# Intro to Bayesian Mechanism Design 

Jason D. Hartline

Northwestern University
October 20, 2012

## Mechanism Design

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

## Mechanism Design

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Internet Applications: file sharing, reputation systems, web search, web advertising, email, Internet auctions, congestion control, etc.

## Mechanism Design

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Internet Applications: file sharing, reputation systems, web search, web advertising, email, Internet auctions, congestion control, etc.

General Theme: resource allocation.

## Overview

Optimal Mechanism Design:

- single-item auction.
- objectives: social welfare vs. seller profit.
- characterization of Bayes-Nash equilibrium.
- consequences: solving for and optimizing over BNE.


## Single-item Auction

## Mechanism Design Problem: Single-item Auction

## Given:

- one item for sale.
- $n$ bidders (with unknown private values for item, $v_{1}, \ldots, v_{n}$ )
- Bidders' objective: maximize utility $=$ value - price paid.


## Design:

- Auction to solicit bids and choose winner and payments.


## Single-item Auction

## Mechanism Design Problem: Single-item Auction

## Given:

- one item for sale.
- $n$ bidders (with unknown private values for item, $v_{1}, \ldots, v_{n}$ )
- Bidders' objective: maximize utility $=$ value - price paid.


## Design:

- Auction to solicit bids and choose winner and payments.


## Possible Auction Objectives:

- Maximize social surplus, i.e., the value of the winner.
- Maximize seller profit, i.e., the payment of the winner.

Objective 1: maximize social surplus

## Example Auctions

First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner their bid.

## Example Auctions

First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner their bid.

Example Input: $\mathbf{b}=(2,6,4,1)$.

## Example Auctions

```
    First-price Auction
    1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner their bid.
```


## Second-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Example Input: $\mathbf{b}=(2,6,4,1)$.

## Example Auctions



## Second-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Example Input: $\mathbf{b}=(2,6,4,1)$.

## Questions:

- what are equilibrium strategies?
- what is equilibrium outcome?
- which has higher surplus in equilibrium?
- which has higher profit in equilibrium?


## Second-price Auction Equilibrium Analysis



How should bidder $i$ bid?

## Second-price Auction Equilibrium Analysis

## Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
2. Charge winner the second-highest bid.

How should bidder $i$ bid?

- Let $t_{i}=\max _{j \neq i} b_{j}$.
- If $b_{i}>t_{i}$, bidder $i$ wins and pays $t_{i}$; otherwise loses.


## Second-price Auction Equilibrium Analysis

## Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
2. Charge winner the second-highest bid.

How should bidder $i$ bid?

- Let $t_{i}=\max _{j \neq i} b_{j}$.
- If $b_{i}>t_{i}$, bidder $i$ wins and pays $t_{i}$; otherwise loses.

Case 1: $v_{i}>t_{i}$
Case 2: $v_{i}<t_{i}$

## Second-price Auction Equilibrium Analysis

## Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
2. Charge winner the second-highest bid.

How should bidder $i$ bid?

- Let $t_{i}=\max _{j \neq i} b_{j}$.
- If $b_{i}>t_{i}$, bidder $i$ wins and pays $t_{i}$; otherwise loses.



## Second-price Auction Equilibrium Analysis

## Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
2. Charge winner the second-highest bid.

How should bidder $i$ bid?

- Let $t_{i}=\max _{j \neq i} b_{j}$.
- If $b_{i}>t_{i}$, bidder $i$ wins and pays $t_{i}$; otherwise loses.


Result: Bidder $i$ 's dominant strategy is to bid $b_{i}=v_{i}$ !

## Second-price Auction Equilibrium Analysis

## Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
2. Charge winner the second-highest bid.

How should bidder $i$ bid?

- Let $t_{i}=\max _{j \neq i} b_{j} . \Leftarrow$ "critical value"
- If $b_{i}>t_{i}$, bidder $i$ wins and pays $t_{i}$; otherwise loses.


Result: Bidder $i$ 's dominant strategy is to bid $b_{i}=v_{i}$ !

## Second-price Auction Conclusion



## Second-price Auction Conclusion



Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

## Second-price Auction Conclusion



Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

## Second-price Auction Conclusion



Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

- bids $=$ values (from Lemma).
- winner is highest bidder (by definition).
$\Rightarrow$ winner is bidder with highest valuation (optimal social surplus).


## Second-price Auction Conclusion



Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

- bids $=$ values (from Lemma).
- winner is highest bidder (by definition).
$\Rightarrow$ winner is bidder with highest valuation (optimal social surplus).
What about first-price auction?

First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner their bid.

How would you bid?
First-price Auction

1. Solicit sealed bids.
2. Winner is highest bidder.
3. Charge winner their bid.

How would you bid?
Note: first-price auction has no DSE.

Uniform Distribution: draw value $v$ uniformly from the interval $[0,1]$.

## Review: Uniform Distributions

Uniform Distribution: draw value $v$ uniformly from the interval $[0,1]$.
Cumulative Distribution Function: $F(z)=\operatorname{Pr}[v \leq z]=z$.
Probability Density Function: $f(z)=\frac{1}{d z} \operatorname{Pr}[v \leq z]=1$.

## Review: Uniform Distributions

Uniform Distribution: draw value $v$ uniformly from the interval $[0,1]$.
Cumulative Distribution Function: $F(z)=\operatorname{Pr}[v \leq z]=z$.
Probability Density Function: $f(z)=\frac{1}{d z} \operatorname{Pr}[v \leq z]=1$.
Order Statistics: in expectation, uniform random variables evenly divide interval.

