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Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
outcomes?
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Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
outcomes?

Internet Applications: file sharing, reputation systems, web search,
web advertising, email, Internet auctions, congestion control, etc.

General Theme: resource allocation.
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Overview

Optimal Mechanism Design:

• single-item auction.

• objectives: social welfare vs. seller profit.

• characterization of Bayes-Nash equilibrium.

• consequences: solving for and optimizing over BNE.
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Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

• one item for sale.

• n bidders (with unknown private values for item, v1, . . . , vn)

• Bidders’ objective: maximize utility = value − price paid.

Design:

• Auction to solicit bids and choose winner and payments.
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Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

• one item for sale.

• n bidders (with unknown private values for item, v1, . . . , vn)

• Bidders’ objective: maximize utility = value − price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:

• Maximize social surplus, i.e., the value of the winner.

• Maximize seller profit, i.e., the payment of the winner.
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Objective 1: maximize social surplus



Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.
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Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

Example Input: b = (2, 6, 4, 1).
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Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner the
second-highest bid.

Example Input: b = (2, 6, 4, 1).
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Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner the
second-highest bid.

Example Input: b = (2, 6, 4, 1).

Questions:

• what are equilibrium strategies?

• what is equilibrium outcome?

• which has higher surplus in equilibrium?

• which has higher profit in equilibrium?
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti
vi

U
til

ity

Bid Value

0

vi−ti

ti
vi
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti
vi

U
til

ity

Bid Value

0

vi−ti

ti
vi

Result: Bidder i’s dominant strategy is to bid bi = vi!
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj . ⇐ “critical value”

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti
vi

U
til

ity

Bid Value

0

vi−ti

ti
vi

Result: Bidder i’s dominant strategy is to bid bi = vi!
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.
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Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

• bids = values (from Lemma).

• winner is highest bidder (by definition).

⇒ winner is bidder with highest valuation (optimal social surplus).
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

• bids = values (from Lemma).

• winner is highest bidder (by definition).

⇒ winner is bidder with highest valuation (optimal social surplus).

What about first-price auction?
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Recall First-price Auction

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

How would you bid?
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Recall First-price Auction

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

How would you bid?

Note: first-price auction has no DSE.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Order Statistics: in expectation, uniform random variables evenly
divide interval.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Order Statistics: in expectation, uniform random variables evenly
divide interval.

0 1
E[v2] E[v1]

6 6
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.
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Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.
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Example: two bidders (you and me), uniform values.
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding “half of value” is equilibrium

BAYESIAN MD – OCTOBER 20, 2012
10



First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding “half of value” is equilibrium
Conclusion 2: bidder with highest value wins
Conclusion 3: first-price auction maximizes social surplus!
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).

Defn: the common prior assumption: bidders’ values are drawn from a
known distribution, i.e., vi ∼ Fi.
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).

Defn: the common prior assumption: bidders’ values are drawn from a
known distribution, i.e., vi ∼ Fi.

Notation:

• Fi(z) = Pr[vi ≤ z] is cumulative distribution function,
(e.g., Fi(z) = z for uniform distribution)

• fi(z) = dFi(z)
dz

is probability density function,

(e.g., fi(z) = 1 for uniform distribution)
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).

Defn: the common prior assumption: bidders’ values are drawn from a
known distribution, i.e., vi ∼ Fi.

Notation:

• Fi(z) = Pr[vi ≤ z] is cumulative distribution function,
(e.g., Fi(z) = z for uniform distribution)

• fi(z) = dFi(z)
dz

is probability density function,

(e.g., fi(z) = 1 for uniform distribution)

Definition: a strategy profile is in Bayes-Nash Equilibrium (BNE) if for
all i, si(vi) is best response when others play sj(vj) and vj ∼ Fj .
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Surplus Maximization Conclusions

Conclusions:

• second-price auction maximizes surplus in DSE regardless of
distribution.

• first-price auction maximize surplus in BNE for i.i.d. distributions.
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Surplus Maximization Conclusions

Conclusions:

• second-price auction maximizes surplus in DSE regardless of
distribution.

• first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.
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Surplus Maximization Conclusions

Conclusions:

• second-price auction maximizes surplus in DSE regardless of
distribution.

• first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.

