Intro to Bayesian Mechanism Design

Jason D. Hartline Northwestern University

October 20, 2012

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Internet Applications: file sharing, reputation systems, web search, web advertising, email, Internet auctions, congestion control, etc.

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Internet Applications: file sharing, reputation systems, web search, web advertising, email, Internet auctions, congestion control, etc.

General Theme: resource allocation.

Optimal Mechanism Design:

- single-item auction.
- objectives: social welfare vs. seller profit.
- characterization of Bayes-Nash equilibrium.
- consequences: solving for and optimizing over BNE.

Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

- one item for sale.
- n bidders (with unknown private values for item, v_1, \ldots, v_n)
- Bidders' objective: maximize utility = value price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

- one item for sale.
- n bidders (with unknown private values for item, v_1, \ldots, v_n)
- Bidders' objective: maximize utility = value price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:

- Maximize *social surplus*, i.e., the value of the winner.
- Maximize *seller profit*, i.e., the payment of the winner.

Objective 1: maximize social surplus

Example Auctions ____

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

Example Input: $\mathbf{b} = (2, 6, 4, 1).$

Example Auctions _

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

Second-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Example Input: $\mathbf{b} = (2, 6, 4, 1).$

Example Auctions _

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

Second-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Example Input: $\mathbf{b} = (2, 6, 4, 1).$

Questions:

- what are equilibrium strategies?
- what is equilibrium outcome?
- which has higher surplus in equilibrium?
- which has higher profit in equilibrium?

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.

Case 1:
$$v_i > t_i$$
 Case 2: $v_i < t_i$

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

How should bidder *i* bid?

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.

Result: Bidder *i*'s *dominant strategy* is to bid $b_i = v_i!$

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

How should bidder *i* bid?

- Let $t_i = \max_{j \neq i} b_j$. \Leftarrow "critical value"
- If $b_i > t_i$, bidder *i* wins and pays t_i ; otherwise loses.

Result: Bidder *i*'s *dominant strategy* is to bid $b_i = v_i!$

Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.

3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Second-price Auction

Solicit sealed bids. 2. Winner is highest bidder.
 Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

Second-price Auction

Solicit sealed bids. 2. Winner is highest bidder.
 Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

- bids = values (from Lemma).
- winner is highest bidder (by definition).
- \Rightarrow winner is bidder with highest valuation (optimal social surplus).

Second-price Auction

Solicit sealed bids. 2. Winner is highest bidder.
 Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

- bids = values (from Lemma).
- winner is highest bidder (by definition).
- \Rightarrow winner is bidder with highest valuation (optimal social surplus).

What about first-price auction?

Recall First-price Auction

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

How would you bid?

Recall First-price Auction

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

How would you bid?

Note: first-price auction has no DSE.

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Order Statistics: in expectation, uniform random variables evenly divide interval.

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Order Statistics: in expectation, uniform random variables evenly divide interval.

Example: two bidders (you and me), uniform values.

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

 $\mathbf{E}[\text{utility}(v, b)] = (v - b) \times \mathbf{Pr}[\text{you win}]$

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\mathsf{E}[\mathsf{utility}(v, b)] = (v - b) \times \underbrace{\mathsf{Pr}[\mathsf{you win}]}_{\mathsf{Pr}[\mathsf{my bid} \le b] = \mathsf{Pr}\left[\frac{1}{2}\mathsf{my value} \le b\right] = \mathsf{Pr}[\mathsf{my value} \le 2b] = 2b}$$

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{split} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq b] = \Pr[\frac{1}{2}\text{my value } \leq b] = \Pr[\text{my value } \leq 2b] = 2b} \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{split}$$

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v, b)] &= (v - b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq b] = \Pr[\frac{1}{2}\text{my value } \leq b] = \Pr[\text{my value } \leq 2b] = 2b} \\ &= (v - b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

• to maximize, take derivative $\frac{d}{db}$ and set to zero, solve

First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v, b)] &= (v - b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq b] = \Pr[\frac{1}{2}\text{my value } \leq b] = \Pr[\text{my value } \leq 2b] = 2b} \\ &= (v - b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

- to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v, b)] &= (v - b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq b] = \Pr[\frac{1}{2}\text{my value } \leq b] = \Pr[\text{my value } \leq 2b] = 2b} \\ &= (v - b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

- to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding "half of value" is equilibrium

First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v, b)] &= (v - b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq b] = \Pr[\frac{1}{2}\text{my value } \leq b] = \Pr[\text{my value } \leq 2b] = 2b} \\ &= (v - b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

- to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding "half of value" is equilibriumConclusion 2: bidder with highest value winsConclusion 3: first-price auction maximizes social surplus!

Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., $b_i = s_i(v_i)$.

Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., $b_i = s_i(v_i)$.

Defn: the *common prior assumption*: bidders' values are drawn from a known distribution, i.e., $v_i \sim F_i$.

Bayes-Nash equilibrium .

Defn: a strategy maps value to bid, i.e., $b_i = s_i(v_i)$.

Defn: the *common prior assumption*: bidders' values are drawn from a known distribution, i.e., $v_i \sim F_i$.

Notation:

• $F_i(z) = \Pr[v_i \le z]$ is *cumulative distribution function*, (e.g., $F_i(z) = z$ for uniform distribution)

•
$$f_i(z) = \frac{dF_i(z)}{dz}$$
 is probability density function,
(e.g., $f_i(z) = 1$ for uniform distribution)

Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., $b_i = s_i(v_i)$.

Defn: the *common prior assumption*: bidders' values are drawn from a known distribution, i.e., $v_i \sim F_i$.

Notation:

• $F_i(z) = \Pr[v_i \le z]$ is *cumulative distribution function*, (e.g., $F_i(z) = z$ for uniform distribution)

•
$$f_i(z) = \frac{dF_i(z)}{dz}$$
 is probability density function,
(e.g., $f_i(z) = 1$ for uniform distribution)

Definition: a *strategy profile* is in *Bayes-Nash Equilibrium (BNE)* if for all i, $s_i(v_i)$ is best response when others play $s_j(v_j)$ and $v_j \sim F_j$.

Surplus Maximization Conclusions

Conclusions:

- second-price auction maximizes surplus in DSE regardless of distribution.
- first-price auction maximize surplus in BNE for i.i.d. distributions.

Surplus Maximization Conclusions

Conclusions:

- second-price auction maximizes surplus in DSE regardless of distribution.
- first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.

Surplus Maximization Conclusions

Conclusions:

- second-price auction maximizes surplus in DSE regardless of distribution.
- first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.

Questions?

Objective 2: maximize seller profit

(other objectives are similar)

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

Example Scenario: two bidders, uniform values

- draw values from unit interval.
- Sort values.
- In expectation, values evenly divide unit interval.

Example Scenario: two bidders, uniform values

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\operatorname{Profit}] = \mathbf{E}[v_2]$

Example Scenario: two bidders, uniform values

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\mathbf{Profit}] = \mathbf{E}[v_2] = 1/3.$

An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_2] = 1/3.$

What is profit of first-price auction?

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_2] = 1/3.$

What is profit of first-price auction?

• $\mathbf{E}[\mathbf{Profit}] = \mathbf{E}[v_1]/2 = 1/3.$

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_2] = 1/3.$

What is profit of first-price auction?

• $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_1]/2 = 1/3.$

Surprising Result: second-price and first-price auctions have same expected profit.

Can we get more profit?

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

- draw values from unit interval.
- Sort values, $v_1 \ge v_2$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

• Sort values,
$$v_1 \ge v_2$$

Case Analysis: $\Pr[\text{Case } i]$ $E[\text{Profit}]$
Case 1: $\frac{1}{2} > v_1 \ge v_2$
Case 2: $v_1 \ge v_2 \ge \frac{1}{2}$
Case 3: $v_1 \ge \frac{1}{2} > v_2$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

• Sort values,
$$v_1 \ge v_2$$

Case Analysis: $\Pr[\text{Case } i]$ $E[\text{Profit}]$
Case 1: $\frac{1}{2} > v_1 \ge v_2$ $1/4$
Case 2: $v_1 \ge v_2 \ge \frac{1}{2}$ $1/4$
Case 3: $v_1 \ge \frac{1}{2} > v_2$ $1/2$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

• Sort values,
$$v_1 \ge v_2$$

Case Analysis: $\Pr[\text{Case } i]$ $E[\text{Profit}]$
Case 1: $\frac{1}{2} > v_1 \ge v_2$ $1/4$ 0
Case 2: $v_1 \ge v_2 \ge \frac{1}{2}$ $1/4$ $E[v_2 | \text{ Case } 2]$
Case 3: $v_1 \ge \frac{1}{2} > v_2$ $1/2$ $\frac{1}{2}$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $rac{1}{2}$ on two bidders U[0,1]?

