1, . . . , tε

}
, tε =

⌊
1

15
ε−1/3

⌋
.

For technical reasons, let us define the following notion of distance between P,Q ∈ T kε .

d(P,Q) :=

tε∑
j=1

∣∣∣vPj − vQj ∣∣∣.
where vP = (vP1 , v

P
2 , . . . , v

P
tε ) is a vector storing the frequencies of various elements of the set Tε in

the collection P, i.e. vPj := |{i i ∈ [k], pi = j ·15ε1/3}|. To find the distance between two collections
P,Q we compute the `1 distance of their frequency vectors. Notice in particular that this distance
must be an even number. We also need the following definition.

Definition 2. We say that two anonymous games G and G′ share an ε-Nash equilibrium in un-
ordered form if there exists an ε-Nash equilibrium σG of game G and an ε-Nash equilibrium σG′ of
game G′ such that σG and σG′ are equal as unordered sets of mixed strategies.

We show first the following about the shareability of ε-Nash equilibria among the games GP ,
P ∈ T kε .
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Claim 4. If, for P,Q ∈ T kε , d(P,Q) > 0, then there is no ε-Nash equilibrium that is shared between
the games GP and GQ in unordered form.

Proof of Claim 4: For all j, let us define the 7.07k2ε ball around probability j ·15ε1/3 in the natural
way:

Bj := [j · 15ε1/3 − 7.07k2ε, j · 15ε1/3 + 7.07k2ε].

Observe that for all j ≥ 2:

(j + 1) · 15ε1/3 − j · 15ε1/3 = 15ε1/3 > 2 · 7.07k2ε.

Hence, for all j, j′: Bj ∩B′j = ∅.
Now, let us consider any pair of ε-Nash equilibria σGP , σGQ of the games GP and GQ and let us

consider the vectors vσGP = (v
σGP
1 , . . . , v

σGP
tε ) and v

σGQ = (v
σGQ
1 , . . . , v

σGQ
tε ) whose j-th components

are defined as follows:

v
σGP
j =

 number of players who are
assigned a mixed strategy from

the set Bj in σGP

 ,

v
σGQ
j =

 number of players who are
assigned a mixed strategy from

the set Bj in σGQ

 .

It is not hard to see that Theorem 11 and our assumption d(P,Q) > 0 imply that ‖vσGP−vσGQ‖1 > 0,
hence σGP and σGQ cannot be permutations of each other. This concludes the proof. 2

Next, we show that there exists a large family of games such that no two members of the family
share an ε-Nash equilibrium.

Claim 5. There exists a subset T ⊆ T kε such that:

1. for every P,Q ∈ T : d(P,Q) > 0;

2. |T | ≥ 2
Ω
(
( 1
ε )

1/3
)
;

Proof of claim 5: The total number of distinct multi-sets of cardinality k with elements from Tε is(
tε + k − 1

k

)
.

Hence, it is easy to create a subset T ⊆ T kε such that:

• for every P,Q ∈ T : d(P,Q) > 0;

• |T | =
(
tε+k−1

k

)
.

Clearly, the set T satisfies Property 1 in the statement. For the cardinality bound we have:

|T | ≥
(
tε + k − 1

k

)
≥
(
tε + k − 1

k

)k
≥
(

1 +
1

15
− 2

k

)k
≥ 2

Ω
(
( 1
ε )

1/3
)
.
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2

Now let us consider the performance of the distribution Dk on the family of anonymous games
{GP}P∈T , where T is the set defined in Claim 5. By Claims 4 and 5, no two games in the family
share an ε-Nash equilibrium in unordered form. Hence, no matter what Dk is, there will be some
game in our family for which the probability that Dk samples an ε-Nash equilibrium of that game
is at most

1/|T | ≤ 2
−Ω

(
( 1
ε )

1/3
)
.

This concludes the proof of Theorem 8. 2

B The non-oblivious PTAS for Anonymous Games

B.1 Moment Search : Missing Details

We first describe in detail Step 3d of Moment Search.

