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Abstract

The standard linear and logistic regression models assume that the response variables are
independent, but share the same linear relationship to their corresponding vectors of covariates.
The assumption that the response variables are independent is, however, too strong. In many
applications, these responses are collected on nodes of a network, or some spatial or temporal
domain, and are dependent. Examples abound in financial and meteorological applications, and
dependencies naturally arise in social networks through peer effects. Regression with depen-
dent responses has thus received a lot of attention in the Statistics and Economics literature,
but there are no strong consistency results unless multiple independent samples of the vec-
tors of dependent responses can be collected from these models. We present computationally
and statistically efficient methods for linear and logistic regression models when the response
variables are dependent on a network. Given one sample from a networked linear or logistic
regression model and under mild assumptions, we prove strong consistency results for recov-
ering the vector of coefficients and the strength of the dependencies, recovering the rates of
standard regression under independent observations. We use projected gradient descent on the
negative log-likelihood, or negative log-pseudolikelihood, and establish their strong convexity
and consistency using concentration of measure for dependent random variables.
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1 Introduction

Linear and logistic regression are perhaps the two most prominent models in Statistics. In their
most standard form, these models postulate that a collection of response variables y1, . . . , yn, which
are scalar and binary respectively, are linearly related to a collection of covariates x1, . . . ,xn ∈ Rd
through some coefficient vector θ, as follows:

• in vanilla linear regression it is assumed that:

– for all i ∈ {1, . . . , n}: yi = θ>xi + εi,
where εi ∼ N (0, 1); and

– y1, . . . , yn are independent.

• in vanilla logistic regression it is assumed that:

– for all i ∈ {1, . . . , n} and σi ∈ {±1}: Pr[yi = σi] = 1
1+exp(−2θ>xiσi)

; and

– y1, . . . , yn are independent.

It is well-known that, given examples (xi, yi)
n
i=1, where the yi’s are sampled independently as

specified above, the coefficient vector θ can be estimated to within `2-error Od

(√
1
n

)
in both

models, under mild assumptions about the smallest singular value of the matrix whose rows are
x1, . . . ,xn. In both cases, this can be achieved by solving the corresponding Maximum Likelihood
Estimation (MLE) problem, which is concave. In fact, in linear regression, the optimum of the
likelihood has a closed form, which is the familiar least-squares estimate.

The assumption that the response variables y1, . . . , yn are independent is, however, too strong.
In many applications, these variables are observed on nodes of a network, or some spatial or
temporal domain, and are dependent. Examples abound in financial and meteorological applica-
tions, and dependencies naturally arise in social networks through peer effects, whose study has
recently exploded in topics as diverse as criminal activity (see e.g. [24]), welfare participation (see
e.g. [2]), school achievement (see e.g. [36]), participation in retirement plans [18], and obesity (see
e.g. [39, 11]). A prominent dataset where peer effects have been studied are data collected by the
National Longitudinal Study of Adolescent Health, a.k.a. AddHealth study [26]. This was a major
national study of students in grades 7-12, who were asked to name their friends—up to 10, so that
friendship networks can be constructed, and answer hundreds of questions about their personal and
school life, and it also recorded information such as the age, gender, race, socio-economic back-
ground, and health of the students. Estimating models that combine peer and individual effects to
predict behavior in such settings has been challenging; see e.g. [31, 5].

1.1 Modeling Dependence

In this paper, we generalize the standard linear and logistic regression models to capture dependen-
cies between the response variables, and show that if the dependencies are sufficiently weak, then
both the coefficient vector θ and the strength of the dependencies among the response variables can

be estimated to within error Od

(√
1
n

)
. To define our models, we drop the assumption that the

response variables y1, . . . , yn are independent, but maintain the form of the conditional distribution
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that each response variable yi takes, conditioning on a realization of the other response variables
y−i. In particular, for all i, conditioning on a realization of all other variables y−i, the conditional
distribution of yi:

• (in our linear regression model) is a Gaussian of variance 1, as in standard linear regression,
except that the mean of this Gaussian may depend on both θ>xi and in some restricted way
the realizations yj and the covariates xj , for j 6= i;

• (in our logistic regression model) takes value +1 with probability computed by the logistic
function, as in standard logistic regression, except that the logistic function is evaluated at
a point that may depend on both θ>xi and in some restricted way the realizations yj and
covariates xj , for j 6= i.

To capture network effects we parametrize the afore-described general models through a (known)
interaction matrix A ∈ Rn×n and an (unknown) strength of interactions β ∈ R, as follows.

• In linear regression with (A, β)-dependent samples we assume that:

– ε = y −Xθ, with ε ∼ N (0, (βA+D)−1).

– Or equivalently, for all i, conditioning on a realization of the response variables y−i:

yi = θ>xi + εi, (1)

where εi ∼ N (ΣiΣ
−1
ii αi,

det((βA+D)−i)
det(βA+D) −ΣiΣ

−1
ii Σ>i ), where Σi is the i-th row of (βA+D)−1

by removing the coordinate (diagonal element) i-th, Σii is (βA+D)−1 by removing the
i-th column and i-th row, (βA + D)−i is βA + D by removing i-th row and column
and finally column vector αj = yj − θ>xj (this is the Schur complement for conditional
multivariate Gaussians). Observe that ΣiΣ

−1
ii = − 1

Dii
βAi

1 and hence the expectation

becomes − 1
Dii

∑
j 6=i βAij(yj − θ>xj) and moreover the variance becomes 1

Dii
. By the

transformation ε′i = εi + 1
Dii

∑
j 6=i βAij(yj − θ>xj) we get that

yi = θ>xi −
1

Dii

∑
j 6=i

βAij(yj − θ>xj)

+ ε′i, (2)

with ε′i ∼ N
(

0, 1
Dii

)
.

– Interpretation: The conditional expectation of yi is additively perturbed from its expec-
tation θ>xi by the weighted average, according to weights βAij , of how much the other
responses are perturbed from their expectations in realization y−j .

– Remark 2: The model proposed in Eq. (2) falls in the realm of auto-regressive models
studied by Manski [31] and Bramoullé et al. [5], where it is shown that the model can
be identified under conditions on the interaction matrix A. In contrast to our work,
one of the conditions imposed on A is that it can be partitioned into many identical
blocks (i.e. the weighted graph defined by A has many identical connected components).
Thus the response variables cluster into multiple groups that are independently and

1Ai denotes the i-row of A by removing coordinate i, i.e., n− 1 vector
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identically sampled, given the covariates. Instead we want to identify θ and β even when
A corresponds to one strongly connected graph, and therefore there is no independence
to be exploited.

• In logistic regression with (A, β)-dependent samples it is assumed that:

– For all i and σi ∈ {±1}, conditioning on a realization of the response variables y−i:

Pr[yi = σi] =
1

1 + exp
(
−2
(
θ>xi + β

∑
j 6=iAijyj

)
σi

) . (3)

– Interpretation: The probability that the conditional distribution of yi assigns to +1

is determined by the logistic function applied to 2
(
θ>xi + β

∑
j 6=iAijyj

)
instead of

2θ>xi, i.e. it is increased by the weighted average, according to weights βAij , of the
other responses in realization y−j .

– Remark 3: It is easy to see that the joint distribution of random variables (y1, . . . , yn),
satisfying the requirements of Eq. (3), is an instance of the Ising model. See Eq. (6).
In this Ising model each variable i has external field θ>xi, and β controls the inverse
temperature of the model. The Ising model was originally proposed to study phase tran-
sitions in spin systems [27], and has since found myriad applications in diverse research
disciplines, including probability theory, Markov chain Monte Carlo, computer vision,
theoretical computer science, social network analysis, game theory, and computational
biology [29, 7, 21, 16, 22, 19, 35].

A particularly simple instance of our model arises when all covariates xi are single dimen-
sional and identical. In this case, our model only has two free parameters, and this setting
has been well-studied. [12] consider the consistency of maximum likelihood estimation
in this setting. More recent work of Chatterjee [10], Bhattacharya and Mukherjee [4],
and Ghosal and Mukherjee [23] has identified conditions on the interaction matrix A
under which these parameters can be identified. Our work generalizes these works to
the case of multi-dimensional covariates.

Now let us state our results for the above regression models with dependent response variables.
We are given a set of observations (xi, yi)

n
i=1 where the covariates xi are deterministic, and the

response variables are assumed to have been sampled according to either of the models above,
for a given interaction matrix A and an unknown scalar β and coefficient vector θ. Given our
observations, we are interested in estimating β and θ. It is important to stress that we only have one
sample of the variables (y1, . . . , yn). In particular, we cannot redraw the response variables many
times and derive statistical power from the independence of the samples. This is motivated by our
application to network collected data, where we often have no access to independent snapshots of the
responses at the nodes of the network. On a technical standpoint, estimating from a single sample
distinguishes our work from other works in the literature of auto-regressive models and graphical
models, and requires us to deal with the challenges of concentration of measure of functions of
dependent random variables.

Our main results are stated as Theorems 3.1, for logistic regression, and 4.1, for linear regression.

In both cases, the parameters β, θ can be estimated to within error Od

(√
1
n

)
, the dependence of
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the rate on n matching that of vanilla logistic regression and vanilla linear regression respectively.
These results hold under the assumptions of Table 1. We note that the assumptions on θ, β, and the
covariates are standard, even in the case of vanilla regression. Moreover, the bounds on the norm
of A have been shown to be necessary for logistic regression by [4, 23]. And the minimum singular
value condition for matrix AX is mild, and holds for various ensembles of A; see e.g. Corollary 4.1
shown using Ky Fan inequalities [20].

Proof Overview: The estimation algorithms in both Theorem 3.1 and Theorem 4.1 are instances
of Projected Gradient Descent (PGD). In the linear case (Theorem 4.1, PGD is applied to the
negative log-likelihood of the observations (y1, . . . , yn). However, the log-likelihood is not convex,
so we perform a re-parametrization of the model, indeed an overparametrization of the model that
renders it convex. Showing strong convexity of the re-parametrized negative log-likelihood requires
some mild linear algebra. It has to be established that despite the overparametrization the optimum
collapses to the right dimensionality, and can be used to recover the original parameters. A more
complete overview of the approach is presented in the beginning of Section 4.