## Review: Uniform Distributions

Uniform Distribution: draw value $v$ uniformly from the interval $[0,1]$.
Cumulative Distribution Function: $F(z)=\operatorname{Pr}[v \leq z]=z$.
Probability Density Function: $f(z)=\frac{1}{d z} \operatorname{Pr}[v \leq z]=1$.
Order Statistics: in expectation, uniform random variables evenly divide interval.


First-price Auction Equilibrium Analysis
Example: two bidders (you and me), uniform values.

## First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.


## First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?


## First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value $v$ and bid $b$ ?

$$
\mathbf{E}[\text { utility }(v, b)]=(v-b) \times \operatorname{Pr}[\text { you win }]
$$

## First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value $v$ and bid $b$ ?

$$
\begin{aligned}
& \mathbf{E}[\text { utility }(v, b)]=(v-b) \times \underbrace{\operatorname{Pr}[\text { win }]}_{\operatorname{Pr}[m y \text { bid } \leq b]=\operatorname{Pr}\left[\frac{1}{2} \text { my value } \leq b\right]=\operatorname{Pr}[\text { yny value } \leq 2 b]=2 b}
\end{aligned}
$$

## First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value $v$ and bid $b$ ?

$$
\begin{aligned}
\mathbf{E}[\text { utility }(v, b)] & =(v-b) \times \underbrace{\operatorname{Pr}[\text { wou win }]}_{\operatorname{Pr}[m y \text { bid } \leq b]=\operatorname{Pr}\left[\frac{1}{2} \text { my value } \leq b\right]=\operatorname{Pr}[\text { yny value } \leq 2 b]=2 b} \\
& =(v-b) \times 2 b \\
& =2 v b-2 b^{2}
\end{aligned}
$$

## First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value $v$ and bid $b$ ?

$$
\begin{aligned}
\mathbf{E}[\operatorname{utility}(v, b)] & =(v-b) \times \underbrace{\operatorname{Pr} \text { win }]}_{\operatorname{Pr}[\text { my bid } \leq b]=\operatorname{Pr}\left[\frac{1}{2} \text { my value } \leq b\right]=\operatorname{Pr}[\text { my value } \leq 2 b]=2 b} \\
& =(v-b) \times 2 b \\
& =2 v b-2 b^{2}
\end{aligned}
$$

- to maximize, take derivative $\frac{d}{d b}$ and set to zero, solve


## First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value $v$ and bid $b$ ?

$$
\begin{aligned}
\mathbf{E}[\text { utility }(v, b)] & =(v-b) \times \underbrace{\operatorname{Pr}[m y b \text { bid } \leq b]=\operatorname{Pr}\left[\frac{1}{2} \text { my value } \leq b\right]=\operatorname{Pr}[m y \text { walue } \leq 2 b]}=2 b \\
& =(v-b) \times 2 b \\
& =2 v b-2 b^{2}
\end{aligned}
$$

- to maximize, take derivative $\frac{d}{d b}$ and set to zero, solve
- optimal to bid $b=v / 2$ (bid half your value!)


## First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value $v$ and bid $b$ ?

$$
\begin{aligned}
\mathbf{E}[\text { utility }(v, b)] & =(v-b) \times \underbrace{\operatorname{Pr}[m y b \text { bid } \leq b]=\operatorname{Pr}\left[\frac{1}{2} \text { my value } \leq b\right]=\operatorname{Pr}[m y \text { value } \leq 2 b]=2 b} \\
& =(v-b) \times 2 b \\
& =2 v b-2 b^{2}
\end{aligned}
$$

- to maximize, take derivative $\frac{d}{d b}$ and set to zero, solve
- optimal to bid $b=v / 2$ (bid half your value!)

Conclusion 1: bidding "half of value" is equilibrium

## First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value $v$ and bid $b$ ?

$$
\begin{aligned}
\mathbf{E}[\text { utility }(v, b)] & =(v-b) \times \underbrace{\operatorname{Pr}[m y b \text { bid } \leq b]=\operatorname{Pr}\left[\frac{1}{2} \text { my value } \leq b\right]=\operatorname{Pr}[m y \text { value } \leq 2 b]=2 b} \\
& =(v-b) \times 2 b \\
& =2 v b-2 b^{2}
\end{aligned}
$$

- to maximize, take derivative $\frac{d}{d b}$ and set to zero, solve
- optimal to bid $b=v / 2$ (bid half your value!)

Conclusion 1: bidding "half of value" is equilibrium
Conclusion 2: bidder with highest value wins
Conclusion 3: first-price auction maximizes social surplus!

## Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., $b_{i}=s_{i}\left(v_{i}\right)$.

## Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., $b_{i}=s_{i}\left(v_{i}\right)$.
Defn: the common prior assumption: bidders' values are drawn from a known distribution, i.e., $v_{i} \sim F_{i}$.

## Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., $b_{i}=s_{i}\left(v_{i}\right)$.
Defn: the common prior assumption: bidders' values are drawn from a known distribution, i.e., $v_{i} \sim F_{i}$.

## Notation:

- $F_{i}(z)=\operatorname{Pr}\left[v_{i} \leq z\right]$ is cumulative distribution function, (e.g., $F_{i}(z)=z$ for uniform distribution)
- $f_{i}(z)=\frac{d F_{i}(z)}{d z}$ is probability density function, (e.g., $f_{i}(z)=1$ for uniform distribution)


## Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., $b_{i}=s_{i}\left(v_{i}\right)$.
Defn: the common prior assumption: bidders' values are drawn from a known distribution, i.e., $v_{i} \sim F_{i}$.

## Notation:

- $F_{i}(z)=\operatorname{Pr}\left[v_{i} \leq z\right]$ is cumulative distribution function, (e.g., $F_{i}(z)=z$ for uniform distribution)
- $f_{i}(z)=\frac{d F_{i}(z)}{d z}$ is probability density function, (e.g., $f_{i}(z)=1$ for uniform distribution)

Definition: a strategy profile is in Bayes-Nash Equilibrium (BNE) if for all $i, s_{i}\left(v_{i}\right)$ is best response when others play $s_{j}\left(v_{j}\right)$ and $v_{j} \sim F_{j}$.