Questions?
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Objective 2: maximize seller profit

(other objectives are similar)



An example

Example Scenario: two bidders, uniform values
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1
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Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1• Sort values.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
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• In expectation, values evenly divide unit interval.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2]
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

What is profit of first-price auction?
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

What is profit of first-price auction?

• E[Profit] = E[v1] /2 = 1/3.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

What is profit of first-price auction?

• E[Profit] = E[v1] /2 = 1/3.

Surprising Result: second-price and first-price auctions have same
expected profit.

Can we get more profit?
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2

Case 2: v1 ≥ v2 ≥ 1
2

Case 3: v1 ≥ 1
2 > v2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4

Case 2: v1 ≥ v2 ≥ 1
2 1/4

Case 3: v1 ≥ 1
2 > v2 1/2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1
2 1/4 E[v2 | Case 2]

Case 3: v1 ≥ 1
2 > v2 1/2 1

2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.
0 1v2 v1

6 6
• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1
2 1/4 E[v2 | Case 2] = 2

3

Case 3: v1 ≥ 1
2 > v2 1/2 1

2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.
0 1v2 v1

6 6
• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1
2 1/4 E[v2 | Case 2] = 2

3

Case 3: v1 ≥ 1
2 > v2 1/2 1

2

E[profit of 2nd-price with reserve] = 1
4 · 0 + 1

4 · 2
3 + 1

2 · 1
2 = 5

12
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.
0 1v2 v1

6 6
• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4 0

Case 2: v1 ≥ v2 ≥ 1
2 1/4 E[v2 | Case 2] = 2

3

Case 3: v1 ≥ 1
2 > v2 1/2 1

2

E[profit of 2nd-price with reserve] = 1
4 · 0 + 1

4 · 2
3 + 1

2 · 1
2 = 5

12
≥ E[profit of 2nd-price] = 1

3 .
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Profit Maximization Observations

Observations:

• pretending to value the good increases seller profit.

• optimal profit depends on distribution.
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Profit Maximization Observations

Observations:

• pretending to value the good increases seller profit.

• optimal profit depends on distribution.

Questions?
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Bayes-Nash Equilibrium Characterization and Consequences

• solving for BNE

• optimizing over BNE



Notation

Notation:

• x is an allocation, xi the allocation for i.

• x(v) is BNE allocation of mech. on valuations v.

• v i = (v1, . . . , vi−1, ?, vi+1, . . . , vn).
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Notation

Notation:

• x is an allocation, xi the allocation for i.

• x(v) is BNE allocation of mech. on valuations v.

• v i = (v1, . . . , vi−1, ?, vi+1, . . . , vn).

• xi(vi) = Ev−i
[xi(vi,v−i)] .

(Agent i’s interim prob. of allocation with v−i from F−i)
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Notation

Notation:

• x is an allocation, xi the allocation for i.

• x(v) is BNE allocation of mech. on valuations v.

• v i = (v1, . . . , vi−1, ?, vi+1, . . . , vn).

• xi(vi) = Ev−i
[xi(vi,v−i)] .

(Agent i’s interim prob. of allocation with v−i from F−i)

Analogously, define p, p(v), and pi(vi) for payments.
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Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.
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Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Payment

vi

xi(vi)

vi

xi(vi)

Surplus Utility

vi

xi(vi)

Consequence: (revenue equivalence) in BNE, auctions with same
outcome have same revenue (e.g., first and second-price auctions)
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Questions?



Solving for BNE

Solving for equilbrium:

1. What happens in first-price auction equilibrium?
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• p(v) = Pr[v wins] × b(v) (because first-price)

• p(v) = E[expected second-price payment | v] (by rev. equiv.)

p(v) = Pr[v wins] × E[second highest value | v wins]

⇒ b(v) = E[second highest value | v wins]
(e.g., for two uniform bidders: b(v) = v/2.)
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Solving for BNE

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more

⇒ agents ranked by value

⇒ same outcome as second-price auction.

⇒ same expected payments as second-price auction.

2. What are equilibrium strategies?

• p(v) = Pr[v wins] × b(v) (because first-price)

• p(v) = E[expected second-price payment | v] (by rev. equiv.)

p(v) = Pr[v wins] × E[second highest value | v wins]

⇒ b(v) = E[second highest value | v wins]
(e.g., for two uniform bidders: b(v) = v/2.)