In the logistic case (Theorem 3.1), we do not run PGD on the negative log-likelihood but the
negative
log-pseudolikelihood. Pseudolikelihood is the product of the conditional probabilities of each re-
sponse yi, conditioning on all other responses y−i. Pseudolikelihood is trivially convex, but we need
to establish that is optimum is close to the true parameters and also that it is strongly convex. We
show both properties via concentration results for functions of dependent random variables. To
show that the maximum of the pseudolikelihood is close to the true parameters we use exchangeable
pairs, adapting [9]. To show that it is strongly convex we show additional properties of A which
are implied by our assumptions. Combining these with a new concentration inequality, we obtain
the desired bound. A more complete overview of the approach is presented in Section 3.2.

Other Related Work: We have already reviewed the work that is most relevant to ours from the
Economics, Probability Theory, and Statistics literature. Further discussion of the Econometrics
and Statistics literature on the theory and applications of regression with dependent observations
is discussed in [30]. There is another strand of literature studying generalization bounds that can
be attained when learning from sequences of dependent observations; see e.g. [33, 32, 41, 38, 34, 1].
These works assume, however, that the sequence of observations is a stationary process, which
does not hold in our models, and they impose strong mixing conditions on that sequence. Finally,
we note that generalized linear regression, which accommodates dependencies among the response
variables, cannot be applied directly to our linear regression setting to estimate θ, because the
covariance matrix of our response variables depends on the parameter β, which is unknown and
thus needs to be disentangled before bounding the error in the estimation of θ.

In the case of logistic regression, there has been a lot of work showing that under certain high-
temperature conditions on the Ising model (which are similar to the assumptions we make in our
paper), one can perform many statistical tasks such as learning, testing and sampling of Ising
models efficiently [28, 14, 13, 15, 25, 17].
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2 Preliminaries

We use bold letter such as x,y to denote vectors and capital letters X,Y,A,D to denote matrices.
All vectors are assumed to be column vectors, i.e. dim× 1. We will refer to Aij as the (i, j)th entry
of matrix A. We will use the following matrix norms. For a n× n matrix A,

‖A‖2 = max
‖x‖2=1

‖Ax‖2 , ‖A‖∞ = max
j∈[n]

n∑
i=1

|Aij | ,

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

A2
ij .

When A is a symmetric matrix we have that ‖A‖2 ≤ ‖A‖∞ ≤ ‖A‖F ≤
√
n ‖A‖2 ≤

√
n ‖A‖∞. We

use λ to denote eigenvalues of a matrix and σ to denote singular values. λmin refers to the smallest
eigenvalue and λmax to the largest, and similar notation is used for the singular values as well.

We will say an estimator θ̂n is consistent with a rate
√
n (or equivalently

√
n-consistent) with

respect to the true parameter θ0 if there exists an integer n0 and a constant C > 0 such that for
every n > n0, with probability at least 1− o(1),∥∥∥θ̂n − θ0

∥∥∥
2
≤ C√

n

We utilize the following two well-known examples of graphical models to characterize depen-
dencies in our logistic and linear regression models respectively.

1. Ising Model: Given an unweighted undirected graph G(V,E) with adjacency matrix A and
assignment σ : V → {−1,+1}n, an Ising model is the following probability distribution on
the 2n configurations of σ:

Pr{y = σ} =
exp

(∑
v∈V hvσv + βσ>Aσ

)
ZG(β, θ)

(4)

where

Z(G) =
∑
σ̃

exp

(∑
v∈V

hvσ̃v + βσ̃>Aσ̃

)
is the partition function of the system (or renormalization factor). Moreover the term

∑
v hvσv

is called the external field. It can be observed that, without loss of generality, we can restrict
the matrix A to have zeros on its diagonal.

2. Gaussian Graphical Model: Let G = (V,E) be an undirected graph with V = [n]. A
random vector X ∈ Rn is said to be distributed according to (undirected) Gaussian Graphical
model with graph G if X has a multivariate Gaussian distribution N (µ,Σ) with(

Σ−1
)
ij

= 0 ∀ (i, j) /∈ E, (5)
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where the density function fµ,Σ(.) of N (µ,Σ) is

fµ,Σ(x) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

(2π)n/2 det(Σ)1/2

under the condition that Σ is positive semi-definite (Σ−1 is also known as the precision ma-
trix).

2.1 Some Useful Lemmas from Literature

Weyl’s inequalities are useful to understand how the spectra of symmetric matrices change under
addition. We state them here for reference.

Lemma 2.1 (Weyl’s Inequalities). Let A, B and C be three n × n symmetric matrices with real
entries such that A = B + C. Let λA1 ≥ λA2 ≥ . . . ≥ λAn , λB1 ≥ λB2 ≥ . . . ≥ λBn , λC1 ≥ λC2 ≥ . . . ≥ λCn
be their eigenvalues respectively. Then we have for all i ∈ [n], λBi + λCn ≤ λAi ≤ λBi + λC1 .

We will use the following concentration inequality which is standard in literature.

Theorem 2.1 ([40], Remark 5.40). Assume that X is an n×d matrix whose rows Xi are indepen-
dent sub-gaussian random vectors in Rd with second moment matrix Σ. Then for every t ≥ 0, the
following inequality holds with probability at least 1− 2 exp(−ct2),∥∥∥∥ 1

n
X>X − Σ

∥∥∥∥
2

≤ max(δ, δ2)

with δ = C
√

d
n + t√

n
.

Remark 2.1. By choosing t to be Θ(
√

lnn), it follows that with probability 1− 1
poly(n) we get that∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i −Q

∥∥∥∥∥
2

is O

(√
lnn

n

)
,

from which follows that λmin( 1
n

∑n
i=1 xix

>
i ) is at least λmin(Q) − O

(√
lnn
n

)
with probability 1 −

1
poly(n) (by Weyl’s inequality).

Lemma 2.2 (Useful Inequalities on Singular Values). The following inequalities hold:

1. Let W be a n× n matrix. It holds that |λmin(W +W>)| ≤ 2σmin(W ) (see [20]).

2. Let W,Z be matrices. It holds that σmin(WZ) ≤ σmin(W ) ‖Z‖2 (folklore).

3. Let W,Z be matrices, then ‖WZ‖2F ≤ ‖W‖
2
2 ‖Z‖

2
F (folklore).

Lemma 2.3 (Expectation and Variance of a Quadratic form of a Gaussian Distribution). Let
z ∼ N (µ,Σ) and we have the quadratic form f(z) := z>Az + b>z + c. It holds that

Ez[f(z)] = tr(AΣ) + f(µ),Vz[f(z)] = 2tr(AΣAΣ) + 4µ>AΣAµ+ 4b>ΣAµ+ b>Σb.

Table 1 lists the assumptions under which our main theorems for logistic and linear regression
hold.
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Table 1: List of conditions under which our main consistency results (Theorems 3.1 and 4.1) hold.

Parameter Logistic Linear

θ (−Θ,Θ)d (−Θ,Θ)d

xi feature vectors with
covariance matrix
Q = n−1X>X 2

Support in [−M,M ]d and
λmax(Q), λmin(Q) positive

constants

No restriction in the support and
λmax(Q), λmin(Q) positive

constants

D Not Applicable diagonal matrix with positive
constant entries

A symmetric, zero diagonal,
‖A‖∞ ≤ 1 and ‖A‖2F ≥ cn

symmetric, zero diagonal,
‖A‖2 ≤ 1 and and ‖A‖2F ≥ cn

β (−B,B) λmin((βA+D)−1) > ρmin,
λmax((βA+D)−1) < ρmax and
ρmin, ρmax positive constants for

all β ∈ (−B,B)

n−1X>A>(I −
DX(X>D2X)−1X>D)AX

No assumption Minimum eigenvalue a positive
constant ρDAX

3 Logistic Regression with Dependent Data

In this section we look at the problem of logistic regression with dependent data.

3.1 Our model

We are interested in a generalization of the Ising model on graph G = (V,E) with |V | = n, where
each vertex i ∈ G has a feature vector xi ∈ Rd. Moreover there is an unknown parameter θ ∈ Rd
and the corresponding probability distribution induces to the following:

Pr{y = σ} =
exp

(∑n
i=1(θ>xi)σi + βσ>Aσ

)
Z(G)

, (6)

where A is a symmetric matrix with zeros on the diagonal. Given one sample y and the knowledge
of the matrix A, we would like to infer β, θ.

We now study some conditions under which we can attain consistent estimates of the parameters
of the model. Combined with some standard assumptions on the data-generating process of the
feature vectors all our assumptions are listed in Table 1.

Theorem 3.1 (Logistic Regression with Dependent Samples). Consider the model of (6). The
Maximum Pseudo-Likelihood Estimate (MPLE) (θ̂MPL, β̂MPL) is consistent with a rate of

√
n as

long as (θ0, β0) and the features X satisfy the conditions of Column 2 in Table 1. Formally, for
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each constant δ > 0 and n sufficiently large∥∥∥(θ̂MPL, β̂MPL)− (θ0, β0)
∥∥∥

2
≤ Od

(√
1

n

)

with probability 1− δ. Moreover, we can compute a vector (θ̃, β̃) with
∥∥∥(θ̂MPL, β̂MPL)− (θ̃, β̃)

∥∥∥
2
≤

Od

(√
1
n

)
in O(lnn) iterations of projected gradient descent (Algorithm in Section 5) where each

iteration takes at most O(dn) time, with probability 1− δ.