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

Observations:

- pretending to value the good increases seller profit.
- optimal profit depends on distribution.

Observations:

- pretending to value the good increases seller profit.
- optimal profit depends on distribution.

Questions?

Bayes-Nash Equilibrium Characterization and Consequences

- solving for BNE
- optimizing over BNE

Notation:

- **x** is an allocation, x_i the allocation for *i*.
- $\mathbf{x}(\mathbf{v})$ is BNE allocation of mech. on valuations \mathbf{v} .

•
$$\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n).$$

Notation:

- **x** is an allocation, x_i the allocation for *i*.
- $\mathbf{x}(\mathbf{v})$ is BNE allocation of mech. on valuations \mathbf{v} .
- $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n).$
- $x_i(v_i) = \mathbf{E}_{\mathbf{v}_{-i}}[x_i(v_i, \mathbf{v}_{-i})]$. (Agent *i*'s interim prob. of allocation with \mathbf{v}_{-i} from \mathbf{F}_{-i})

Notation:

- **x** is an allocation, x_i the allocation for *i*.
- $\mathbf{x}(\mathbf{v})$ is BNE allocation of mech. on valuations \mathbf{v} .
- $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n).$
- $x_i(v_i) = \mathbf{E}_{\mathbf{v}_{-i}}[x_i(v_i, \mathbf{v}_{-i})]$. (Agent *i*'s interim prob. of allocation with \mathbf{v}_{-i} from \mathbf{F}_{-i})

Analogously, define \mathbf{p} , $\mathbf{p}(\mathbf{v})$, and $p_i(v_i)$ for payments.

Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .

Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .

Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .

Characterization of BNE _

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .

Characterization of BNE _

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .

Characterization of BNE _

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .

2. payment identity (PI): $p_i(v_i) = v_i x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$. and usually $p_i(0) = 0$.

Consequence: *(revenue equivalence)* in BNE, auctions with same outcome have same revenue (e.g., first and second-price auctions)

Questions?

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- \Rightarrow same expected payments as second-price auction.

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- \Rightarrow same expected payments as second-price auction.
- 2. What are equilibrium strategies?

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- \Rightarrow same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $p(v) = \Pr[v \text{ wins}] \times b(v)$ (because first-price)

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- \Rightarrow same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $p(v) = \Pr[v \text{ wins}] \times b(v)$ (because first-price)
 - $p(v) = \mathbf{E}[$ expected second-price payment | v] (by rev. equiv.)

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- \Rightarrow same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $p(v) = \Pr[v \text{ wins}] \times b(v)$ (because first-price)
 - $p(v) = \mathbf{E}[$ expected second-price payment |v| (by rev. equiv.) = $\mathbf{Pr}[v \text{ wins}] \times \mathbf{E}[$ second highest value |v| wins]

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- \Rightarrow same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $p(v) = \Pr[v \text{ wins}] \times b(v)$ (because first-price)
 - $p(v) = \mathbf{E}[$ expected second-price payment |v| (by rev. equiv.) = $\mathbf{Pr}[v \text{ wins}] \times \mathbf{E}[$ second highest value |v| wins]

 $\Rightarrow b(v) = \mathbf{E}[\text{second highest value } \mid v \text{ wins}]$

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- \Rightarrow same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $p(v) = \Pr[v \text{ wins}] \times b(v)$ (because first-price)
 - $p(v) = \mathbf{E}[$ expected second-price payment |v| (by rev. equiv.) = $\mathbf{Pr}[v \text{ wins}] \times \mathbf{E}[$ second highest value |v| wins]
 - $\Rightarrow b(v) = \mathbf{E}[\text{second highest value } | v \text{ wins}]$ (e.g., for two uniform bidders: b(v) = v/2.)