3. (d) For each player i = 1, . . . , n, find a subset

Si ⊆
{

0,
1

k2
, . . . ,

k2 − 1

k2
, 1

}
of permitted mixed strategies for that player in an ε/2-Nash equilibrium, “conditioning”
on the total number of players playing mixed strategy 0 being t0, the total number of
players playing mixed strategy 1 being t1, and the mixed strategies of the players who
mix resulting in the power-sums µ1, . . . , µd and µ′1, . . . , µ

′
d. The way we compute the set

Si is as follows:

i. To determine whether 0 ∈ Si:
A. Find any set of mixed strategies q1, . . . , qts ⊆ { 1

k2
, 2
k2
, . . . , 1

2} such that
∑ts

ι=1 q
`
ι =

µ`, for all ` = 1, . . . , d. Find any set of mixed strategies r1, . . . , rtb ⊆ {1
2 + 1

k2
, 1

2 +
2
k2
, . . . , 1 − 1

k2
} such that

∑tb
ι=1 r

`
ι = µ′`, for all ` = 1, . . . , d. If such values do

not exist Fail.

Remark: An efficient algorithm to solve this optimization problem is given by
Claim 8.

B. Define the random variable

Y = (t0 − 1) · 0 +

ts∑
ι=1

Sι +

tb∑
ι=1

Bι + t1 · 1,

where the variables S1, . . . , Sts , B1, . . . , Btb are mutually independent with ex-
pectations E[Sι] = qι, for all ι = 1, . . . , ts, and E[Bι] = rι, for all ι = 1, . . . , tb.

C. Compute the expected payoff U i1 = E[ui1(Y )] and U i2 = E[ui2(Y )] of player i for
playing pure strategy 1 and 2 respectively, if the number of the other players
playing 2 is distributed identically to Y .

D. if U i1 ≥ U i2 − 3ε/4, then include 0 to the set Si, otherwise do not.
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ii. To determine whether 1 ∈ Si, follow the same procedure except now Y is defined as
follows

Y = t0 · 0 +

ts∑
ι=1

Sι +

tb∑
ι=1

Bι + (t1 − 1) · 1,

to account for the fact that we are testing for the candidate mixed strategy 1 for
player i. Also, the test that determines whether 1 ∈ Si is now whether U i2 ≥
U i1 − 3ε/4.

iii. For all j ∈ {1, . . . , k2/2}, to determine whether j/k2 ∈ Si do the following slightly
modified test:

A. Find any set of mixed strategies q1, . . . , qts−1 ⊆ { 1
k2
, 2
k2
, . . . , 1/2} such that∑ts−1

ι=1 q`ι = µ` − (j/k2)`, for all ` = 1, . . . , d. Find any set of mixed strate-
gies

r1, . . . , rtb ⊆
{

1

2
+

1

k2
,
1

2
+

2

k2
, . . . , 1− 1

k2

}
such that

∑tb
ι=1 r

`
ι = µ′`, for all ` = 1, . . . , d. If such values do not exist Fail.

B. Define the random variable

Y = t0 · 0 +

ts−1∑
ι=1

Sι +

tb∑
ι=1

Bι + t1 · 1,

where the variables S1, . . . , Sts−1, B1, . . . , Btb are mutually independent with
E[Sι] = qι, for all ι = 1, . . . , ts − 1, and E[Bι] = rι, for all ι = 1, . . . , tb.

C. Compute the expected payoff U i1 = E[ui1(Y )] and U i2 = E[ui2(Y )] of player i for
playing pure strategy 1 and 2 respectively, if the number of the other players
playing 2 is distributed identically to Y .

D. if U i1 ∈ [U i2− 3ε/4,U i2 + 3ε/4], then include j/k2 to the set Si, otherwise do not.

iv. For all j ∈ {(k2 + 2)/2, . . . , k2 − 1}, to determine whether j/k2 ∈ Si do the appro-
priate modifications to the method described in Step 3(d)iii.

B.2 The Analysis of Moment Search

Correctness The correctness of Moment Search follows from the following two claims.

Claim 6. If there exists an ε/2-Nash equilibrium in which t ≤ k3 players mix, and their mixed
strategies are integer multiples of 1/k2, then Moment Search will not fail, i.e. it will output a
set of mixed strategies (v1, . . . , vn).

Claim 7. If Moment Search outputs a set of mixed strategies (v1, . . . , vn), then these strategies
constitute an ε-Nash equilibrium.

Proof of Claim 6: Let (p1, . . . , pn) be an ε/2-Nash equilibrium in which t0 players use mixed strategy
0, t1 players use mixed strategy 1, and t ≤ k3 players mix, and their mixed strategies are integer
multiples of 1/k2. It suffices to show that there exist guesses for t0, t1, ts, tb, µ1, . . . , µd, µ

′
1, . . . , µ

′
d,

such that p1 ∈ S1, p2 ∈ S2,. . ., pn ∈ Sn. Indeed, let

I0 := {i|pi = 0}, Is := {i|pi ∈ (0, 1/2]},

Ib := {i|pi ∈ (1/2, 1)}, I1 := {i|pi = 1},
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and let us choose the following values for our guesses

t0 := |I0|, ts = |Is|, tb = |Ib|, t1 := |I1|

and, for all ` ∈ [d],

µ` =
∑
i∈Is

p`i , µ′` =
∑
i∈Ib

p`i .