Remark 3.1 (Necessity of an Upper Bound on ‖A‖∞ and boundedness of β0). If ‖A‖∞ scales
with n then no consistent estimator might exist. This is because the peer effects through β0A will
dominate the outcome of the samples and will nullify the signal coming from θ>0 X. Similarly one
requires β0 to be bounded as well to preserve some signal to enable recovery of θ0.

Remark 3.2 (Necessity of the Lower Bound on ‖A‖F ). It was shown in [4] (Corollary 2.4 (b)) and
[23] (Theorem 1.13) that when the condition ‖A‖2F > cn is violated, we have specific examples where
it is impossible to get consistent estimators for (θ0, β0). The first instance is the Curie-Weiss model
CW (n, β, h) (Aij = 1

n for all i 6= j). Note that ‖A‖2F = O(1) in this case. The second instance is
dense random graphs, i.e. G(n, p) where p is a constant independent of n and A is chosen to be
the adjacency matrix scaled down by the average degree of the graph, i.e. Aij = 1

(n−1)p1(i,j)∈E.

Remark 3.3. If the parameter β0 is known, the condition that ‖A‖2F ≥ cn is not necessary for

consistency of the MPL estimate θ̂MPL. For instance, consider the independent case where β0 = 0.
Then, to recover θ, we do not need ‖A‖2F ≥ cn.

Remark 3.4. Our approach achieves a
√
n/d rate of consistency if ‖x‖2 × ‖θ‖2 = O(1).

Example Instantiations of Theorem 3.1 Two example settings where the conditions required
for Theorem 3.1 to hold are satisfied are

• A is the adjacency matrix of graphs with bounded degree d scaled down so that ‖A‖2 ≤ 1.

• A is the adjacency matrix of a random d-regular graph.

3.2 Technical Overview

Estimation in Ising models is a well-studied problem which offers a lot of interesting technical chal-
lenges. A first approach one considers is maximum likelihood estimation. However the intractability
of computing the partition function poses a serious obstacle for the MLE. Even if one could ap-
proximate the partition function, proving consistency of the MLE is a hard task. To circumvent
these issues we take a maximum pseudo-likelihood approach. This was proposed by Julian Besag
[3] and analyzed for inference problems on Ising models by Chatterjee [10] and others ([4],[23]).
Given a sample of response variables y let fi(θ, β,y) denote the condition likelihood of observing
yi conditioned on everyone else. The pseudo-likelihood estimator of y is(

θ̂MPL, β̂MPL

)
= argmaxθ,β

n∏
i=1

fi(θ, β,y). (7)
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This does away with the problematic partition function and retains concavity in the parameters
θ, β. To show that the MPLE is consistent we need to show that its global optimum (θ̂MPL, β̂MPL)
is close in `2 distance to (θ0, β0). We achieve this by showing two things hold simultaneously.

• The log pseudo-likelihood is strongly concave everywhere. This will tell us that the gradient
of the log pseudo-likelihood quickly increases as we move away from (θ̂MPL, β̂MPL) where it
is 0.

• The norm of the gradient of the log pseudo-likelihood is small at when evaluated at (θ0, β0)
hence implying proximity to the MPL estimates due to strong concavity.

We show that both these conditions are satisfied with high probability over the draw of our samples.
Showing that the norm of the gradient is bounded involves obtaining variance bounds on two
functions of the Ising model (Lemmas 3.2 and 3.3), and showing strong concavity amounts to
showing a linear in n lower bound on a particular quadratic function (Lemma ??). Both these
properties are challenging to prove because of the dependences between samples. To tackle the
lack of independence, the proofs require a rich set of technical frameworks. In particular, to show
the variance bounds we use the technique of exchangeable pairs developed by Chatterjee [8]. The
boundedness of ‖A‖∞ is necessary to have these concentration results. To show strong concavity of
the log pseudolikelihood we first prove some properties of the matrix A together with an additional
variance bound again shown via exchangeable pairs. The lower bound on ‖A‖F is necessary to
achieve strong concavity. Finally, we show in Section 5 that computing the MPLE can be achieved
efficiently using projected gradient descent where after each step we project back into the space
restriced by the conditions of Table 1. We describe each of these steps formally now.

3.3 Analyzing the Maximum Pseudolikelihood Estimator (MPLE)

We will treat terms not involving n as constants for the purposes of our analysis. We start by
analyzing the maximum pseudo-likelihood estimator. Given the feature vector of the ith sample xi,
we denote by xik the kth element of xi. Let mi(y) :=

∑n
j=1Aijyj and let B = [−Θ,Θ]d × [−B,B]

(the true parameters lie in the interior of B). The pseudolikelihood for a specific sample y is given
by:

PL(θ, β) :=

n∏
i=1

exp
(
θ>xiyi + βmi(y)yi

)
exp (θ>xi + βmi(y)) + exp (−θ>xi − βmi(y))

. (8)

The normalized log pseudolikelihood for a specific sample y is given by:

LPL(θ, β) := 1
n logPL(θ, β) = − ln 2 + 1

n

∑n
i=1

[
yiβmi(y) + yi(θ

>xi)− ln cosh(βmi(y) + θ>xi)
]
.

(9)
The first order conditions give:

∂LPL(θ̂MPL,β̂MPL)
∂β = 1

n

∑n
i=1

[
yimi(y)−mi(y) tanh(β̂MPLmi(y) + θ̂>MPLxi)

]
= 0,

∂LPL(θ̂MPL,β)
∂θk

= 1
n

∑n
i=1

[
yixi,k − xi,k tanh(β̂MPLmi(y) + θ̂>MPLxi)

]
= 0.

(10)

The Hessian H(θ,β) is given by:

∂2LPL(θ,β)
∂β2 = − 1

n

∑n
i=1

m2
i (y)

cosh2(βmi(y)+θ>xi)
,

∂2LPL(θ,β)
∂β∂θk

= − 1
n

∑n
i=1

xi,kmi(y)

cosh2(βmi(y)+θ>xi)
,

∂2LPL(θ,β)
∂θl∂θk

= − 1
n

∑n
i=1

xi,lxi,k
cosh2(βmi(y)+θ>xi)

.

(11)
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Writing the Hessian in a compact way we get

H(θ,β) = − 1

n

n∑
i=1

1

cosh2(βmi(y) + θ>xi)
XiX

>
i

where Xi = (xi,mi(y))>. Thus −H is a positive semidefinite matrix and LPL is concave. Moreover
if (θ, β) ∈ B it follows that

1
cosh2(B+d·M ·Θ)

·
(

1
n

∑n
i=1XiX

>
i

)
� −H(θ,β) �

(
1
n

∑n
i=1XiX

>
i

)
. (12)

Remark 3.5. Observe that ‖Xi‖22 = ‖xi‖22 +m2
i (y) ≤ dΘ2 + 1 (assuming that ‖A‖∞ ≤ 1 trivially

holds |mi(x)| ≤ 1). It is easy to see that λmax(−H(θ,β)) ≤
√
dΘ2 + 1 for all (θ, β) ∈ Rd+1, hence

−LPL is a
√
dΘ2 + 1-smooth function, i.e. ∇− LPL is

√
dΘ2 + 1-Lipschitz.

3.4 Consistency of the MPLE

Our argument for showing consistency of the MPLE uses Lemma 3.1.

Lemma 3.1. Let (θ0, β0) be the true parameter. We define (θt, βt) = (1−t)(θ0, β0)+t(θ̂MPL, β̂MPL)
and let D ∈ [0, 1] be the largest value such that (θD, βD) ∈ B (if it does not intersect the boundary
of B, then D = 1). Then,

‖∇LPL(θ0, β0)‖2 ≥ D min
(θ,β)∈B

λmin

(
−H(θ,β)

) ∥∥∥(θ0 − θ̂MPL, β0 − β̂MPL)
∥∥∥

2

= min
(θ,β)∈B

λmin

(
−H(θ,β)

)
‖(θ0 − θD, β0 − βD)‖2

Proof. We drop the subscript MPL from the estimates for brevity. We set

g(t) := (θ0 − θ̂, β0 − β̂)>∇LPL(θt, βt),

g′(t) = −(θ0 − θ̂, β0 − β̂)>H(θt,βt)(θ0 − θ̂, β0 − β̂).

Observe that D =
‖(θD−θ0,βD−β0)‖2
‖(θ̂−θ0,β̂−β0)‖

2

. Since H is negative semidefinite we have that g′(t) ≥ 0 (*). It

holds that∥∥∥(θ0 − θ̂, β0 − β̂)
∥∥∥

2
· ‖∇LPL(θ0, β0)‖2 ≥ |(θ0 − θ̂, β0 − β̂)>∇LPL(θ0, β0)|

= |g(1)− g(0)| =
∣∣∣∣∫ 1

0
g′(t)dt

∣∣∣∣
≥
∣∣∣∣∫ D

0
g′(t)dt

∣∣∣∣ by (*)

≥ D min
(θ,β)∈B

λmin

(
−H(θ,β)

) ∥∥∥(θ0 − θ̂, β0 − β̂)
∥∥∥2

2

= min
(θ,β)∈B

λmin

(
−H(θ,β)

)
‖(θD − θ0, βD − β0)‖2×

×
∥∥∥(θ0 − θ̂, β0 − β̂)

∥∥∥
2

10



We apply Lemma 3.1 by showing

1. a concentration result for ‖∇LPL(θ0, β0)‖22 around 1/n (Section 3.5)and

2. a (positive constant) lower bound for min(θ,β)∈B λmin

(
−H(θ,β)

)
(Section 3.6).

We combine the above with the observation that D → 1 as n → ∞ (i.e., D ≥ 1
2 for n sufficiently

large). This is true because ‖(θD − θ0, βD − β0)‖2 → 0 as n → ∞ (is of order 1√
n

by showing the

promised concentration result and the lower bound). Also note that any point on the boundary
of B has a fixed distance to (θ0, β0) since it lies in the interior. Hence ‖(θD − θ0, βD − β0)‖2 → 0
implies that D → 1. This gives the desired rate of consistency which we show in Section 3.7.