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- \Rightarrow same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $p(v) = \Pr[v \text{ wins}] \times b(v)$ (because first-price)
 - $p(v) = \mathbf{E}[$ expected second-price payment |v| (by rev. equiv.) = $\mathbf{Pr}[v \text{ wins}] \times \mathbf{E}[$ second highest value |v| wins]
 - $\Rightarrow b(v) = \mathbf{E}[\text{second highest value } | v \text{ wins}]$ (e.g., for two uniform bidders: b(v) = v/2.)
- 3. Verify guess and BNE: b(v) continuous, strictly increasing, symmetric.

Questions?

Defn: virtual value for i is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$.

Defn: virtual value for
$$i$$
 is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$.

Lemma: [Myerson 81] In BNE, $\mathbf{E}[p_i(v_i)] = \mathbf{E}[\phi_i(v_i)x_i(v_i)]$

Optimizing BNE

Defn: virtual value for
$$i$$
 is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$

Lemma: [Myerson 81] In BNE, $\mathbf{E}[p_i(v_i)] = \mathbf{E}[\phi_i(v_i)x_i(v_i)]$ General Approach:

• optimize revenue without incentive constraints (i.e., monotonicity).

 \Rightarrow winner is agent with highest positive virtual value.

• check to see if incentive constraints are satisfied.

 \Rightarrow if $\phi_i(\cdot)$ is monotone then mechanism is monotone.

Defn: virtual value for
$$i$$
 is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$

Lemma: [Myerson 81] In BNE, $E[p_i(v_i)] = E[\phi_i(v_i)x_i(v_i)]$ General Approach:

• optimize revenue without incentive constraints (i.e., monotonicity).

 \Rightarrow winner is agent with highest positive virtual value.

• check to see if incentive constraints are satisfied.

 \Rightarrow if $\phi_i(\cdot)$ is monotone then mechanism is monotone.

Defn: distribution F_i is *regular* if $\phi_i(\cdot)$ is monotone.

Defn: virtual value for
$$i$$
 is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$

Lemma: [Myerson 81] In BNE, $E[p_i(v_i)] = E[\phi_i(v_i)x_i(v_i)]$ General Approach:

• optimize revenue without incentive constraints (i.e., monotonicity).

 \Rightarrow winner is agent with highest positive virtual value.

• check to see if incentive constraints are satisfied.

 \Rightarrow if $\phi_i(\cdot)$ is monotone then mechanism is monotone.

Defn: distribution F_i is *regular* if $\phi_i(\cdot)$ is monotone.

Thm: [Myerson 81] If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

Defn: virtual value for
$$i$$
 is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$

Lemma: [Myerson 81] In BNE, $E[p_i(v_i)] = E[\phi_i(v_i)x_i(v_i)]$ General Approach:

• optimize revenue without incentive constraints (i.e., monotonicity).

 \Rightarrow winner is agent with highest positive virtual value.

• check to see if incentive constraints are satisfied.

 \Rightarrow if $\phi_i(\cdot)$ is monotone then mechanism is monotone.

Defn: distribution F_i is *regular* if $\phi_i(\cdot)$ is monotone.

Thm: [Myerson 81] If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

Proof: expected virtual valuation of winner = expected payment.

Recall Lemma: In BNE, $\mathbf{E}[p_i(v_i)] = \mathbf{E}\left[\left(v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}\right) x_i(v_i)\right]$.

Proof Sketch:

- Use characterization: $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(v) dv$.
- Use definition of expectation (integrate payment \times density).
- Swap order of integration.
- Simplify.

Recall Thm: If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

Recall Thm: If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner *i* satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$

Recall Thm: If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner *i* satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$

• I.i.d. implies
$$\phi_i = \phi_j = \phi$$
.

Recall Thm: If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner *i* satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$
- I.i.d. implies $\phi_i = \phi_j = \phi$.
- So, $v_i \ge \max(v_j, \phi^{-1}(0))$.

Recall Thm: If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner *i* satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$

• I.i.d. implies
$$\phi_i = \phi_j = \phi$$
.