We will show that for the guesses defined above pi ∈ Si, for all i. We distinguish the following
cases: i ∈ I0, i ∈ Is, i ∈ Ib, i ∈ I1. The proof for all cases proceeds in the same fashion, so we will
only argue the case i ∈ Is. In particular, we will show that in Step 3(d)iii of Moment Search the
test succeeds for j/k2 = pi.

At the equilibrium point (p1, . . . , pn), the number of players different than i who choose pure
strategy 2 is distributed identically to the random variable:

Z :=
∑

ι∈Is\{i}

Xι +
∑
ι∈Ib

Xι + t1 · 1,

where (Xι)ι∈Ib∪Is\{i} are mutually independent random indicators with expectations E[Xι] = pι for
all ι. Since (p1, . . . , pn) is an ε/2-Nash equilibrium where player i mixes it must be the case that

|E[ui1(Z)]− E[ui2(Z)]| ≤ ε/2. (20)

We will argue that, if in the above equation, we replace Z by Y , where Y is the random variable
defined in Step 3(d)iiiB of Moment Search, the inequality still holds with slightly updated upper
bound:

|E[ui1(Y )]− E[ui2(Y )]| ≤ 3ε/4. (21)

If (21) is established, the proof is completed since Step 3(d)iiiD will include j/k2 into the set Si.
Let S1, . . . , Sts−1, B1, . . . , Btb be the random variables with expectations q1, . . . , qts−1, r1, . . . , rtb

defined in Step 3(d)iiiB of Moment Search. Observe that, for all ` = 1, . . . , d,

ts−1∑
ι=1

q`ι = µ` − (j/k2)` =
∑

ι∈Is\{i}

p`ι ,

since pi = j/k2. Hence, by Theorem 9,∥∥∥∥∥∥
ts−1∑
ι=1

Sι −
∑

ι∈Is\{i}

Xι

∥∥∥∥∥∥
TV

≤ 20(d+ 1)1/42−(d+1)/2 ≤ ε/32. (22)

Via similar arguments and Theorem 9, we get∥∥∥∥∥∥
tb∑
ι=1

Bι −
∑
ι∈Ib

Xι

∥∥∥∥∥∥
TV

≤ ε/32. (23)

(22) and (23) imply using Lemma 1 that

‖Y − Z‖TV ≤
ε

16
. (24)
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Lemma 3 implies then that

|E[ui1(Y )]− E[ui1(Z)]| ≤ 2‖Y − Z‖TV ≤
ε

8
,

where we used (24). Similarly,

|E[ui2(Y )]− E[ui2(Z)]| ≤ 2‖Y − Z‖TV ≤
ε

8
.

Combining the above with (20) we get (21). This concludes the proof. 2

Proof of Claim 7: Let
I0 := {i|vi = 0}, Is := {i|vi ∈ (0, 1/2]},
Ib := {i|vi ∈ (1/2, 1)}, I1 := {i|vi = 1},

ts = |Is|, and tb = |Ib|.
Observe that the moment values that were guessed in Step 3c of Moment Search satisfy

µ` =
∑
i∈Is

v`i , µ′` =
∑
i∈Ib

v`i , for all ` = 1, . . . , d.

We will argue that (v1, . . . , vn) is an ε-Nash equilibrium. To do this we need to argue that,
for each player i, vi is an ε-best response to the strategies of her opponents. We distinguish the
following cases: i ∈ I0, i ∈ Is, i ∈ Ib and i ∈ I1. The proof for all cases proceeds in a similar
fashion, so we only present the argument for the case i ∈ Is.