3.5 Variance Bounds using Exchangeable Pairs

In this Section we state the lemmata which are required to show that the norm of the gradient of
the log pseudo-likelihood is bounded at the true parameters.

Lemma 3.2 (Variance Bound 1). It holds that

Eθ0,β0

( n∑
i=1

yimi(y)−mi(y) tanh(β0mi(y) + θ>0 xi)

)2
 ≤ (12 + 4B)n.

Proof. We use the powerful technique of exchangeable pairs as introduced by Chatterjee ([8]) and

employed by Chatterjee and Dembo (see [9]). First it holds that ∂mi(y)
∂yj

= Aij . Also note that since

‖A‖∞ ≤ 1 it trivially follows that |mi(y)| ≤ 1 for all i and y ∈ {−1,+1}n. Set

Q(y) :=
∑
i

(yi − tanh(β0mi(y) + θ>0 xi))mi(y), (13)

hence we get

∂Q(y)

∂yj
=
∑
i

(
1i=j −

β0Aij

cosh2(β0mi(y) + θ>0 xi)

)
mi(y) +

(
yi − tanh(β0mi(y) + θ>0 xi)

) ∂mi(y)

∂yj
.

(14)

We will bound the absolute value of each summand. First from above we can bound the second
term as follows ∣∣∣∣(yi − tanh(β0mi(y) + θ>0 xi))

∂mi(y)

∂yj

∣∣∣∣ ≤ 2 |Aij | . (15)

Using the fact that 1
cosh2(x)

≤ 1 it also follows that∣∣∣∣∣∑
i

(
1i=j −

β0Aij

cosh2(β0mi(y) + θ>0 xi)

)
mi(y)

∣∣∣∣∣ ≤ |mj(y)|+
∑
i 6=j

β0 |Aijmi(y)| (16)

Using (15) and (16) it follows that
∣∣∣∂Q(y)
∂yj

∣∣∣ ≤ ∑
i 6=j |Aij | (2 + β0|mi(y)|) + |mj(y)|. Finally let

yj = (y−j ,−1) and note that

|Q(y)−Q(yj)| ≤ 2·

∑
i 6=j
|Aij | (2 + β0|mi(y−j , w)|) + |mj(y−j , w)|

 ≤ 2·(
∑
i 6=j
|Aij | (2+B)+1) ≤ 6+2B,

(17)
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where w is the argmax of |mi(y−j , w)| along the line with endpoints y,yj (Taylor). In the last
inequality we used that ‖A‖∞ ≤ 1. We have all the ingredients to complete the proof. We first
observe that ∑

i

Eθ0,β0 [(yi − tanh(β0mi(y) + θ>0 xi))Q(yi)mi(y)] = 0, (18)

since
Eθ0,β0 [(yi − tanh(β0mi(y) + θ>0 xi))Q(yi)mi(y)] =

= Eθ0,β0 [E[(yi − tanh(β0mi(y) + θ>0 xi))Q(yi)mi(y)|y−i]] = 0.
(19)

Therefore it follows

Eθ0,β0 [Q2(y)] = Eθ0,β0

[
Q(y) ·

(∑
i

(yi − tanh(β0mi(y) + θ>0 xi))mi(y)

)]

= Eθ0,β0

[∑
i

(
Q(y)(yi − tanh(β0mi(y) + θ>0 xi))mi(y)

)]
=
∑
i

Eθ0,β0
[
(Q(y)−Q(yi)) · (yi − tanh(β0mi(y) + θ>0 xi))mi(y)

]
≤
∑
i

2 · (6 + 2B) = (12 + 4B)n.

Lemma 3.3 (Variance Bound 2).

Eθ0,β0

 d∑
k=1

(
n∑
i=1

xi,kyi − xi,k tanh(β0mi(y) + θ>0 xi)

)2
 ≤ (4 + 4B)M2 · dn.

Proof. We use the powerful technique of exchangeable pairs as employed by Chatterjee and Dembo
(see [9]). Note that since ‖A‖∞ ≤ 1 it trivially follows that |mi(y)| ≤ 1 for all i and y ∈ {−1,+1}n.
We fix a coordinate k and set

Q(y) :=
∑
i

(yi − tanh(β0mi(y) + θ>0 xi))xi,k, (20)

hence we get ∂Q(y)
∂yj

=
∑

i

(
1i=j − β0Aij

cosh2(β0mi(y)+θ>0 xi)

)
xi,k. We will bound the term as follows∣∣∣∣∂Q(y)

∂yj

∣∣∣∣ ≤ |xj,k|+∑
i 6=j

β0 |Aijxi,k| . (21)

Finally let yj = (y−j ,−1) and note that

|Q(y)−Q(yj)| ≤ 2 ·

|xj,k|+∑
i 6=j

β0 |Aijxi,k|

 . (22)

We have all the ingredients to complete the proof. We first observe that∑
i

Eθ0,β0 [(yi − tanh(β0mi(y) + θ>0 xi))Q(yi)xi,k] = 0, (23)
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since
Eθ0,β0 [(yi − tanh(β0mi(y) + θ>0 xi))Q(yi)xi,k] =

= Eθ0,β0 [E[(yi − tanh(β0mi(y) + θ>0 xi))Q(yi)xi,k|y−i]] = 0.
(24)

Therefore it follows

Eθ0,β0 [Q2(y)] = Eθ0,β0

[
Q(y) ·

(∑
i

(yi − tanh(β0mi(y) + θ>0 xi))xi,k

)]

= Eθ0,β0

[∑
i

(
Q(y)(yi − tanh(β0mi(y) + θ>0 xi))xi,k

)]
=
∑
i

Eθ0,β0
[
(Q(y)−Q(yi)) · (yi − tanh(β0mi(y) + θ>0 xi))xi,k

]
≤
∑
i

4 · (x2
i,k + |xi,k|

∑
j 6=i

β0|xj,k|Aij)

≤ 4
∑
i

|xi,k|2 +B|xi,k|max
j
|yxj, k|,

and the claim follows by summing over all the coordinates.

3.6 Strong Concavity of Maximum Pseudolikelihood

In this Section, we set F = I −X(X>X)−1X> 3

Lemma 3.4 (Lower Bound on Smallest Eigenvalue of Hessian). With probability 1−o(1), λmin(−H(θ,β)) ≥
c for some constant c > 0 for all (θ, β) ∈ B.

Proof. We have

−H := G :=

( 1
nX
>X 1

nX
>m

1
nm
>X 1

n ‖m‖
2
2

)
.

Recall our notation that Q = 1
nX

TX. By using the properties of Schur complement, we get that

det (G− λI) = det (Q− λI) det

(
1

n
m>

(
I − 1

n
X (Q− λI)−1X>

)
m− λ

)
. (25)

Therefore the minimum eigenvalue of G is at least a positive constant as long as the minimum
eigenvalues of

Q and
1

n
m>

(
I − 1

n
XQ−1X>

)
m

are positive constants independent of n. Recall from our assumptions in Table 1, we have that
λmin(Q) ≥ c1 where c1 is a positive constant independent of n. Hence, it remains to show that

λmin

(
1

n
m>

(
I − 1

n
XQ−1X>

)
m

)
≥ c2

for a positive constant c2 with high probability. Our desired statement can be restated as

‖Fm‖22 ≥ c2n.

3I − F is called hat-matrix or projection matrix.
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Note that F has the property that F 2 = F (i.e. is idempotent) and hence all the eigenvalues of F
are 0, 1 (since is of rank n−d, it has d eigenvalues zero and n−d eigenvalues one). Moreover, from
the sub-multiplicativity of the spectral norm, it holds that

‖FA‖2 ≤ ‖F‖2 × ‖A‖2 ≤ 1. (26)

We also have that ‖FA‖2F is Ω(n). This is because σi(FA) ≥ σd+i(A)σn−d−i+1(F ) = σd+i(A) for
1 ≤ i ≤ n − d (σi(G) denotes the i-th largest eigenvalue of G). Since σmax(A) ≤ 1 it follows that
‖FA‖2F ≥ ‖A‖

2
F − d.

Below, we provide an important lemma that will be used to show that ‖Fm‖22 is Ω(n) with
high probability.

Lemma 3.5. Let W be an n× n matrix. Fix a pair of indices i, j. It holds that

Eθ0,β0 [(Wiy)2|y−j ] ≥
e−(B+d·M ·Θ)

2
W 2
ij ,

where Wi is the i-th row of W .

Proof. For any realization of y, consider the two summands
(∑

t6=jWityt +Wij

)2
and

(∑
t6=jWityt −Wij

)2
.

It is clear that if both
∑

t6=jWityt,Wij have same sign then the first term is at least W 2
ij and if they

have opposite sign then the second term is at least W 2
ij . Additionally, at all times both terms are

non-negative.
Moreover from above we have

Eθ0,β0
[
(Wy)2

i |y−j
]
≥W 2

iĵ
·min (Pr [yj = +1|y−j ] ,Pr [yj = −1|y−j ])

≥
W 2
ij

2
exp

−
∣∣∣∣∣∣2θ>0 xĵ + β0

∑
t6=j

Ajtyj

∣∣∣∣∣∣


≥
W 2
ij

2
exp(−ΘMd−B)

where the inequality before the last holds because of (3) and last inequality by assumption.

Process to select indices: Let h : [n] → [n] a function to be defined later. We define the
following iterative process. Assume that at time t = 0 we start with matrix n × n, W 1 = W . At
time step t we choose from W t the row with maximum l2 norm (let it the index of that row, ties
broken arbitrarily) and also let jt = argmaxj |W t

itj
| (again ties broken arbitrarily). We set h(it) = jt

and W t+1 is W t by setting zeros the entries of it-th row and column jt-th. We run the process
above for n steps and define the bijection function h. Below we prove the following lemma.