• So,
$$v_i \ge \max(v_j, \phi^{-1}(0))$$
.

• So, "critical value" = payment = $\max(v_j, \phi^{-1}(0))$

Recall Thm: If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner *i* satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$

• I.i.d. implies
$$\phi_i = \phi_j = \phi$$
.

• So,
$$v_i \ge \max(v_j, \phi^{-1}(0))$$
.

- So, "critical value" = payment = $\max(v_j, \phi^{-1}(0))$
- What is this auction?

Recall Thm: If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner *i* satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$
- I.i.d. implies $\phi_i = \phi_j = \phi$.
- So, $v_i \ge \max(v_j, \phi^{-1}(0))$.
- So, "critical value" = payment = $\max(v_j, \phi^{-1}(0))$
- What is this auction? second-price auction with reserve $\phi^{-1}(0)!$

Recall Thm: If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner *i* satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$

• I.i.d. implies
$$\phi_i = \phi_j = \phi$$
.

• So,
$$v_i \ge \max(v_j, \phi^{-1}(0))$$
.

- So, "critical value" = payment = $\max(v_j, \phi^{-1}(0))$
- What is this auction? second-price auction with reserve $\phi^{-1}(0)!$

What is optimal single-item auction for U[0,1]?

. Optimal Auction for U[0,1] _____

Optimal auction for U[0, 1]:

- $F(v_i) = v_i$.
- $f(v_i) = 1$.

• So,
$$\phi(v_i) = v_i - \frac{1 - F(v_i)}{f(v_i)} = 2v_i - 1.$$

• So,
$$\phi^{-1}(0) = 1/2$$
.

Optimal Auction for U[0,1] _____

Optimal auction for U[0, 1]:

- $F(v_i) = v_i$.
- $f(v_i) = 1$.

• So,
$$\phi(v_i) = v_i - \frac{1 - F(v_i)}{f(v_i)} = 2v_i - 1.$$

- So, $\phi^{-1}(0) = 1/2$.
- So, optimal auction is Second-price Auction with reserve 1/2!

Optimal Mechanisms Conclusions

Conclusions:

- expected virtual value = expected revenue
- optimal mechanism maximizes virtual surplus.
- optimal auction depends on distribution.
- i.i.d., regular distributions: second-price with reserve is optimal.
- theory is "descriptive".

Questions?

Bayes-Nash Equilibrium Characterization Proof

Proof Overview _____

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .

2. payment identity (PI): $p_i(v_i) = v_i x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$. and usually $p_i(0) = 0$.

Proof Overview:

- \implies 1. BNE \Leftarrow M & PI
 - 2. BNE \Rightarrow M
 - 3. BNE \Rightarrow PI

\blacksquare BNE \Leftarrow M & PI $_$

Claim: BNE \Leftarrow M & PI Case 1: mimicking $z > v_i$

\blacksquare BNE \Leftarrow M & PI $_$

Claim: BNE \Leftarrow M & PI Case 1: mimicking $z > v_i$ Defn: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$

Claim: BNE \Leftarrow M & PI Case 1: mimicking $z > v_i$ Defn: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$ Defn: loss = $u_i(v_i, v_i) - u_i(v_i, z)$.

Claim: BNE \Leftarrow M & PI Case 1: mimicking $z > v_i$ Defn: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$ Defn: loss $= u_i(v_i, v_i) - u_i(v_i, z)$.

Claim: BNE \Leftarrow M & PI Case 1: mimicking $z > v_i$ Defn: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$ Defn: loss $= u_i(v_i, v_i) - u_i(v_i, z)$.

BAYESIAN MD - OCTOBER 20, 2012

30

Claim: BNE \Leftarrow M & PI Case 1: mimicking $z > v_i$ Defn: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$ Defn: loss $= u_i(v_i, v_i) - u_i(v_i, z)$.

BAYESIAN MD - OCTOBER 20, 2012

30

Claim: BNE \Leftarrow M & PI Case 1: mimicking $z > v_i$ Defn: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$ Defn: loss $= u_i(v_i, v_i) - u_i(v_i, z)$.