Let vi = j/k2 for some j ∈ {1, . . . , k22 }. From the perspective of player i, the number of other
players who play pure strategy 2 in the mixed strategy profile (v1, . . . , vn) is distributed identically
to the random variable

Z :=
∑

ι∈[n]\{i}

Xι,

where (Xι)ι is a collection of mutually independent random indicators with expectations E[Xι] = vι
for all ι. To argue that vi is an ε-best response against the strategies of i’s opponents, we need to
show that

|E[ui1(Z)]− E[ui2(Z)]| ≤ ε. (25)

Let us go back to the execution of Step 3(d)iii in which the probability value j/k2 was inserted
into the set Si. Let q1, . . . , qts−1, r1, . . . , rtb be the values that were selected in Step 3(d)iiiA of that
execution, and let

Y =

ts−1∑
ι=1

Sι +

tb∑
ι=1

Bι + t1 · 1,

be the random variable defined in Step 3(d)iiiB, where the variables S1, . . . , Sts−1, B1, . . . , Btb are
mutually independent with expectations E[Sι] = qι, for all ι = 1, . . . , ts − 1, and E[Bι] = rι, for all
ι = 1, . . . , tb. Observe that the qι’s and rι’s where chosen by Step 3(d)iiiA so that the following are
satisfied

ts−1∑
ι=1

q`ι = µ` − (j/k2)` = µ` − v`i =
∑

ι∈Is\{i}

v`ι , for all ` ∈ [d], (26)

and

tb∑
ι=1

r`ι = µ′` =
∑
ι∈Ib

v`ι , for all ` = 1, . . . , d. (27)
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Equation (26) implies via Theorem 9 that∥∥∥∥∥∥
ts−1∑
ι=1

Sι −
∑

ι∈Is\{i}

Xι

∥∥∥∥∥∥
TV

≤ 20(d+ 1)1/42−(d+1)/2 ≤ ε/32. (28)

Equation (27) and Theorem 9 imply∥∥∥∥∥∥
tb∑
ι=1

Bι −
∑
ι∈Ib

Xι

∥∥∥∥∥∥
TV

≤ ε/32. (29)

(28) and (29) imply using Lemma 1 that

‖Y − Z‖TV ≤
ε

16
. (30)

Lemma 3 implies then that

|E[ui1(Y )]− E[ui1(Z)]| ≤ 2‖Y − Z‖TV ≤
ε

8
, (31)

where we used (30). Similarly,

|E[ui2(Y )]− E[ui2(Z)]| ≤ ‖Y − Z‖TV ≤
ε

8
. (32)

Moreover, notice that the random variable Y satisfies the following condition

|E[ui1(Y )]− E[ui2(Y )]| ≤ 3ε/4, (33)

since, in order for vi to be included into Si, the test in Step 3(d)iiiD of Moment Search must
have succeeded. Combining (31), (32) and (33) we get (25). This concludes the proof. 2

Computational Complexity We will argue that there is an implementation of Moment Search
that runs in time

U · poly(n) · (1/ε)O(log2(1/ε)),

where U is the number of bits required to represent a payoff value of the game. We already argued
in Section 7.1 that the number of guesses needed in Step 2 is O(n2) and that Step 3a can be
completed in time U · poly(n) · (1/ε) log2(1/ε). So we only need to pay attention to Steps 3b-3f.

Observe first that the number of possible guesses for ts, tb in Step 3b is at most O((1/ε)3).

Observe further that the number of possible guesses for µ` in Step 3c is at most t
(
k2

2

)`
(where

t ≤ k3 is the number of players who mix), so jointly the number of possible guesses for µ1, . . . , µd
is at most

d∏
`=1

t

(
k2

2

)`
= td

(
k2

2

)d(d+1)/2

=

(
1

ε

)O(log2 1
ε )
.

The same asymptotic upper bound applies to the total number of guesses for µ′1, . . . , µ
′
d. Given the

above the total number of guesses that Moment Search has to do in Steps 3b and 3c is(
1

ε

)O(log2 1
ε )
.
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We next argue that the running time required to complete Steps 3d, 3e, and 3f is

poly(n) · U ·
(

1

ε

)O(log2(1/ε))

.

For this we establish the following. We give its proof in the end of this section.

Claim 8. Given a collection of values µ1, . . . , µd, µ
′
1, . . . , µ

′
d, where, for all ` = 1, . . . , d,

µ`, µ
′
` ∈

{
0,

(
1

k2

)`
, 2

(
1

k2

)`
, . . . , B

(
k2

k2

)`}
,

for some B ∈ N, discrete sets T1, . . . , Tm ⊆
{

0, 1
k2
, 2
k2
, . . . , 1

}
, and four integers m0,m1 ≤ m,

ms,mb ≤ B, it is possible to solve the system of equations:

(Σ) :
∑

pi∈(0,1/2]

p`i = µ`, for all ` = 1, . . . , d,

∑
pi∈(1/2,1)

p`i = µ′`, for all ` = 1, . . . , d,

|{i|pi = 0}| = m0

|{i|pi = 1}| = m1

|{i|pi ∈ (0, 1/2]}| = ms

|{i|pi ∈ (1/2, 1)}| = mb

with respect to unknowns p1 ∈ T1, . . . , pm ∈ Tm, or to determine that no solution exists, in time

O(m3)BO(d)kO(d2).