Lemma 3.6. Assume that ‖FA‖2F ≥ cn and ‖FA‖∞ ≤ 1. We run the process described above on
FA and get the function h. It holds that∑

i

|(FA)ih(i)|2 ≥
c4n

16
.
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Proof. Let Ai be the i-th column of A. It is clear that F · Ai corresponds to the i-th column of
FA. Since F has eigenvalues 0,1, we get that

∥∥FAi∥∥2

2
≤
∥∥Ai∥∥2

2
≤
∥∥Ai∥∥∞ ∥∥Ai∥∥1

≤ 1 (a) since A is
symmetric and hence ‖A‖1 = ‖A‖∞ ≤ 1. Above we used the fact that for any n-dimensional vector
u, from Holder’s inequality,

‖u‖22 ≤ ‖u‖∞ ‖u‖1 .
Also let (FA)i be the i-th row of FA. Since ‖FA‖∞ ≤ 1 it holds that ‖(FA)i‖22 ≤ ‖FA‖∞ ≤ 1

(b).
We run the process described in the previous paragraph on FA and let W t be the matrix at

time t (with W 1 = FA). Let i1, ..., in be the ordering of the indices of the rows the process chose.
It is clear that at every step we remove a column and a row from the matrix, the frobenius norm
is decreased by at most two (using facts (a) and (b)).

Hence by the definition of the process we have that∥∥W t
it

∥∥2

2
≥
‖A‖2F − 2(t− 1)

n− t− 1
≥ cn− 2t+ 2

n
= c− 2(t− 1)

n
.

We set T = bcn/2c and we get

n∑
t=1

∥∥W t
it

∥∥2

2
≥

T∑
t=1

∥∥W t
it

∥∥2

2
(27)

≥ cT − 2(T − 1)T

2n
≥ cT − T 2

n
≈ c2n

4
(28)

Therefore we have that (observe that 1 ≥ ‖(FA)j‖1 ≥
∥∥∥W t

j

∥∥∥
1

for all t, j ∈ [n], i.e., the `1 norm

of each row does not increase during the process and same is true for `∞)

c2n

4
≤

n∑
t=1

∥∥W t
it

∥∥2

2
≤

n∑
i=1

∥∥W t
it

∥∥
∞
∥∥W t

it

∥∥
1
≤

n∑
i=1

∥∥W t
it

∥∥
∞ . (29)

=⇒ c4n2

16
≤

(
n∑
t=1

∥∥W t
it

∥∥2

2

)2

≤ n
n∑
t=1

∥∥W t
it

∥∥2

∞ (30)

=⇒
n∑
t=1

∥∥W t
it

∥∥2

∞ ≥
c4n

16
. (31)

Finally, it holds that
∑n

t=1 ‖(FA)t‖2∞ ≥
∑n

t=1

∥∥W t
it

∥∥2

∞ and the claim follows.

Corollary 3.1. ∑
i

Eθ0,β0
[
(Fm)2

i |y−h(i)

]
≥ Cn,

for some positive constant C.

Proof. It holds by Lemmas 3.5 and 3.6 by choosing for each i, index h(i).

Lemma 3.7 (Bounding the variance). It holds that

Eθ0,β0

( n∑
i=1

(Fm)2
i −

∑
i

Eθ0,β0
[
(Fm)2

i |y−h(i)

])2
 ≤ 48n+ 16Bn.
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Proof. For each i, we expand the term Eθ0,β0
[
(Fm)2

i |y−h(i)

]
and we get Eθ0,β0

[
(Fm)2

i |y−h(i)

]
=

(
∑

j 6=h(i)(FA)ijyj)
2 + (FA)2

ih(i) + 2(
∑

j 6=h(i)(FA)ijyj) tanh(β0mh(i)(y) + θ>0 xh(i)). We set zit(y) =

2(
∑

j 6=t(FA)ijyj) and we get that the expectation we need to bound is equal to

Eθ0,β0

(∑
i

zih(i)(y)yh(i) − zih(i)(y) tanh
(
β0mh(i)(y) + θ>0 xh(i)

))2
 .

First it holds that ∂zit
yj

= 2(FA)ij and ∂zit
yt

= 0. Also if ‖FA‖∞ ≤ 1 it trivially holds that |zit| ≤ 2.

We set
Q(y) =

∑
i

(yh(i) − tanh(β0mh(i)(y) + θ>0 xh(i)))zih(i)(y),

hence we get that

∂Q(y)

∂yj
=
∑
i

(
1h(i)=j −

β0Ah(i)j

cosh2(β0mh(i)(y) + θ>0 xh(i))

)
zih(i)(y) (32)

+
(
yh(i) − tanh(β0mh(i)(y) + θ>0 xh(i))

) ∂zih(i)(y)

∂yj
. (33)

We will bound the absolute value of each summand. First from above we can bound the second
term as follows ∣∣∣∣(yh(i) − tanh(β0mh(i)(y) + θ>0 xh(i)))

∂zih(i)(y)

∂yj

∣∣∣∣ ≤ 4 |(FA)ij | . (34)

Using the fact that 1
cosh2(x)

≤ 1 it also follows that∣∣∣∣∣∑
i

(
1h(i)=j −

β0Ah(i)j

cosh2(β0mh(i)(y) + θ>0 xh(i))

)
zih(i)(y)

∣∣∣∣∣ ≤∑
i

1h(i)=j |zih(i)(y)|+
∑
i 6=j

∣∣β0Ah(i)jzih(i)(y)
∣∣ ,

(35)
which is at most 2

∑
i 1h(i)=j + 2B.

Using (34) and (35) it follows that
∣∣∣∂Q(y)
∂yj

∣∣∣ ≤ 4
∑

i,h(i)6=j |(FA)ij |+ 2
∑

i 1h(i)=j + 2B. We have

all the ingredients to complete the proof. Let yj = (y−j ,−1). We first observe that∑
i

Eθ0,β0 [(yh(i) − tanh(β0mh(i)(y) + θ>0 xh(i)))Q(yh(i))zih(i)(y)] = 0, (36)

since
Eθ0,β0 [(yh(i) − tanh(β0mh(i)(y) + θ>0 xh(i)))Q(yh(i))zih(i)(y)] =

= Eθ0,β0 [E[(yh(i) − tanh(β0mh(i)(y) + θ>0 xh(i)))Q(yh(i))zih(i)(y)|y−h(i)]] = 0.
(37)

Therefore it follows

Eθ0,β0 [Q2(y)] = Eθ0,β0

[
Q(y) ·

(∑
i

(yh(i) − tanh(β0mi(y) + θ>0 xi))zih(i)(y)

)]
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= Eθ0,β0

[∑
i

(
Q(y)(yh(i) − tanh(β0mi(y) + θ>0 xi))zih(i)(y)

)]
=
∑
i

Eθ0,β0
[
(Q(y)−Q(yh(i))) · (yh(i) − tanh(β0mh(i)(y) + θ>0 xh(i)))zih(i)(y)

]
=
∑
i

Eθ0,β0
[
(Q(y)−Q(yi)) · (yi − tanh(β0mi(y) + θ>0 xi))zh−1(i)i(y)

]

≤ 8
∑
i

 ∑
t,h(t)6=i

4|(FA)ti|+ 2
∑
t

1h(t)=i + 2B


≤ 48n+ 16Bn,

where we also used the fact that
∑

i

∑
j(FA)ij ≤

∑
i ‖FA‖∞ ≤ n.

Remark 3.6. The proof of Lemma 3.6 depends on the assumption that ‖FA‖∞ ≤ c′∞ for some
positive constant c′∞. This assumption is not necessary for the proof to go through and below we
will argue about removing this assumption.

Lemma 3.8. It holds that
∑

i,j |Fij | ≤ n(d+ 1).

Proof. Since F has rank n − d and has eigenvalues 0,1 it holds that F = I −
∑d

i=1 v
ivi > with∥∥vi∥∥

2
= 1. We choose vector x so that xj = 1 if vij ≥ 0 and xj = −1 otherwise. It holds that

(
∑

j |vij |)2 = x>vivi >x ≤ ‖x‖22 = n. Thus we get that
∑

j

∑
t |vij | · |vit| ≤ n. Thefore we get that

∑
i,j

|Fi,j | ≤ n+
d∑
i=1

n = n(d+ 1).

Corollary 3.2. We can drop the assumption ‖FA‖∞ is O(1).

Proof. From Lemma 3.8 we get that for every ε > 0, there exists at most nd/ε rows of FA that
have `1 norm larger than ε (by Markov’s inequality), hence there exist n(1−d/ε) rows that have `1
norm at most ε. Moreover, since ‖FA‖2 ≤ 1 (26) it holds that each row j of FA (denote by (FA)j)
has ‖(FA)j‖22 ≤ 1. The trick is to remove from matrix FA all the rows that have `1 norm larger
than ε and we reduce the Frobenius norm squared of FA by nd/ε. By choosing ε to be 2nd

‖FA‖2F
, the

resulting matrix (after removing the “overloaded” rows) has still Frobenius norm squared Ω(n) and
moreover all the rows have `1 norm at most ε (which is Θ(1). The claim follows since the rows we
are removing cannot increase the expression

∑
i(FAy)2

i (sum of squares).