## Surplus Maximization Conclusions

## Conclusions:

- second-price auction maximizes surplus in DSE regardless of distribution.
- first-price auction maximize surplus in BNE for i.i.d. distributions.


## Surplus Maximization Conclusions

## Conclusions:

- second-price auction maximizes surplus in DSE regardless of distribution.
- first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.

## Surplus Maximization Conclusions

## Conclusions:

- second-price auction maximizes surplus in DSE regardless of distribution.
- first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.

## Questions?

Objective 2: maximize seller profit
(other objectives are similar)

## An example

## Example Scenario: two bidders, uniform values

## An example

Example Scenario: two bidders, uniform values
What is profit of second-price auction?

## An example

## Example Scenario: two bidders, uniform values

## What is profit of second-price auction?

- draw values from unit interval.



## An example

## Example Scenario: two bidders, uniform values

## What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



## An example

## Example Scenario: two bidders, uniform values

## What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.


## An example

Example Scenario: two bidders, uniform values

## What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[$ Profit $]=\mathbf{E}\left[v_{2}\right]$


## An example

Example Scenario: two bidders, uniform values

## What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[$ Profit $]=\mathbf{E}\left[v_{2}\right]=1 / 3$.


## An example

Example Scenario: two bidders, uniform values

## What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[$ Profit $]=\mathbf{E}\left[v_{2}\right]=1 / 3$.

What is profit of first-price auction?

## An example

Example Scenario: two bidders, uniform values

## What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[$ Profit $]=\mathbf{E}\left[v_{2}\right]=1 / 3$.

What is profit of first-price auction?

- $\mathbf{E}[$ Profit $]=\mathbf{E}\left[v_{1}\right] / 2=1 / 3$.


## An example

Example Scenario: two bidders, uniform values

## What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[$ Profit $]=\mathbf{E}\left[v_{2}\right]=1 / 3$.

What is profit of first-price auction?

- $\mathbf{E}[$ Profit $]=\mathbf{E}\left[v_{1}\right] / 2=1 / 3$.

Surprising Result: second-price and first-price auctions have same expected profit.

Can we get more profit?

## Second-price with reserve price

Second-price Auction with reserve $r$
0 . Insert seller-bid at $r$. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

## Second-price with reserve price

| Second-price Auction with reserve $r$ |
| :--- |
| 0. Insert seller-bid at $r$. 1. Solicit bids. 2. Winner is <br> highest bidder. 3. Charge 2nd-highest bid. |

Lemma: Second-price with reserve $r$ has truthful DSE.

## Second-price with reserve price

| Second-price Auction with reserve $r$ |
| :--- |
| 0. Insert seller-bid at $r$. 1. Solicit bids. 2. Winner is <br> highest bidder. 3. Charge 2nd-highest bid. |

Lemma: Second-price with reserve $r$ has truthful DSE.
What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders $U[0,1]$ ?

## Second-price with reserve price

| Second-price Auction with reserve $r$ |
| :--- |
| 0. Insert seller-bid at $r$. 1. Solicit bids. 2. Winner is <br> highest bidder. 3. Charge 2nd-highest bid. |

Lemma: Second-price with reserve $r$ has truthful DSE.
What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders $U[0,1]$ ?

- draw values from unit interval.
- Sort values, $v_{1} \geq v_{2}$


## Second-price with reserve price

| Second-price Auction with reserve $r$ |
| :--- |
| 0. Insert seller-bid at $r$. 1. Solicit bids. 2. Winner is <br> highest bidder. 3. Charge 2nd-highest bid. |

Lemma: Second-price with reserve $r$ has truthful DSE.
What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders $U[0,1]$ ?

- draw values from unit interval.
- Sort values, $v_{1} \geq v_{2}$

Case Analysis:
$\operatorname{Pr}[$ Case $i]$
$\mathbf{E}$ [Profit]
Case 1: $\frac{1}{2}>v_{1} \geq v_{2}$
Case 2: $v_{1} \geq v_{2} \geq \frac{1}{2}$
Case 3: $v_{1} \geq \frac{1}{2}>v_{2}$

## Second-price with reserve price

| Second-price Auction with reserve $r$ |
| :--- |
| 0. Insert seller-bid at $r$. 1. Solicit bids. 2. Winner is <br> highest bidder. 3. Charge 2nd-highest bid. |

Lemma: Second-price with reserve $r$ has truthful DSE.
What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders $U[0,1]$ ?

- draw values from unit interval.
- Sort values, $v_{1} \geq v_{2}$

Case Analysis:
Case 1: $\frac{1}{2}>v_{1} \geq v_{2}$
Case 2: $v_{1} \geq v_{2} \geq \frac{1}{2}$
Case 3: $v_{1} \geq \frac{1}{2}>v_{2}$

$$
\operatorname{Pr}[\text { Case } i]
$$

$$
E[\text { Profit }]
$$

1/4
1/4
$1 / 2$

## Second-price with reserve price

| Second-price Auction with reserve $r$ |
| :--- |
| 0. Insert seller-bid at $r$. 1. Solicit bids. 2. Winner is <br> highest bidder. 3. Charge 2nd-highest bid. |

Lemma: Second-price with reserve $r$ has truthful DSE.
What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders $U[0,1]$ ?