3. Verify guess and BNE: b(v) continuous, strictly increasing,
symmetric.
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Questions?



Optimizing BNE

Defn: virtual value for i is φi(vi) = vi −
1−Fi(vi)

fi(vi)
.
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Optimizing BNE

Defn: virtual value for i is φi(vi) = vi −
1−Fi(vi)

fi(vi)
.

Lemma: [Myerson 81] In BNE, E[pi(vi)] = E[φi(vi)xi(vi)]
General Approach:

• optimize revenue without incentive constraints (i.e., monotonicity).

⇒ winner is agent with highest positive virtual value.

• check to see if incentive constraints are satisfied.

⇒ if φi(·) is monotone then mechanism is monotone.

Defn: distribution Fi is regular if φi(·) is monotone.

Thm: [Myerson 81] If F is regular, optimal auction is to sell item to
bidder with highest positive virtual valuation.

Proof: expected virtual valuation of winner = expected payment.
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Proof of Lemma

Recall Lemma: In BNE, E[pi(vi)] = E
[(

vi −
1−Fi(vi)

fi(vi)

)

xi(vi)
]

.

Proof Sketch:

• Use characterization: pi(vi) = vixi(vi) −
∫ vi

0
xi(v)dv.

• Use definition of expectation (integrate payment × density).

• Swap order of integration.

• Simplify.
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Interpretation

Recall Thm: If F is regular, optimal auction is to sell item to bidder with
highest positive virtual valuation.

What does this mean in i.i.d. case?
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Interpretation

Recall Thm: If F is regular, optimal auction is to sell item to bidder with
highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner i satisfies φi(vi) ≥ max(φj(vj), 0)

• I.i.d. implies φi = φj = φ.

• So, vi ≥ max(vj , φ
−1(0)).

• So, “critical value” = payment = max(vj , φ
−1(0))

• What is this auction? second-price auction with reserve φ−1(0)!

What is optimal single-item auction for U [0, 1]?
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Optimal Auction for U [0, 1]

Optimal auction for U [0, 1]:

• F (vi) = vi.

• f(vi) = 1.

• So, φ(vi) = vi −
1−F (vi)

f(vi)
= 2vi − 1.

• So, φ−1(0) = 1/2.
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Optimal Auction for U [0, 1]

Optimal auction for U [0, 1]:

• F (vi) = vi.

• f(vi) = 1.

• So, φ(vi) = vi −
1−F (vi)

f(vi)
= 2vi − 1.

• So, φ−1(0) = 1/2.

• So, optimal auction is Second-price Auction with reserve 1/2!
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Optimal Mechanisms Conclusions

Conclusions:

• expected virtual value = expected revenue

• optimal mechanism maximizes virtual surplus.

• optimal auction depends on distribution.

• i.i.d., regular distributions: second-price with reserve is optimal.

• theory is “descriptive”.

Questions?
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Bayes-Nash Equilibrium Characterization Proof



Proof Overview

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Proof Overview:

1.=⇒ BNE ⇐ M & PI

2. BNE ⇒ M

3. BNE ⇒ PI
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BNE ⇐ M & PI

Claim: BNE ⇐ M & PI
Case 1: mimicking z > vi
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi

Recall: loss = ui(vi, vi) − ui(vi, z).
Recall: ui(vi, z) = vixi(z) − pi(z)
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi

Recall: loss = ui(vi, vi) − ui(vi, z).
Recall: ui(vi, z) = vixi(z) − pi(z)
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi

Recall: loss = ui(vi, vi) − ui(vi, z).
Recall: ui(vi, z) = vixi(z) − pi(z)
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
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Proof Overview

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Proof Overview:

1. BNE ⇐ M & PI

2.=⇒ BNE ⇒ M

3. BNE ⇒ PI
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BNE ⇒ M

Claim: BNE ⇒ M.
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BNE ⇒ M

Claim: BNE ⇒ M.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)
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BNE ⇒ M

Claim: BNE ⇒ M.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

• Take vi = z′ and z = z′′ and vice versa:

z′′xi(z
′′) − pi(z

′′) ≥ z′′xi(z
′) − pi(z

′)

z′xi(z
′) − pi(z

′) ≥ z′xi(z
′′) − pi(z

′′)