Applying Claim 8 with m ≤ t, B ≤ t (where t ≤ k3 is the number of players who mix), m0 = 0,
m1 = 0, shows that Steps 3(d)iA, 3(d)iiiA can be completed in time

O(t3)tO(d)kO(d2) =

(
1

ε

)O(log2(1/ε))

.

Another application of Claim 8 with m = n, B ≤ t, m0 ≤ n, m1 ≤ n shows that Step 3e of
Moment Search can be completed in time

O(n3)tO(d)kO(d2) = O(n3) ·
(

1

ε

)O(log2(1/ε))

.

Finally, as we argued in the proof of Theorem 6, the computation of the expected utilities U i1 and
U i2 required in Steps 3(d)iC, 3(d)iiiC of Moment Search can be carried out with O(n3) operations
on numbers of at most O(n log(k2) + U) bits.

Therefore, the overall time required for the execution of Steps 3b-3f of Moment Search is

poly(n) · U ·
(

1

ε

)O(log2(1/ε))

.
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Proof of Claim 8: We use dynamic programming. Let us consider the following tensor of dimension
2d+ 5:

A(i, z0, z1, zs, zb; ν1, . . . , νd; ν
′
1, . . . , ν

′
d),

where i ∈ [m], z0, z1 ∈ {0, . . . ,m}, zs, zb ∈ {0, . . . , B} and

ν`, ν
′
` ∈

{
0,

(
1

k2

)`
, 2

(
1

k2

)`
, . . . , B

}
,

for ` = 1, . . . , d. The total number of cells in A is

m · (m+ 1)2 · (B + 1)2 ·

(
d∏
`=1

(Bk2` + 1)

)2

≤ O(m3)BO(d)k2d(d+1).

Every cell of A is assigned value 0 or 1, as follows:

A(i, z0, z1, zs, zb; ν1, . . . , νd, ν
′
1, . . . , ν

′
d) = 1

⇔



There exist p1 ∈ T1, . . ., pi ∈ Ti such
that |{j ≤ i|pj = 0}| = z0,
|{j ≤ i|pj = 1}| = z1,

|{j ≤ i|pj ∈ (0, 1/2]}| = zs,
|{j ≤ i|pj ∈ (1/2, 1)}| = zb,∑
j≤i:pj∈(0,1/2] p

`
j = ν`, for all

` = 1, . . . , d,
∑

j≤i:pj∈(1/2,1) p
`
j = ν ′`, for

all ` = 1, . . . , d.


.

It is easy to complete A working in layers of increasing i. We initialize all entries to value 0. Then,
the first layer A(1, ·, ·, ·, · ; ·, . . . , · ; ·, . . . , ·) can be completed easily as follows:

A(1, 1, 0, 0, 0; 0, 0, . . . , 0; 0, 0, . . . , 0) = 1⇔ 0 ∈ T1

A(1, 0, 1, 0, 0; 0, 0, . . . , 0; 0, 0 . . . , 0) = 1⇔ 1 ∈ T1

A(1, 0, 0, 1, 0; p, p2, . . . , pd; 0, . . . , 0) = 1⇔ p ∈ T1 ∩ (0, 1/2]

A(1, 0, 0, 0, 1; 0, . . . , 0; p, p2, . . . , pd) = 1⇔ p ∈ T1 ∩ (1/2, 1)

Inductively, to complete layer i+1, we consider all the non-zero entries of layer i and for every such
non-zero entry and for every vi+1 ∈ Ti+1, we find which entry of layer i+ 1 we would transition to
if we chose pi+1 = vi+1. We set that entry equal to 1 and we also save a pointer to this entry from
the corresponding entry of layer i, labeling that pointer with the value vi+1. The time we need to
complete layer i+ 1 is bounded by

|Ti+1|.(m+ 1)2BO(d)k2d(d+1) ≤ O(m2)BO(d)kO(d2).

Therefore, the overall time needed to complete A is

O(m3)BO(d)kO(d2).

After completing tensor A, it is easy to check if there exists a solution to (Σ). A solution exists
if and only if

A(m,m0,m1,ms,mb;µ1, . . . , µd;µ
′
1, . . . , µ

′
d) = 1,

and it can be found by tracing back the pointers from this cell of A. The overall running time is
dominated by the time needed to fill in A. 2
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