- draw values from unit interval.
- Sort values, $v_{1} \geq v_{2}$

Case Analysis:
Case 1: $\frac{1}{2}>v_{1} \geq v_{2}$
Case 2: $v_{1} \geq v_{2} \geq \frac{1}{2}$
Case 3: $v_{1} \geq \frac{1}{2}>v_{2}$

$$
\operatorname{Pr}[\text { Case } i]
$$

$1 / 4$
$1 / 4$
$1 / 2$

E[Profit]
0
$\mathbf{E}\left[v_{2} \mid\right.$ Case 2]
$\frac{1}{2}$

## Second-price with reserve price



Lemma: Second-price with reserve $r$ has truthful DSE.
What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders $U[0,1]$ ?

- draw values from unit interval.
- Sort values, $v_{1} \geq v_{2}$

Case Analysis:
Case 1: $\frac{1}{2}>v_{1} \geq v_{2}$
Case 2: $v_{1} \geq v_{2} \geq \frac{1}{2}$
Case 3: $v_{1} \geq \frac{1}{2}>v_{2}$

$$
\operatorname{Pr}[\text { Case } i]
$$

$1 / 4$
$1 / 4$
$1 / 2$


$$
\mathbf{E}[\text { Profit] }
$$

$$
0
$$

$\mathbf{E}\left[v_{2} \mid\right.$ Case 2] $=\frac{2}{3}$
$\frac{1}{2}$

## Second-price with reserve price



Lemma: Second-price with reserve $r$ has truthful DSE.
What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders $U[0,1]$ ?

- draw values from unit interval.
- Sort values, $v_{1} \geq v_{2}$


Case Analysis:
Case 1: $\frac{1}{2}>v_{1} \geq v_{2}$
Case 2: $v_{1} \geq v_{2} \geq \frac{1}{2}$
Case 3: $v_{1} \geq \frac{1}{2}>v_{2}$
$\mathbf{E}\left[\right.$ profit of 2 nd-price with reserve] $=\frac{1}{4} \cdot 0+\frac{1}{4} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{2}=\frac{5}{12}$

## Second-price with reserve price



Lemma: Second-price with reserve $r$ has truthful DSE.
What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders $U[0,1]$ ?

- draw values from unit interval.
- Sort values, $v_{1} \geq v_{2}$


Case Analysis:
Case 1: $\frac{1}{2}>v_{1} \geq v_{2}$
Case 2: $v_{1} \geq v_{2} \geq \frac{1}{2}$
Case 3: $v_{1} \geq \frac{1}{2}>v_{2}$
$\mathbf{E}\left[\right.$ profit of 2nd-price with reserve] $=\frac{1}{4} \cdot 0+\frac{1}{4} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{2}=\frac{5}{12}$
$\geq \mathbf{E}[$ profit of 2nd-price $]=\frac{1}{3}$.

## Profit Maximization Observations

## Observations:

- pretending to value the good increases seller profit.
- optimal profit depends on distribution.


## Profit Maximization Observations

## Observations:

- pretending to value the good increases seller profit.
- optimal profit depends on distribution.


## Questions?

Bayes-Nash Equilibrium Characterization and Consequences

- solving for BNE
- optimizing over BNE


## Notation:

- x is an allocation, $x_{i}$ the allocation for $i$.
- $\mathbf{x}(\mathbf{v})$ is BNE allocation of mech. on valuations $\mathbf{v}$.
- $\mathbf{v}_{-i}=\left(v_{1}, \ldots, v_{i-1}, ?, v_{i+1}, \ldots, v_{n}\right)$.


## Notation:

- x is an allocation, $x_{i}$ the allocation for $i$.
- $\mathbf{x}(\mathbf{v})$ is BNE allocation of mech. on valuations $\mathbf{v}$.
- $\mathrm{v}_{-i}=\left(v_{1}, \ldots, v_{i-1}, ?, v_{i+1}, \ldots, v_{n}\right)$.
- $x_{i}\left(v_{i}\right)=\mathbf{E}_{\mathbf{v}_{-i}}\left[x_{i}\left(v_{i}, \mathrm{v}_{-i}\right)\right]$. (Agent $i$ 's interim prob. of allocation with $\mathrm{v}_{-i}$ from $\mathbf{F}_{-i}$ )


## Notation:

- x is an allocation, $x_{i}$ the allocation for $i$.
- $\mathbf{x}(\mathbf{v})$ is BNE allocation of mech. on valuations $\mathbf{v}$.
- $\mathrm{v}_{-i}=\left(v_{1}, \ldots, v_{i-1}, ?, v_{i+1}, \ldots, v_{n}\right)$.
- $x_{i}\left(v_{i}\right)=\mathbf{E}_{\mathrm{v}_{-i}}\left[x_{i}\left(v_{i}, \mathrm{v}_{-i}\right)\right]$. (Agent $i$ 's interim prob. of allocation with $\mathrm{v}_{-i}$ from $\mathbf{F}_{-i}$ )

Analogously, define $\mathbf{p}, \mathbf{p}(\mathbf{v})$, and $p_{i}\left(v_{i}\right)$ for payments.

## Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M)$ : $x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity $(\mathrm{PI}): p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.

## Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M)$ : $x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity $(\mathrm{PI}): p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.


## Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M): x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity $(P I): p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.

Surplus


## Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M): x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity $(P I): p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.


## Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M): x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity $(\mathrm{Pl}): p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.


## Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M): x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity $(\mathrm{PI}): p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.


Consequence: (revenue equivalence) in BNE, auctions with same outcome have same revenue (e.g., first and second-price auctions)

## Questions?

## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more

## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more
$\Rightarrow$ agents ranked by value
$\Rightarrow$ same outcome as second-price auction.
$\Rightarrow$ same expected payments as second-price auction.

## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more
$\Rightarrow$ agents ranked by value
$\Rightarrow$ same outcome as second-price auction.
$\Rightarrow$ same expected payments as second-price auction.
2. What are equilibrium strategies?

## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more
$\Rightarrow$ agents ranked by value
$\Rightarrow$ same outcome as second-price auction.
$\Rightarrow$ same expected payments as second-price auction.
2. What are equilibrium strategies?

- $p(v)=\operatorname{Pr}[v$ wins $] \times b(v)$


## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more
$\Rightarrow$ agents ranked by value
$\Rightarrow$ same outcome as second-price auction.
$\Rightarrow$ same expected payments as second-price auction.
2. What are equilibrium strategies?

- $p(v)=\operatorname{Pr}[v$ wins $] \times b(v)$
(because first-price)
- $p(v)=\mathbf{E}[$ expected second-price payment $\mid v$ ] (by rev. equiv.)


## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more
$\Rightarrow$ agents ranked by value
$\Rightarrow$ same outcome as second-price auction.
$\Rightarrow$ same expected payments as second-price auction.
2. What are equilibrium strategies?

- $p(v)=\operatorname{Pr}[v$ wins $] \times b(v)$
(because first-price)
- $p(v)=\mathbf{E}[$ expected second-price payment $\mid v]$ (by rev. equiv.) $=\operatorname{Pr}[v$ wins $] \times \mathbf{E}[$ second highest value $\mid v$ wins $]$


## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more
$\Rightarrow$ agents ranked by value
$\Rightarrow$ same outcome as second-price auction.
$\Rightarrow$ same expected payments as second-price auction.
2. What are equilibrium strategies?

- $p(v)=\operatorname{Pr}[v$ wins $] \times b(v)$
(because first-price)
- $p(v)=\mathbf{E}[$ expected second-price payment $\mid v]$ (by rev. equiv.) $=\operatorname{Pr}[v$ wins $] \times \mathbf{E}$ [second highest value $\mid v$ wins $]$
$\Rightarrow b(v)=\mathbf{E}$ [second highest value $\mid v$ wins]


## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more
$\Rightarrow$ agents ranked by value
$\Rightarrow$ same outcome as second-price auction.
$\Rightarrow$ same expected payments as second-price auction.
2. What are equilibrium strategies?

- $p(v)=\operatorname{Pr}[v$ wins $] \times b(v)$
(because first-price)
- $p(v)=\mathbf{E}[$ expected second-price payment $\mid v]$ (by rev. equiv.) $=\operatorname{Pr}[v$ wins $] \times \mathbf{E}[$ second highest value $\mid v$ wins $]$
$\Rightarrow b(v)=\mathbf{E}$ [second highest value $\mid v$ wins $]$
(e.g., for two uniform bidders: $b(v)=v / 2$. )


## Solving for BNE

## Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more
$\Rightarrow$ agents ranked by value
$\Rightarrow$ same outcome as second-price auction.
$\Rightarrow$ same expected payments as second-price auction.
2. What are equilibrium strategies?

- $p(v)=\operatorname{Pr}[v$ wins $] \times b(v)$
(because first-price)
- $p(v)=\mathbf{E}[$ expected second-price payment $\mid v$ ] (by rev. equiv.) $=\operatorname{Pr}[v$ wins $] \times \mathbf{E}$ [second highest value $\mid v$ wins $]$
$\Rightarrow b(v)=\mathbf{E}[$ second highest value $\mid v$ wins $]$
(e.g., for two uniform bidders: $b(v)=v / 2$. )

3. Verify guess and BNE: $b(v)$ continuous, strictly increasing, symmetric.

## Questions?

## Optimizing BNE

Defn: virtual value for $i$ is $\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$.

## Optimizing BNE

Defn: virtual value for $i$ is $\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$.
Lemma: [Myerson 81] In BNE, $\mathbf{E}\left[p_{i}\left(v_{i}\right)\right]=\mathbf{E}\left[\phi_{i}\left(v_{i}\right) x_{i}\left(v_{i}\right)\right]$

## Optimizing BNE

Defn: virtual value for $i$ is $\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$.

## Lemma: [Myerson 81] In BNE, $\mathbf{E}\left[p_{i}\left(v_{i}\right)\right]=\mathbf{E}\left[\phi_{i}\left(v_{i}\right) x_{i}\left(v_{i}\right)\right]$

## General Approach:

- optimize revenue without incentive constraints (i.e., monotonicity).
$\Rightarrow$ winner is agent with highest positive virtual value.
- check to see if incentive constraints are satisfied.
$\Rightarrow$ if $\phi_{i}(\cdot)$ is monotone then mechanism is monotone.


## Optimizing BNE

Defn: virtual value for $i$ is $\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$.
Lemma: [Myerson 81] In BNE, $\mathbf{E}\left[p_{i}\left(v_{i}\right)\right]=\mathbf{E}\left[\phi_{i}\left(v_{i}\right) x_{i}\left(v_{i}\right)\right]$

## General Approach:

- optimize revenue without incentive constraints (i.e., monotonicity).
$\Rightarrow$ winner is agent with highest positive virtual value.
- check to see if incentive constraints are satisfied.
$\Rightarrow$ if $\phi_{i}(\cdot)$ is monotone then mechanism is monotone.
Defn: distribution $F_{i}$ is regular if $\phi_{i}(\cdot)$ is monotone.


## Optimizing BNE

Defn: virtual value for $i$ is $\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$.
Lemma: [Myerson 81] In BNE, $\mathbf{E}\left[p_{i}\left(v_{i}\right)\right]=\mathbf{E}\left[\phi_{i}\left(v_{i}\right) x_{i}\left(v_{i}\right)\right]$

## General Approach:

- optimize revenue without incentive constraints (i.e., monotonicity).
$\Rightarrow$ winner is agent with highest positive virtual value.
- check to see if incentive constraints are satisfied.
$\Rightarrow$ if $\phi_{i}(\cdot)$ is monotone then mechanism is monotone.
Defn: distribution $F_{i}$ is regular if $\phi_{i}(\cdot)$ is monotone.
Thm: [Myerson 81] If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.