BAYESIAN MD – OCTOBER 20, 2012
33



BNE ⇒ M

Claim: BNE ⇒ M.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

• Take vi = z′ and z = z′′ and vice versa:

z′′xi(z
′′) − pi(z

′′) ≥ z′′xi(z
′) − pi(z

′)

z′xi(z
′) − pi(z

′) ≥ z′xi(z
′′) − pi(z

′′)

• Add and cancel payments:

z′′xi(z
′′) + z′xi(z

′) ≥ z′′xi(z
′) + z′xi(z

′′)

BAYESIAN MD – OCTOBER 20, 2012
33



BNE ⇒ M

Claim: BNE ⇒ M.
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BNE ⇒ M

Claim: BNE ⇒ M.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

• Take vi = z′ and z = z′′ and vice versa:

z′′xi(z
′′) − pi(z

′′) ≥ z′′xi(z
′) − pi(z

′)

z′xi(z
′) − pi(z

′) ≥ z′xi(z
′′) − pi(z

′′)

• Add and cancel payments:

z′′xi(z
′′) + z′xi(z

′) ≥ z′′xi(z
′) + z′xi(z

′′)

• Regroup:

(z′′ − z′)(xi(z
′′) − xi(z

′)) ≥ 0

• So xi(z) is monotone:

z′′ − z′ > 0 ⇒ x(z′′) ≥ x(z′)
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Proof Overview

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Proof Overview:

1. BNE ⇐ M & PI

2. BNE ⇒ M

3.=⇒ BNE ⇒ PI
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BNE ⇒ PI

Claim: BNE ⇒ PI.
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BNE ⇒ PI

Claim: BNE ⇒ PI.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)
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BNE ⇒ PI

Claim: BNE ⇒ PI.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

• Take vi = z′ and z = z′′ and vice versa:

z′′xi(z
′′) − pi(z

′′) ≥ z′′xi(z
′) − pi(z

′)

z′xi(z
′) − pi(z

′) ≥ z′xi(z
′′) − pi(z

′′)
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BNE ⇒ PI

Claim: BNE ⇒ PI.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

• Take vi = z′ and z = z′′ and vice versa:

z′′xi(z
′′) − pi(z

′′) ≥ z′′xi(z
′) − pi(z

′)

z′xi(z
′) − pi(z

′) ≥ z′xi(z
′′) − pi(z

′′)

• solve for pi(z
′′) − pi(z

′):

z′′xi(z
′′) − z′′xi(z

′) ≥ pi(z
′′) − pi(z

′) ≥ z′xi(z
′′) − z′xi(z

′)

• Picture:
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z
′′
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′
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upper bound
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BNE ⇒ PI

Claim: BNE ⇒ PI.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

• Take vi = z′ and z = z′′ and vice versa:

z′′xi(z
′′) − pi(z

′′) ≥ z′′xi(z
′) − pi(z

′)

z′xi(z
′) − pi(z

′) ≥ z′xi(z
′′) − pi(z

′′)

• solve for pi(z
′′) − pi(z

′):

z′′xi(z
′′) − z′′xi(z

′) ≥ pi(z
′′) − pi(z

′) ≥ z′xi(z
′′) − z′xi(z

′)

• Picture:

z
′′

xi(z
′′)

z
′

xi(z
′)

≥

xi(z
′)

xi(z
′′)

z
′′

z
′ ≥

z
′′

xi(z
′′)

z
′

xi(z
′)

upper bound only solution lower bound
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Characterization Conclusion

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Questions?
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Workshop Overview

• Are there simple mechanisms that are approximately optimal? Are
there prior-independent mechanisms that are approximately
optimal? [Roughgarden 10am & 11am]

• What are optimal auctions for multi-dimensional agent preferences,
is it tractable to compute? [Daskalakis 11:30am]

• Are there black-box reductions for converting generic algorithms to
mechanisms? [Immorlica 2:30pm]

• Are there good mechanisms for non-linear objectives
(e.g., makespan)? [Chawla 3:30pm & 4:30pm]

• Are practical mechanisms good in equilibrium (e.g., “price of
anarchy”)? [Tardos 5pm]
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