30

BAYESIAN MD - OCTOBER 20, 2012

30

Claim: BNE \Leftarrow M & PI Case 2: mimicking $z < v_i$

Claim: BNE \Leftarrow M & PI Case 2: mimicking $z < v_i$ Recall: loss = $u_i(v_i, v_i) - u_i(v_i, z)$. Recall: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$

BNE ⇐ M & PI (cont) _____

Claim: BNE \Leftarrow M & PI Case 2: mimicking $z < v_i$ Recall: loss = $u_i(v_i, v_i) - u_i(v_i, z)$. Recall: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$

BNE ⇐ M & PI (cont) _____

Claim: BNE \Leftarrow M & PI Case 2: mimicking $z < v_i$ Recall: loss = $u_i(v_i, v_i) - u_i(v_i, z)$. Recall: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$

Claim: BNE \Leftarrow M & PI Case 2: mimicking $z < v_i$ Recall: loss = $u_i(v_i, v_i) - u_i(v_i, z)$. Recall: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$

BAYESIAN MD - OCTOBER 20, 2012

Claim: BNE \Leftarrow M & PI Case 2: mimicking $z < v_i$ Recall: loss = $u_i(v_i, v_i) - u_i(v_i, z)$. Recall: $u_i(v_i, z) = v_i x_i(z) - p_i(z)$

BAYESIAN MD - OCTOBER 20, 2012

31

BAYESIAN MD - OCTOBER 20, 2012

31

Proof Overview _____

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .

2. payment identity (PI): $p_i(v_i) = v_i x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$. and usually $p_i(0) = 0$.

Proof Overview:

1. BNE \Leftarrow M & PI

 \implies 2. BNE \Rightarrow M

3. BNE \Rightarrow PI

• BNE $\Rightarrow u_i(v_i, v_i) \ge u_i(v_i, z)$

\blacksquare BNE \Rightarrow M \blacksquare

Claim: BNE \Rightarrow M.

- BNE $\Rightarrow u_i(v_i, v_i) \ge u_i(v_i, z)$
- Take $v_i = z'$ and z = z'' and vice versa:

$$z''x_i(z'') - p_i(z'') \ge z''x_i(z') - p_i(z')$$
$$z'x_i(z') - p_i(z') \ge z'x_i(z'') - p_i(z'')$$

$_$ BNE \Rightarrow M _____

Claim: BNE \Rightarrow M.

- BNE \Rightarrow $u_i(v_i, v_i) \ge u_i(v_i, z)$
- Take $v_i = z'$ and z = z'' and vice versa:

$$z''x_i(z'') - p_i(z'') \ge z''x_i(z') - p_i(z')$$
$$z'x_i(z') - p_i(z') \ge z'x_i(z'') - p_i(z'')$$

• Add and cancel payments:

$$z''x_i(z'') + z'x_i(z') \ge z''x_i(z') + z'x_i(z'')$$

\blacksquare BNE \Rightarrow M _____

Claim: BNE \Rightarrow M.

- BNE \Rightarrow $u_i(v_i, v_i) \ge u_i(v_i, z)$
- Take $v_i = z'$ and z = z'' and vice versa:

$$z''x_i(z'') - p_i(z'') \ge z''x_i(z') - p_i(z')$$
$$z'x_i(z') - p_i(z') \ge z'x_i(z'') - p_i(z'')$$

• Add and cancel payments:

$$z''x_i(z'') + z'x_i(z') \ge z''x_i(z') + z'x_i(z'')$$

• Regroup:

$$(z'' - z')(x_i(z'') - x_i(z')) \ge 0$$

\blacksquare BNE \Rightarrow M _____

Claim: BNE \Rightarrow M.

- BNE $\Rightarrow u_i(v_i, v_i) \ge u_i(v_i, z)$
- Take $v_i = z'$ and z = z'' and vice versa:

$$z''x_i(z'') - p_i(z'') \ge z''x_i(z') - p_i(z')$$
$$z'x_i(z') - p_i(z') \ge z'x_i(z'') - p_i(z'')$$

• Add and cancel payments:

$$z''x_i(z'') + z'x_i(z') \ge z''x_i(z') + z'x_i(z'')$$

• Regroup:

$$(z'' - z')(x_i(z'') - x_i(z')) \ge 0$$

• So $x_i(z)$ is monotone:

$$z'' - z' > 0 \Rightarrow x(z'') \ge x(z')$$

Proof Overview _____

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .

2. payment identity (PI): $p_i(v_i) = v_i x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$. and usually $p_i(0) = 0$.

Proof Overview:

- 1. BNE \Leftarrow M & PI
- 2. BNE \Rightarrow M

 \implies 3. BNE \Rightarrow PI

• BNE $\Rightarrow u_i(v_i, v_i) \ge u_i(v_i, z)$

- BNE $\Rightarrow u_i(v_i, v_i) \ge u_i(v_i, z)$
- Take $v_i = z'$ and z = z'' and vice versa:

$$z''x_i(z'') - p_i(z'') \ge z''x_i(z') - p_i(z')$$
$$z'x_i(z') - p_i(z') \ge z'x_i(z'') - p_i(z'')$$

- BNE \Rightarrow $u_i(v_i, v_i) \ge u_i(v_i, z)$
- Take $v_i = z'$ and z = z'' and vice versa:

$$z''x_{i}(z'') - p_{i}(z'') \ge z''x_{i}(z') - p_{i}(z')$$
$$z'x_{i}(z') - p_{i}(z') \ge z'x_{i}(z'') - p_{i}(z'')$$

• solve for $p_i(z'') - p_i(z')$:

$$z''x_i(z'') - z''x_i(z') \ge p_i(z'') - p_i(z') \ge z'x_i(z'') - z'x_i(z')$$

- BNE \Rightarrow $u_i(v_i, v_i) \ge u_i(v_i, z)$
- Take $v_i = z'$ and z = z'' and vice versa:

$$z''x_{i}(z'') - p_{i}(z'') \ge z''x_{i}(z') - p_{i}(z')$$
$$z'x_{i}(z') - p_{i}(z') \ge z'x_{i}(z'') - p_{i}(z'')$$

• solve for $p_i(z'') - p_i(z')$:

$$z''x_i(z'') - z''x_i(z') \ge p_i(z'') - p_i(z') \ge z'x_i(z'') - z'x_i(z')$$

- BNE \Rightarrow $u_i(v_i, v_i) \ge u_i(v_i, z)$
- Take $v_i = z'$ and z = z'' and vice versa:

$$z''x_{i}(z'') - p_{i}(z'') \ge z''x_{i}(z') - p_{i}(z')$$
$$z'x_{i}(z') - p_{i}(z') \ge z'x_{i}(z'') - p_{i}(z'')$$

• solve for $p_i(z'') - p_i(z')$:

$$z''x_i(z'') - z''x_i(z') \ge p_i(z'') - p_i(z') \ge z'x_i(z'') - z'x_i(z')$$

lower bound

- BNE \Rightarrow $u_i(v_i, v_i) \ge u_i(v_i, z)$
- Take $v_i = z'$ and z = z'' and vice versa:

$$z''x_{i}(z'') - p_{i}(z'') \ge z''x_{i}(z') - p_{i}(z')$$
$$z'x_{i}(z') - p_{i}(z') \ge z'x_{i}(z'') - p_{i}(z'')$$

• solve for $p_i(z'') - p_i(z')$:

$$z''x_i(z'') - z''x_i(z') \ge p_i(z'') - p_i(z') \ge z'x_i(z'') - z'x_i(z')$$

Thm: a mechanism and strategy profile is in BNE iff

- 1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .
- 2. payment identity (PI): $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$. and usually $p_i(0) = 0$.

Questions?

Workshop Overview _____

- Are there simple mechanisms that are approximately optimal? Are there prior-independent mechanisms that are approximately optimal?
 [Roughgarden 10am & 11am]
- What are optimal auctions for multi-dimensional agent preferences, is it tractable to compute? [Daskalakis 11:30am]
- Are there black-box reductions for converting generic algorithms to mechanisms? [Immorlica 2:30pm]
- Are there good mechanisms for non-linear objectives (e.g., makespan)?
 [Chawla 3:30pm & 4:30pm]
- Are practical mechanisms good in equilibrium (e.g., "price of anarchy")? [Tardos 5pm]