Finally we are ready to complete the proof by showing that ‖Fm‖22 ≥ c2n.
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3.7 Completing the Proof

With the above results in hand, we can prove the main result of this Section, Theorem 3.1.
Proof of Theorem 3.1: First it holds that:

Eθ0,β0 [‖∇LPL(θ0, β0)‖22] (38)

=
d∑

k=1

Eθ0,β0

[
1

n

n∑
i=1

(
xi,kyi − xi,k tanh(β0mi(y) + θ>0 xi)

)]2

(39)

+ Eθ0,β0

[
1

n

n∑
i=1

(
yimi(y)−mi(y) tanh(β0mi(y) + θ>0 xi)

)]2

. (40)

From Lemmas 3.2 and 3.3 we have that

Eθ0,β0 [‖∇LPL(θ0, β0)‖22] ≤ c

n
(41)

for some constant c. By Markov’s inequality, we get that

Pr
[
‖∇LPL(θ0, β0)‖22 ≤

c

nδ

]
≥ 1− δ. (42)

for any constant δ. Next, we have from Lemma 3.4 that, min(θ,β)∈B λmin

(
−H(θ,β)

)
≥ C for some

constant C independent of n. Plugging into Lemma 3.1, we get that

‖(θD − θ0, βD − β0)‖2 = D
∥∥∥(θ̂MPL − θ0, β̂MPL − β0)

∥∥∥
2
≤

‖∇LPL(θ0, β0)‖2
min(θ,β)∈B λmin

(
−H(θ,β)

) (43)

Now we have from the above that ‖(θD − θ0, βD − β0)‖2 → 0 as n→∞ (is of order 1√
n

). Also note

that any point on the boundary of B has a fixed distance to (θ0, β0) since it lies in the interior.
Hence ‖(θD − θ0, βD − β0)‖2 → 0 implies that D → 1 which in turn implies that D ≥ 1/2 for
sufficiently large n. Hence

(43) =⇒
∥∥∥(θ̂MPL − θ0, β̂MPL − β0)

∥∥∥
2
≤

2 ‖∇LPL(θ0, β0)‖2
min(θ,β)∈B λmin

(
−H(θ,β)

) (44)

≤ Od
(

1√
n

)
(45)

with probability ≥ 1− δ.

4 Linear Regression with Dependent Observations

In this section we focus on linear regression under weakly dependent errors. As opposed to Logistic
regression, in linear regression the log-likelihood is computationally tractable.
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4.1 Our Model

We recall the model for dependent observations we consider. In our setting, we have that the errors
εi = yi − θxi are distributed according to a Gaussian graphical model. Since each εi is zero mean,
we have that µ = 0 in our case. Also, similar to the logistic regression setting, we will assume that
we have complete knowledge of the graph structure up to a scaling factor. That is, (Σ)−1 = βA+D
where the matrix A is a known symmetric matrix with Aii = 0 and D = [d1 . . . dn]T is a known
diagonal matrix with positive entries. Hence the probability distribution of the observations is:

Pr[y = a] =
exp

(
−1

2(a− θ>x)>Σ−1(a− θ>x)
)

(2π)n/2 det(Σ)1/2
(46)

This section is devoted to showing that the Maximum Likelihood Estimator (MLE) under
appropriate (over)re-parametrization - (the new parameter vector will be (θ, β, κ) where θ, β remain
same after reparametrization and κ = β.θ) - is

√
n consistent in our linear regression model. We set

B = [−Θ,Θ]d × [−B,B] × [−ΘB,ΘB]d (the set of which the parameters should be in the interior
and B is defined in Table 1). Formally we prove the following theorem.

Theorem 4.1 (Main Linear). Assume that

1. Feature matrix X4 with covariance matrix Q = 1
nX
>X having λmin(Q), λmax(Q) as positive

constants.

2. ‖A‖2 is Θ(1), ‖A‖2F is Ω(n) and λmin

(
1
nX
>A>(I −DX(X>D2X)−1X>D)AX

)
is Θ(1).

We show that the Maximum Log-likelihood Estimate (MLE) (θ̂, β̂, κ̂) is Od

(√
1
n

)
consistent as

long as the true parameter vector (θ0, β0, κ0) ∈ B (in the interior of B), i.e., for each δ > 0 and

n sufficiently large,
∥∥∥(θ̂, β̂, κ̂)− (θ0, β0, κ0)

∥∥∥
2

is Od

(√
1
n

)
with probability 1− δ. Moreover, we can

compute a vector (θ̃, β̃) with
∥∥∥(θ̂, β̂)− (θ̃, β̃)

∥∥∥
2

to be Od

(√
1
n

)
in O(lnn) iterations of projected

gradient descent5 with probability 1− o(1).

Corollary 4.1 (Application to Sherrington-Kirkpatrick (SK) model). In the Sherrington-Kirkpatrick
model [37], we have that Aij =

gij√
n

for i < j, where gij ∼ N (0, 1) and Aji = Aij , Aii = 0. From

Lemma 4.6, it follows that A satisfies the assumptions of our main theorem, so we can infer β, θ
(with a

√
n rate of consistency).

Technically, we will reparametrize the log-likelihood function in such a way that the new pa-
rameter vector is not high-dimensional and the resulting log-likelihood becomes strongly convex.
The reparametrization and the equations of log-likelihood, its gradient and Hessian can be found in
Section 4.2. We will follow the same high level ideas as in the logistic regression. Under assumptions
on A, β, θ, (βA+D)−1, AX that are summarized in Table 1 we proceed as follows:

• We prove concentration results for the gradient of the reparametrized log-likelihood, see Lem-
mas 4.3,4.1 and 4.2 in Section 4.3.1.

• We prove that the minimum eigenvalue of the negative Hessian of reparametrized log-likelihood
is large enough, see Lemma 4.4 in Section 4.3.2.

Below we provide some important definitions.

4xi can be subgaussian.
5Each iteration is polynomial time computable
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4.2 Our Reparametrization and Log-likelihood

It is not hard to see that the negative log-likelihood is not convex with respect to the parameter
vector (θ, β) ∈ Rd+1, for the linear regression model with dependent errors. Nevertheless, we
can reparametrize the log-likelihood in such a way to make it convex. The classic way to do it
sets T := Σ−1, ν = Σ−1µ (for a gaussian N (µ,Σ)). However, this creates a parameter vector
of dimension Ω(n). It is crucial that after the reparametrization the dimensionality of the new
parameter vector is O(d) and not Ω(n) (for concentration purposes, see remark 4.1). Hence, we
take a different route here.

We set κ := β · θ ∈ Rd and define our parametric vector to be (θ, β, κ) ∈ R2d+1 (parameters
θ, β remain the same and we introduce vector κ). The vector (θ, β, κ) is (2d+ 1)-dimensional. Our
reparameterization is an overparameterization which helps us achieve convexity of the negative
log-likelihood function.

The negative log-likelihood is given by the following:

−LL =
1

2
(y −Xθ)>(βA+D)(y −Xθ) + log

∫
Rn

exp(−1

2
(z−Xθ)>(βA+D)(z−Xθ))dz (47)

=
1

2
y>(βA+D)y − y>AXκ− y>DXθ + log

∫
Rn

exp(−1

2
z>(βA+D)z + z>AXκ+ z>DXθ)dz

(48)

The negative gradient of the log-likelihood is given below:

−∇θLL(θ, β, κ) = −y>DX +

∫
Rn z

>DX exp(−1
2z
>(βA+D)z + z>AXκ+ z>DXθ)dz∫

Rn exp(−1
2z
>(βA+D)z + z>AXκ+ z>DXθ)dz

(49)

= −y>DX + Ez∼N ((βA+D)−1(AXκ+DXθ),(βA+D)−1)

[
z>
]
DX (50)

−∇βLL(θ, β, κ) =
1

2
y>Ay +

∫
Rn −

1
2z
>Az exp(−1

2z
>(βA+D)z + z>AXκ+ z>DXθ)dz∫

Rn exp(−1
2z
>(βA+D)z + z>AXκ+ z>DXθ)dz

(51)

=
1

2
y>Ay − Ez∼N ((βA+D)−1(AXκ+DXθ),(βA+D)−1)

[
1

2
z>Az

]
(52)

−∇κLL(θ, β, κ) = −y>AX +

∫
Rn z

>AX exp(−1
2z
>(βA+D)z + z>AXκ+ z>DXθ)dz∫

Rn exp(−1
2z
>(βA+D)z + z>AXκ+ z>DXθ)dz

(53)

= −y>AX + Ez∼N ((βA+D)−1(AXκ+DXθ),(βA+D)−1)

[
z>
]
AX. (54)

The negative hessian of the log-likelihood is given below (it is of size (2d+ 1)× (2d+ 1)):

−H := −∇2LL = Covz∼N ((βA+D)−1(AXκ+DXθ),(βA+D)−1)

 −1
2z
>Az

X>Dz
X>Az

 ,

 −1
2z
>Az

X>Dz
X>Az

 .
(55)

4.3 Consistency of Likelihood

Let (θ0, β0, κ0) be the true parameter (observe that κ0 = β0 · θ0). We define (θt, βt, κt) = (1 −
t)(θ0, β0, κ0)+t(θ̂, β̂, κ̂) where (θ̂, β̂, κ̂) satisfies the first order conditions for LL (i.e., ∇LL(θ̂, β̂, κ̂) =
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0) 6 and set

g(t) := (θ0−θ̂, β0−β̂, κ0−κ̂)>∇LL(θt, βt, κt), g
′(t) = −(θ0−θ̂, β0−β̂, κ0−κ̂)>H(θt,βt,κt)(θ0−θ̂, β0−β̂, κ0−κ̂).

Let D ∈ [0, 1] be such that (θD, βD, κD) intersects the boundary of set B (if it does not intersect
the boundary of B then D = 1). Since H is negative semidefinite (from analysis in equation 55) we
have that g′(t) ≥ 0 (**). It holds that∥∥∥(θ0 − θ̂, β0 − β̂, κ0 − κ̂)

∥∥∥
2
· ‖∇LL(θ0, β0, κ0)‖2 ≥ |(θ0 − θ̂, β0 − β̂, κ0 − κ̂)>∇LL(θ0, β0, κ0)|

= |g(1)− g(0)|

=

∣∣∣∣∫ 1

0
g′(t)dt

∣∣∣∣
≥
∣∣∣∣∫ D

0
g′(t)dt

∣∣∣∣ by (**)

≥ D min
(θ,β,κ)∈B̃

λmin

(
−H(θ,β,κ)

) ∥∥∥(θ0 − θ̂, β0 − β̂, κ0 − κ̂)
∥∥∥2

2
.