## Optimizing BNE

Defn: virtual value for $i$ is $\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$.
Lemma: [Myerson 81] In BNE, $\mathbf{E}\left[p_{i}\left(v_{i}\right)\right]=\mathbf{E}\left[\phi_{i}\left(v_{i}\right) x_{i}\left(v_{i}\right)\right]$

## General Approach:

- optimize revenue without incentive constraints (i.e., monotonicity).
$\Rightarrow$ winner is agent with highest positive virtual value.
- check to see if incentive constraints are satisfied.
$\Rightarrow$ if $\phi_{i}(\cdot)$ is monotone then mechanism is monotone.
Defn: distribution $F_{i}$ is regular if $\phi_{i}(\cdot)$ is monotone.
Thm: [Myerson 81] If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

Proof: expected virtual valuation of winner $=$ expected payment.

## Proof of Lemma

$$
\text { Recall Lemma: In } \mathrm{BNE}, \mathbf{E}\left[p_{i}\left(v_{i}\right)\right]=\mathbf{E}\left[\left(v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}\right) x_{i}\left(v_{i}\right)\right] .
$$

## Proof Sketch:

- Use characterization: $p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(v) d v$.
- Use definition of expectation (integrate payment $\times$ density).
- Swap order of integration.
- Simplify.


## Interpretation

Recall Thm: If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

## Interpretation

Recall Thm: If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner $i$ satisfies $\phi_{i}\left(v_{i}\right) \geq \max \left(\phi_{j}\left(v_{j}\right), 0\right)$


## Interpretation

Recall Thm: If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner $i$ satisfies $\phi_{i}\left(v_{i}\right) \geq \max \left(\phi_{j}\left(v_{j}\right), 0\right)$
- I.i.d. implies $\phi_{i}=\phi_{j}=\phi$.


## Interpretation

Recall Thm: If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner $i$ satisfies $\phi_{i}\left(v_{i}\right) \geq \max \left(\phi_{j}\left(v_{j}\right), 0\right)$
- I.i.d. implies $\phi_{i}=\phi_{j}=\phi$.
- So, $v_{i} \geq \max \left(v_{j}, \phi^{-1}(0)\right)$.


## Interpretation

Recall Thm: If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner $i$ satisfies $\phi_{i}\left(v_{i}\right) \geq \max \left(\phi_{j}\left(v_{j}\right), 0\right)$
- I.i.d. implies $\phi_{i}=\phi_{j}=\phi$.
- So, $v_{i} \geq \max \left(v_{j}, \phi^{-1}(0)\right)$.
- So, "critical value" $=$ payment $=\max \left(v_{j}, \phi^{-1}(0)\right)$


## Interpretation

Recall Thm: If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner $i$ satisfies $\phi_{i}\left(v_{i}\right) \geq \max \left(\phi_{j}\left(v_{j}\right), 0\right)$
- I.i.d. implies $\phi_{i}=\phi_{j}=\phi$.
- So, $v_{i} \geq \max \left(v_{j}, \phi^{-1}(0)\right)$.
- So, "critical value" $=$ payment $=\max \left(v_{j}, \phi^{-1}(0)\right)$
- What is this auction?


## Interpretation

Recall Thm: If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner $i$ satisfies $\phi_{i}\left(v_{i}\right) \geq \max \left(\phi_{j}\left(v_{j}\right), 0\right)$
- I.i.d. implies $\phi_{i}=\phi_{j}=\phi$.
- So, $v_{i} \geq \max \left(v_{j}, \phi^{-1}(0)\right)$.
- So, "critical value" $=$ payment $=\max \left(v_{j}, \phi^{-1}(0)\right)$
- What is this auction? second-price auction with reserve $\phi^{-1}(0)$ !


## Interpretation

Recall Thm: If $\mathbf{F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner $i$ satisfies $\phi_{i}\left(v_{i}\right) \geq \max \left(\phi_{j}\left(v_{j}\right), 0\right)$
- I.i.d. implies $\phi_{i}=\phi_{j}=\phi$.
- So, $v_{i} \geq \max \left(v_{j}, \phi^{-1}(0)\right)$.
- So, "critical value" $=$ payment $=\max \left(v_{j}, \phi^{-1}(0)\right)$
- What is this auction? second-price auction with reserve $\phi^{-1}(0)$ !

What is optimal single-item auction for $U[0,1]$ ?

## Optimal Auction for $U[0,1]$

Optimal auction for $U[0,1]$ :

- $F\left(v_{i}\right)=v_{i}$.
- $f\left(v_{i}\right)=1$.
- So, $\phi\left(v_{i}\right)=v_{i}-\frac{1-F\left(v_{i}\right)}{f\left(v_{i}\right)}=2 v_{i}-1$.
- So, $\phi^{-1}(0)=1 / 2$.


## Optimal Auction for $U[0,1]$

Optimal auction for $U[0,1]$ :

- $F\left(v_{i}\right)=v_{i}$.
- $f\left(v_{i}\right)=1$.
- So, $\phi\left(v_{i}\right)=v_{i}-\frac{1-F\left(v_{i}\right)}{f\left(v_{i}\right)}=2 v_{i}-1$.
- So, $\phi^{-1}(0)=1 / 2$.
- So, optimal auction is Second-price Auction with reserve 1/2!


## Optimal Mechanisms Conclusions

## Conclusions:

- expected virtual value $=$ expected revenue
- optimal mechanism maximizes virtual surplus.
- optimal auction depends on distribution.
- i.i.d., regular distributions: second-price with reserve is optimal.
- theory is "descriptive".


## Questions?

## Bayes-Nash Equilibrium Characterization Proof

## Proof Overview

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M)$ : $x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity $(\mathrm{PI}): p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.

## Proof Overview:

$\Longrightarrow$ 1. $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$
2. $\mathrm{BNE} \Rightarrow \mathrm{M}$
3. $\mathrm{BNE} \Rightarrow \mathrm{PI}$
$\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$

## Claim: $\mathrm{BNE} \Leftarrow \mathrm{M}$ \& PI <br> Case 1: mimicking $z>v_{i}$

$\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$

## Claim: $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$ <br> Case 1: mimicking $z>v_{i}$ <br> Defn: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$

$\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$

```
Claim: \(\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}\)
Case 1: mimicking \(z>v_{i}\)
Defn: \(u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)\)
Defn: loss \(=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)\).
```


## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$

Claim: BNE $\Leftarrow \mathrm{M}$ \& PI
Case 1: mimicking $z>v_{i}$
Defn: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$
Defn: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.




## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$

Claim: BNE $\Leftarrow \mathrm{M}$ \& PI
Case 1: mimicking $z>v_{i}$
Defn: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$
Defn: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.


## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$

Claim: BNE $\Leftarrow \mathrm{M}$ \& PI
Case 1: mimicking $z>v_{i}$
Defn: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$
Defn: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.


## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$

Claim: BNE $\Leftarrow \mathrm{M}$ \& PI
Case 1: mimicking $z>v_{i}$
Defn: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$
Defn: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.


## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$

Claim: BNE $\Leftarrow \mathrm{M}$ \& PI
Case 1: mimicking $z>v_{i}$
Defn: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$
Defn: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.
$v_{i} x_{i}\left(v_{i}\right)$
$p_{i}\left(v_{i}\right)$

$v_{i} x_{i}(z)$

$p_{i}(z)$



$\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$ (cont)

## Claim: $\mathrm{BNE} \Leftarrow \mathrm{M}$ \& PI <br> Case 2: mimicking $z<v_{i}$

## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$ (cont)

Claim: BNE $\Leftarrow \mathrm{M}$ \& PI
Case 2: mimicking $z<v_{i}$
Recall: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.
Recall: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$

## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$ (cont)

Claim: BNE $\Leftarrow \mathrm{M}$ \& PI
Case 2: mimicking $z<v_{i}$
Recall: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.
Recall: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$




## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$ (cont)

Claim: BNE $\Leftarrow$ M \& PI
Case 2: mimicking $z<v_{i}$
Recall: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.
Recall: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$

$v_{i} x_{i}(z)$




## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$ (cont)

Claim: BNE $\Leftarrow \mathrm{M}$ \& PI
Case 2: mimicking $z<v_{i}$
Recall: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.
Recall: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$


$v_{i} x_{i}(z)$


$p_{i}(z)$


## $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$ (cont)

Claim: BNE $\Leftarrow$ M \& PI
Case 2: mimicking $z<v_{i}$
Recall: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.
Recall: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$


$v_{i} x_{i}(z)$



$p_{i}(z)$
$u_{i}\left(v_{i}, v_{i}\right)$


$$
u_{i}\left(v_{i}, z\right)
$$



## BNE $\Leftarrow \mathrm{M} \& \mathrm{PI}$ (cont)

Claim: BNE $\Leftarrow$ M \& PI
Case 2: mimicking $z<v_{i}$
Recall: loss $=u_{i}\left(v_{i}, v_{i}\right)-u_{i}\left(v_{i}, z\right)$.
Recall: $u_{i}\left(v_{i}, z\right)=v_{i} x_{i}(z)-p_{i}(z)$

$v_{i} x_{i}\left(v_{i}\right)$

$v_{i} x_{i}(z)$

$p_{i}\left(v_{i}\right)$

$p_{i}(z)$

$u_{i}\left(v_{i}, v_{i}\right)$


$$
u_{i}\left(v_{i}, z\right)
$$



## Proof Overview

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M)$ : $x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity $(\mathrm{PI}): p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.

## Proof Overview:

1. $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$
2. $\mathrm{BNE} \Rightarrow \mathrm{M}$
3. $\mathrm{BNE} \Rightarrow \mathrm{PI}$
$B N E \Rightarrow M$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{M}$.
$B N E \Rightarrow M$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{M}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
$B N E \Rightarrow M$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{M}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
- Take $v_{i}=z^{\prime}$ and $z=z^{\prime \prime}$ and vice versa:

$$
\begin{aligned}
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right) & \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) \\
z^{\prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) & \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right)
\end{aligned}
$$

## BNE $\Rightarrow \mathrm{M}$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{M}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
- Take $v_{i}=z^{\prime}$ and $z=z^{\prime \prime}$ and vice versa:

$$
\begin{aligned}
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right) & \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) \\
z^{\prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) & \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right)
\end{aligned}
$$

- Add and cancel payments:

$$
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)+z^{\prime} x_{i}\left(z^{\prime}\right) \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)+z^{\prime} x_{i}\left(z^{\prime \prime}\right)
$$

## BNE $\Rightarrow \mathrm{M}$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{M}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
- Take $v_{i}=z^{\prime}$ and $z=z^{\prime \prime}$ and vice versa:

$$
\begin{aligned}
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right) & \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) \\
z^{\prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) & \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right)
\end{aligned}
$$

- Add and cancel payments:

$$
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)+z^{\prime} x_{i}\left(z^{\prime}\right) \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)+z^{\prime} x_{i}\left(z^{\prime \prime}\right)
$$

- Regroup:

$$
\left(z^{\prime \prime}-z^{\prime}\right)\left(x_{i}\left(z^{\prime \prime}\right)-x_{i}\left(z^{\prime}\right)\right) \geq 0
$$