The aforementioned inequalities indicate that we need a concentration result for
∥∥ 1
n∇LL(θ0, β0, κ0)

∥∥
2

and a lower bound on the minimum eigenvalue of − 1
nH for consistency of the MLE. As in the lo-

gistic regression case, combining with the observation that D → 17 as n → ∞ (i.e., D ≥ 1
2 for n

sufficiently large) we get the desired rate of consistency.

4.3.1 Concentration results

We have
Eθ0,β0

[
‖∇LL(θ0, β0, β0 · θ0)‖22

]
= Eθ0,β0

[
‖∇θLL(θ0, β0, β0 · θ0)‖22

]
+

Eθ0,β0
[
|∇βLL(θ0, β0, β0 · θ0)|2

]
+ Eθ0,β0

[
‖∇κLL(θ0, β0, β0 · θ0)‖22

] (56)

We prove below concentration results for each term separately.

Lemma 4.1 (Bounding the 1st term).

Eθ0,β0
[
‖∇θLL(θ0, β0, κ0)‖22

]
=
∥∥∥(β0A+D)−1/2DX

∥∥∥2

F
≤
∥∥∥(β0A+D)−1/2D

∥∥∥2

2
‖X‖2F .

Proof. Assume that y ∼ N (Xθ0, (β0A + D)−1), it follows that −∇θLL(θ0, β0, κ0) = −y>DX −
Eθ0,β0 [−y>DX]. It is clear that the vector w = (β0A+D)1/2(y −Xθ0) ∼ N (0, I).

It follows that

−y>DX − Eθ0,β0 [−y>DX] = −((β0A+D)−1/2w +Xθ0)>DX + Eθ0,β0 [((β0A+D)−1/2w +Xθ0)>DX]
(57)

= −w>(β0A+D)−1/2DX. (58)

6Observe that is not necessarily true that κ̂ = β̂θ̂.
7This is true because ‖(θD − θ0, βD − β0, κD − κ0)‖2 → 0 as n→∞ by showing the promised concentration result

and the lower bound).
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It holds that

Eθ0,β0 [‖∇θLL(θ0, β0, κ0)‖22] = Eθ0,β0
[∥∥∥w>(β0A+D)−1/2DX

∥∥∥2

2

]
= tr((β0A+D)−1/2DXX>D(β0A+D)−1/2)

=
∥∥∥(β0A+D)−1/2DX

∥∥∥2

F

Lemma 4.2 (Bounding the 3rd term). Similarly to Lemma 4.1 we get

Eθ0,β0
[
‖∇κLL(θ0, β0, κ0)‖22

]
=
∥∥∥(β0A+D)−1/2AX

∥∥∥2

F
≤
∥∥∥(β0A+D)−1/2A

∥∥∥2

2
‖X‖2F .

Lemma 4.3 (Bounding the 2nd term). It holds that

Eθ0,β0,κ0 [|∇βLL(θ0, β0, κ0)|2] = Vz∼N (Xθ0,(β0A+D)−1)[z
>Az]

≤ 2
∥∥(β0A+D)−1/2A(β0A+D)−1/2

∥∥2

F
+ 4dΘ2

∥∥(β0A+D)−1/2AX
∥∥2

2

(59)

Proof. We follow the calculations of Lemma 2.3. It holds that

Eθ0,β0,κ0 [|∇βLL(θ0, β0, κ0)|2] ≤ 2tr((A(β0A+D)−1)2) + 4dΘ2
∥∥∥(β0A+D)−1/2AX

∥∥∥2

2

≤ 2tr((β0A+D)−1/2A(β0A+D)−1/2(β0A+D)−1/2A(β0A+D)−1/2)

+ 4dΘ2
∥∥∥(β0A+D)−1/2AX

∥∥∥2

2

= 2
∥∥∥(β0A+D)−1/2A(β0A+D)−1/2

∥∥∥2

F
+ 4dΘ2

∥∥∥(β0A+D)−1/2AX
∥∥∥2

2

Remark 4.1. We note the dependence on the dimension d for the bound in Lemma 4.3. This
indicates how crucial it is that the dimensionality of the parameter vector does not scale with n.

4.3.2 Lower bound on the minimum eigenvalue

In this section we provide a lower bound on the minimum eigenvalue of the negative Hessian of the
log-likelihood. We need this bound for strong concavity of the log-likelihood.

Lemma 4.4 (Bounding the minimum eigenvalue). Let z ∼ N ((βA + D)−1(AXκ + DXθ), (βA +
D)−1). There exists a constant C such that

λmin

Cov
 −1

2z
>Az

X>Dz
X>Az

 ,

 −1
2z
>Az

X>Dz
X>Az

 ≥ Cn
d . (60)

Proof. We set µ = (βA + D)−1(AXκ + DXθ), Σ = (βA + D)−1 and w = Σ−1/2(z − µ) (i.e.,
w ∼ N (0, I)) and we consider the vector

h :=

 −1
2w
>Σ1/2AΣ1/2w + w>Σ1/2Aµ− E[−1

2w
>Σ1/2AΣ1/2w]

X>DΣ1/2w

X>AΣ1/2w

 .
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Let v := (v1,v2,v3) be a column vector where v1 ∈ R, v2,v3 ∈ Rd so that ‖v‖2 = 1. It follows
that −v>Hv = E[(v>h)2] where −H is the negative hessian computed in (55).

From Lemma 2.3 we get that

E
[
(v>h)2

]
= v2

1

(
1

2
tr
(

(Σ1/2AΣ1/2)2
))

+
∥∥∥v1µ

>AΣ1/2 + v>2 X
>DΣ1/2 + v>3 X

>AΣ1/2
∥∥∥2

2
.

If a positive constant mass at least
√

ε
d is put on v1 then the above term is at least ε

2d

∥∥Σ1/2AΣ1/2
∥∥2

F

which is Θ(nd ). If not then the above term is at least
∥∥v>2 X>DΣ1/2 + v>3 X

>AΣ1/2
∥∥2

2
−O(n

√
ε) with

‖v2‖22+‖v3‖22 ≥ 1−ε. We will prove a Θ(n) lower bound on the term
∥∥v>2 X>DΣ1/2 + v>3 X

>AΣ1/2
∥∥2

2
≥∥∥v>2 X>D + v>3 X

>A
∥∥2

2
σmin(Σ).

It suffices to bound the minimum eigenvalue of the following matrix:

M :=

(
1
nX
>D2X 1

nX
>DAX

1
nX
>ADX 1

nX
>A2X

)
.

By the Schur complement, we get that det(M − λI) = det( 1
nX
>D2X − λI) det( 1

nX
>A2X −

1
nX
>ADX

(
1
nX
>D2X − λI

)−1 1
nX
>DAX − λI). Therefore the minimum eigenvalue of M a posi-

tive constant if both matrices below are positive definite

1

n
X>D2X and

1

n
X>A2X − 1

n
X>ADX

(
1

n
X>D2X

)−1 1

n
X>DAX.

The first matrix has clearly minimum eigenvalue a positive constant. The second matrix is equal to
1
nX
>A(I −DX(X>D2X)−1XD)AX which has minimum eigenvalue positive by assumption.

Remark 4.2 (Smoothness of Hessian). If we want to find an upper bound on the eigenvalues of
the negative Hessian by an easy argument using Lemma 2.3 follows that

λmax(−Hθ,β,κ) (61)

≤ C
{∥∥∥(βA+D)−1/2A(βA+D)−1/2

∥∥∥2

F
+ dσ2

max((βA+D)−1/2DX) + dσ2
max((βA+D)−1/2AX)

}
(62)

for all (θ, β, κ) ∈ B. From Lemma 4.5 we conclude that there exists a positive constant CH such
that λmax(− 1

nHθ,β,κ) ≤ CH .

The following lemma indicates that the concentration results and the lower bound on the eigen-
values of the negative Hessian (for this section) are of the desirable order.

Lemma 4.5 (Bounding the norms). The following claims hold:

1. ‖X‖2F is Θ(n).

2. 1
n ‖X‖

2
2, 1

nλmin(X>X) are positive constants.

3.
∥∥Σ1/2AΣ1/2

∥∥2

F
, σ2

min(Σ1/2DX) and σ2
min(Σ1/2AX) are Θ(n).
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Proof. For claim 1,2, it follows from Lemma 2.1 that 1
nX
>X has minimum eigenvalue at least

λmin(Q) − o(1) and maximum eigenvalue at most λmax(Q) with probability 1 − o(1). For claim 3
we have that∥∥∥Σ1/2AΣ1/2

∥∥∥2

F
= ‖ΣA‖2F ≥ σ

2
min(Σ) ‖A‖2F which is Θ(n) by assumption on A,Σ.

Moreover, σ2
min(Σ1/2DX) ≥ σmin(Σ)·σ2

min(D)λmin(X>X) which is Θ(n) with high probability (note
that σmin(Σ), σ2

min(D) are positive constants). Similarly the proof goes for σ2
min(Σ1/2AX).

We are now ready to prove the main theorem:

Proof of Theorem 4.1. For any δ > 0 and using Markov’s inequality it follows from Lemmas 4.1,
4.3, 4.2 and Lemma 4.5 that

Pr
θ0,β0

[
‖∇LL(θ0, β0, β0 · θ0)‖2 ≥ Cδ

√
dn
]
≤ δ

for some constant Cδ and λmin(∇2LL) ≥ Cn
d for some constant C. We conclude from the analysis

in Section 4.3 that
∥∥∥(θ0, β0)− θ̂, β̂

∥∥∥ is O

(
d
√

d
n

)
with probability at least 1− δ.

We conclude by showing that the S-K model satisfies the assumptions we have made and hence
Theorem 4.1 can be applied to it.

Lemma 4.6 ((SK) model satisfies the assumptions). Let A be a n× n matrix such that Aij =
gij√
n

for i < j, where gij ∼ N (0, 1) and Aji = Aij , Aii = 0. Matrix A satisfies the assumptions of our
main Theorem 4.1.

Proof. We assume for simplicity of the calculations that D = cI for some positive constant c.
Set F = I − X(X>X)−1X> (F is called a hat/projection matrix, it has the property that d

eigenvalues are zero and the rest are one since F 2 = F ). Let B be a matrix with i.i.d entries
N (0, 1). It is clear that the matrix W = 1√

n
B satisfies the following:

•
∥∥∥W+W>√

2

∥∥∥2

F
is lower bounded by the sum of n(n+1)

2 i.i.d χ2 variables with mean 1
n and

hence
∥∥∥W+W>√

2

∥∥∥2

F
is lower bounded from Θ(n) with high probability 1 − o(1). Moreover,∥∥∥W+W>√

2

∥∥∥2

F
≤ 2 ‖W‖2F and is clear that ‖W‖2F is concentrated around n (n2 i.i.d variables with

mean 1/n). Thus
∥∥∥W+W>√

2

∥∥∥2

F
is concentrated around Θ(n). Same is true for

∥∥∥F (W+W>)√
2

∥∥∥2

F

•
∥∥∥W+W>√

2

∥∥∥
2
, ‖W‖2 are with high probability Θ(1) (it follows from semicircle law, see [40]).

Moreover, the same is true for
∥∥∥F (W+W>)√

2

∥∥∥
2
, ‖FW‖2.

Note that the reason behind the fact that multiplying by F does not change the claims above is
because σj(FW ) ≥ σn−d−j+1(F )σd+j(W ) = σd+j(W ) where σj denotes the j-th largest eigenvalue
of the corresponding matrix and n� d.
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We first show that FWX has singular values the eigenvalues Q plus o(1) with high probability.
First let F = R>IdR where R is a rotation matrix and Id is the identity matrix by setting the
last d rows to all zeros. It is clear that RW is also a matrix with i.i.d gaussians of mean zero and
variance 1/n each. Condition on X (in case X>X = Q then the analysis is simplified), it follows
that the rows of IdWX are independent (except of the last d rows that are all zeros) and each row
follows a gaussian N (0, 1

nX
>X). Hence using Theorem 2.1 it follows that∥∥∥∥ 1

n− d
X>W>F 2WX − 1

n− d
X>X

∥∥∥∥
2

is O

(√
ln(n− d)

n− d

)

with probability 1 − o(1). Finally since again by Theorem 2.1 we get that
∥∥ 1
nX
>X −Q

∥∥
2

is

O

(√
lnn
n

)
with probability 1−o(1), using triangle inequality we conclude that

∥∥ 1
nX
>W>F 2WX −Q

∥∥
2

is O

(√
lnn
n

)
. The claim follows by Weyl’s inequality (Lemma 2.1).

Moreover, we prove that 1
n

∥∥F (W +W>)X
∥∥2

2
is Ω(1) with probability 1− o(1). Let us assume

without loss of generality that 1√
n
‖X‖2 <

1
2‖FW‖22

(by appropriately rescaling X with a constant).

It holds that

λmin

(
1

n
X>(W> +W )F (W +W>)X

)
≥λmin

(
1

n
X>(W>FW +WFW>)X

)
+ λmin

(
1

n
X>(WFW +W>FW>)X

)
≥λmin

(
1

n
X>(W>FW +WFW>)X

)
−
∣∣∣∣λmin

(
1

n
X>(WFW +W>FW>)X

)∣∣∣∣
Lemma 2.2︷︸︸︷
≥ λmin

(
1

n
X>(W>FW +WFW>)X

)
− 2σmin

(
1

n
X>WFWX

)
.

It is clear from the analysis above that the first term is with probability 1 − o(1) within error

O

(√
lnn
n

)
from 2λmin(Q) (a). We analyze the other term and we get using Lemma 2.2

2σmin

(
1

n
X>WFWX

)
≤ 2

√
λmin(

1

n
X>X)

∥∥∥∥ 1√
n
X

∥∥∥∥
2

‖WFW‖2

≤ 2(λmin(Q) + o(1))

∥∥∥∥ 1√
n
X

∥∥∥∥
2

‖FW‖22

≤ λmin(Q) + o(1) (b).

Finally by combining (a), (b) it holds that

λmin

(
1

n
X>(W> +W )F (W +W>)X

)
≥ λmin(Q)− o(1),

which is a positive constant. Hence we conclude that 1
n

∥∥∥F (W+W>)√
2

X
∥∥∥2

2
is a positive constant.
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We define the matrix A to be Aii = 0 (zeros in the diagonal) and Aij =
Wij+Wji√

2
for i 6= j (A

is symmetric). It is clear that A captures the SK model. Moreover, it is easy to show that all the

diagonal entries of W+W>√
2

are smaller than O(
√

logn√
n

) with probability 1 − o(1), hence it follows

that
∥∥∥A− W+W>√

2

∥∥∥
2

is o(1) with high probability.

Therefore σmin( 1
nX
>A>FAX), ‖A‖2 are positive constants and ‖A‖2F is Θ(n), all the statements

with probability 1−o(1) and the assumptions on matrix A are satisfied for linear regression model.

5 Projected Gradient Descent Analysis

In this Section, we will present the projected gradient descent algorithms we use for our logistic
and linear regression settings. We will use the following well known property of Projected Gradient
Descent (Theorem 3.10 from [6]).

Theorem 5.1. Let f be α-strongly convex and λ-smooth on compact set X . Then projected gradient
descent with stepsize η = 1

λ satisfies for t ≥ 0

‖xt+1 − x∗‖22 ≤ e
−αt
λ ‖x1 − x∗‖22 . (63)

Therefore, setting R = ‖x1 − x∗‖2 and by choosing t =
2λ ln R

ε
α it is guaranteed that ‖xt+1 − x∗‖2 ≤

ε.

5.0.1 Projected Gradient Descent for Logistic Regression

We consider the function LPL(θ, β) (log-pseudolikelihood as defined in Section 3) and we would like
to approximate (θ̂, β̂) within 1√

n
in `2 distance. The stepsize in Theorem 5.1 should be η = 1√

dΘ2+1
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by Remark 3.5.

ALGORITHM 1: Projected Gradient Descent (Logistic)

Data: Vector sample y, Magnetizations mi(y) =
∑
j Aijyj , Feature vectors xi

Result: Maximum Pseudolikelihood Estimate
1 β0 = 0, θ0 = 0,normgrad = +∞, η = 1√

dΘ2+1
;

2 t = 0;

3 while normgrad > 1√
n
do

4 gradθ = 0;

5 gradβ = − 1
n

∑n
i=1

[
yimi(y)−mi(y) tanh(βtmi(y) + θt >xi)

]
;

6 for k = 1; k ≤ d; k + + do
7 gradθk = − 1

n

∑n
i=1

[
yixi,k − xi,k tanh(βtmi(y) + θt >xi)

]
;

8 gradθ = gradθ + grad2
θk

;

9 end

10 normgrad =
√

grad2
β + gradθ;

11 βt+1 = βt − ηgradβ % update βt;

12 for k = 1; k ≤ d; k + + do
13 θt+1

k = θtk − ηgradθk % update θtk;
14 end
15 t = t+ 1;
16 % `2 projection
17 if βt+1 < −B then
18 βt+1 = −B;
19 end
20 if βt+1 > B then
21 βt+1 = B;
22 end
23 for k = 1; k ≤ d; k + + do
24 if θt+1

k < −Θ then
25 θt+1

k = −Θ;
26 end

27 if θt+1
k > Θ then

28 θt+1
k = Θ;

29 end

30 end

31 end
32 return (θt, βt)

5.0.2 Projected Gradient Descent for Linear Regression

We consider the function LL(θ, β, κ) (log-pseudolikelihood as defined in Section 4.2) and we would
like to approximate (θ̂, β̂, κ̂) within 1√

n
in `2 distance. The stepsize in Theorem 5.1 should be
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η = 1/CH where CH is the constant from Remark 4.2.

ALGORITHM 2: Projected Gradient Descent (Linear)

Data: Vector sample y, Matrices A,D, Feature matrix X
Result: Maximum Likelihood Estimate

1 β0 = 0, θ0 = 0, κ0 = 0,normgrad = +∞;
2 t = 0;

3 while normgrad > 1√
n
do

4 gradθ = 0;
5 gradκ = 0;

6 gradβ = 1
2y
>Ay− 1

2 tr(A(βtA+D)−1)− 1
2 (AXκt+DXθt)>((βtA+D)−1)A((βtA+D)−1)(AXκt+DXθt);

7 for k = 1; k ≤ d; k + + do
8 gradθk = −

∑n
i=1 yiDiixik +

∑n
i=1((βtA+D)−1(AXκt +DXθt))iDiixik;

9 gradθ = gradθ + grad2
θk

;
10 gradκk

= −
∑n
i=1

∑n
j=1Aijyixjk +

∑n
i=1

∑n
j=1Aijxjk((βtA+D)−1(AXκt +DXθt))i;

11 gradκ = gradκ + grad2
κk

;

12 end

13 normgrad =
√

grad2
β + gradθ + gradκ;

14 βt+1 = βt − ηgradβ % update βt;

15 for k = 1; k ≤ d; k + + do
16 θt+1

k = θtk − ηgradθk % update θtk;

17 κt+1
k = κtk − ηgradκk

% update κtk;

18 end
19 t = t+ 1;
20 % `2 projection
21 if βt+1 < −B then
22 βt+1 = −B;
23 end
24 if βt+1 > B then
25 βt+1 = B;
26 end
27 for k = 1; k ≤ d; k + + do
28 if θt+1

k < −Θ then
29 θt+1

k = −Θ;
30 end

31 if θt+1
k > Θ then

32 θt+1
k = Θ;

33 end

34 if κt+1
k < −B.Θ then

35 κt+1
k = −B.Θ;

36 end

37 if κt+1
k > B.Θ then

38 κt+1
k = B.Θ;

39 end

40 end

41 end
42 return (θt, βt)
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