## BNE $\Rightarrow \mathrm{M}$

Claim: BNE $\Rightarrow \mathrm{M}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
- Take $v_{i}=z^{\prime}$ and $z=z^{\prime \prime}$ and vice versa:

$$
\begin{aligned}
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right) & \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) \\
z^{\prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) & \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right)
\end{aligned}
$$

- Add and cancel payments:

$$
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)+z^{\prime} x_{i}\left(z^{\prime}\right) \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)+z^{\prime} x_{i}\left(z^{\prime \prime}\right)
$$

- Regroup:

$$
\left(z^{\prime \prime}-z^{\prime}\right)\left(x_{i}\left(z^{\prime \prime}\right)-x_{i}\left(z^{\prime}\right)\right) \geq 0
$$

- So $x_{i}(z)$ is monotone:

$$
z^{\prime \prime}-z^{\prime}>0 \Rightarrow x\left(z^{\prime \prime}\right) \geq x\left(z^{\prime}\right)
$$

## Proof Overview

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M)$ : $x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity $(\mathrm{PI}): p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.

## Proof Overview:

1. $\mathrm{BNE} \Leftarrow \mathrm{M} \& \mathrm{PI}$
2. $\mathrm{BNE} \Rightarrow \mathrm{M}$
$\Longrightarrow 3 . \mathrm{BNE} \Rightarrow \mathrm{PI}$
$\mathrm{BNE} \Rightarrow \mathrm{PI}$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{PI}$.
$\mathrm{BNE} \Rightarrow \mathrm{PI}$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{PI}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
$\mathrm{BNE} \Rightarrow \mathrm{PI}$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{PI}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
- Take $v_{i}=z^{\prime}$ and $z=z^{\prime \prime}$ and vice versa:

$$
\begin{aligned}
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right) & \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) \\
z^{\prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) & \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right)
\end{aligned}
$$

## $\mathrm{BNE} \Rightarrow \mathrm{PI}$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{PI}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
- Take $v_{i}=z^{\prime}$ and $z=z^{\prime \prime}$ and vice versa:

$$
\begin{aligned}
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right) & \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) \\
z^{\prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) & \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right)
\end{aligned}
$$

- solve for $p_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime}\right)$ :

$$
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-z^{\prime \prime} x_{i}\left(z^{\prime}\right) \geq p_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime}\right) \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-z^{\prime} x_{i}\left(z^{\prime}\right)
$$

- Picture:


## $\mathrm{BNE} \Rightarrow \mathrm{PI}$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{PI}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
- Take $v_{i}=z^{\prime}$ and $z=z^{\prime \prime}$ and vice versa:

$$
\begin{aligned}
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right) & \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) \\
z^{\prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) & \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right)
\end{aligned}
$$

- solve for $p_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime}\right)$ :

$$
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-z^{\prime \prime} x_{i}\left(z^{\prime}\right) \geq p_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime}\right) \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-z^{\prime} x_{i}\left(z^{\prime}\right)
$$

- Picture:

upper bound


## $\mathrm{BNE} \Rightarrow \mathrm{PI}$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{PI}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
- Take $v_{i}=z^{\prime}$ and $z=z^{\prime \prime}$ and vice versa:

$$
\begin{aligned}
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right) & \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) \\
z^{\prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) & \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right)
\end{aligned}
$$

- solve for $p_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime}\right)$ :

$$
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-z^{\prime \prime} x_{i}\left(z^{\prime}\right) \geq p_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime}\right) \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-z^{\prime} x_{i}\left(z^{\prime}\right)
$$

- Picture:

upper bound

lower bound


## $\mathrm{BNE} \Rightarrow \mathrm{PI}$

Claim: $\mathrm{BNE} \Rightarrow \mathrm{PI}$.

- $\mathrm{BNE} \Rightarrow u_{i}\left(v_{i}, v_{i}\right) \geq u_{i}\left(v_{i}, z\right)$
- Take $v_{i}=z^{\prime}$ and $z=z^{\prime \prime}$ and vice versa:

$$
\begin{aligned}
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right) & \geq z^{\prime \prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) \\
z^{\prime} x_{i}\left(z^{\prime}\right)-p_{i}\left(z^{\prime}\right) & \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime \prime}\right)
\end{aligned}
$$

- solve for $p_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime}\right)$ :

$$
z^{\prime \prime} x_{i}\left(z^{\prime \prime}\right)-z^{\prime \prime} x_{i}\left(z^{\prime}\right) \geq p_{i}\left(z^{\prime \prime}\right)-p_{i}\left(z^{\prime}\right) \geq z^{\prime} x_{i}\left(z^{\prime \prime}\right)-z^{\prime} x_{i}\left(z^{\prime}\right)
$$

- Picture:

upper bound

only solution

lower bound


## Characterization Conclusion

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity $(M)$ : $x_{i}\left(v_{i}\right)$ is monotone in $v_{i}$.
2. payment identity (PI): $p_{i}\left(v_{i}\right)=v_{i} x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$. and usually $p_{i}(0)=0$.

## Questions?

## Workshop Overview

- Are there simple mechanisms that are approximately optimal? Are there prior-independent mechanisms that are approximately optimal?
[Roughgarden 10am \& 11am]
- What are optimal auctions for multi-dimensional agent preferences, is it tractable to compute?
[Daskalakis 11:30am]
- Are there black-box reductions for converting generic algorithms to mechanisms?
- Are there good mechanisms for non-linear objectives (e.g., makespan)?
[Chawla 3:30pm \& 4:30pm]
- Are practical mechanisms good in equilibrium (e.g., "price of anarchy")?
[Tardos 5pm]

