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Abstract

We present algorithms and complexity results for the problem of finding equilibria (mixed Nash
equilibria, pure Nash equilibria and correlated equilibria) in games with extremely succinct description
that are defined on highly regular graphs such agienensional grid; we argue that such games are of
interest in the modelling of large systems of interacting agents. We show that mixed Nash equilibria can
be found in time exponential in the succinct representation by quantifier elimination, while correlated
equilibria can be found in polynomial time by taking advantage of the game’s symmetries. Finally, the
complexity of determining whether such a game ondtmensional grid has a pure Nash equilibrium
depends onl and the dichotomy is remarkably sharp: it is solvable in polynomial time (inNéct
complete) whenl = 1, but it isSNEXP-complete ford > 2.
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1 Introduction

In recent years there has been some convergence of ideas and research goals between game theory anc
theoretical computer science, as both fields have tried to grapple with the realities of the Internet, a large
system connecting optimizing agents. An important open problem identified in this area is that of computing
a mixed Nash equilibrium; the complexity of even the 2-player case is, astonishingly, open (see, e.g., [9, 15]).
Since a mixed Nash equilibrium is always guaranteed to exist, ordinary completeness technigques do not
come into play. The problem does fall into the realm of “exponential existence proofs” [11], albeit of a kind
sufficiently specialized that, here too, no completeness results seem to be forthcoming. On the other hand,
progress towards algorithms has been very slow (see, e.g., [10, 7]).

We must mention here that this focus on complexity issues is not understood and welcome by all on the
other side. Some economists are mystified by the obsession of our field with the complexity of a problem
(Nash equilibrium) that arises in a context (rational behavior of agents) that is not computationai\é all.
believe that complexity issues are of central importance in game theaynot just the result of professional
bias by a few computer scientists. The reason is simple: Equilibria in games are important concepts of
rational behavior and social stability, reassuring existence theorems that enhance the explanatory power of
game theory and justify its applicability. An intractability proof would render these existence theorems
largely moot, and would cast serious doubt on the modelling power of games. How can one have faith in a
model predicting that a group of agents will solve an intractable problem? In the words of Kamal Jain: “If
your PC cannot find it, then neither can the market.”

However, since our ambition is to model by games the Internet and the electronic market, we must
extend our complexity investigations well beyond 2-person games. This is happening: [2, 4, 5, 12, 10]
investigate the complexity of multi-player games of different kinds. But there is an immediate difficulty:
Since a game wit, players ands strategies each needs™ numbers to be specified (see Section 2 for
game-theoretic definitions) the input needed to define such a game is exponentially long. This presents
with two issues: First, a host of tricky problems become easy just because the input is so large. More
importantly, exponential input makes a mockery of claims of relevance: No important problem can need an
astronomically large input to be specified (andaveinterested in large, and of course > 2). Hence, all
work in this area has focused on certain natural classegamfinctly representable games

One important class of succinct games is that ofgtaohical gamegroposed and studied by Michael
Kearns et al. [4, 5]. In a graphical game, we are given a graph with the players as nodes. It is postulated that
an agent’s utility depends on the strategy chosen by the péaykby the player’s neighbors in the graph.

Thus, such games played on graphs of bounded degree can be represented by polynomially nmemy (in

s) numbers. Graphical games are quite plausible and attractive as models of the interaction of agents across
a large network or market. There has been a host of positive complexity results for this kind of games. It has
been shown, for example, that correlated equilibria (a sophisticated equilibrium concept defined in Section
2) can be computed in polynomial time for graphical games that are trees [4], later extended to all graphical
games [10].

But if we are to study truly large systems of thousands or millions of interacting agents, it is unrealistic to
assume that we know the arbitrarily complex details of the underlying interaction graph and of the behavior
of every single player — the size of such description would be forbidding anyway. One possibility, explored
brilliantly in the work of Roughgarden and Tardos [14], is to assume a continuum of behaviorally identical
players. In the present paper we explore an alternative model of large populations of users, within the
realm of graphical games. Imagine that the interaction graph is perhaps<hegrid, and that all players
are locally identical (our results apply to many highly regular topologies of graphs and the case of several
player classes). The representation of such a game would then be extremely succinct: Just the game played
at each locus, and, the size of the gridSuch games, called highly regular graph games, are the focus of



this paper. For concreteness and economy of description, we mainly consider the homogeneous versions
(without boundary phenomena) of the highly regular graphs (cycle in 1 dimension, torus in 2, and so on);
however, both our positive and negative results apply to the grid, as well as all reasonable generalizations
and versions (see the discussion after Theorem 5.1).

We examine the complexity of three central equilibrium conceptse Nash equilibriummixed Nash
equilibriumand the more general conceptatdrrelated equilibrium Pure Nash equilibrium may or may
not exist in a game, but, when it does, it is typically much easier to compute than its randomized gener-
alization (it is, after all, a simpler object easily identified by inspection). Remarkably, in highly regular
graph games this is reversed: By a symmetry argument combined with quantifier elimination [1, 13], we
can compute a (succinct description of a) mixed Nash equilibriumdhdenensional highly regular graph
game in exponential time (see theorem 3.4; recall that the best known algorithms for even 2-player Nash
equilibria are exponential in the worst case). In contrast, regarding pure Nash equilibria, we establish an
interesting dichotomy: The problem is polynomially solvable (&thdcomplete) ford = 1 (the cycle) but
becomedNEXP-complete ford > 2 (the torus and beyond). The algorithm for the cycle is based on a rather
sophisticated analysis of the cycle structure of the Nash dynamics of the basiclggXie-completeness
is established by a generic reduction which, while superficially quite reminiscent of the tiling problem [6],
relies on several novel tricks for ensuring faithfulness of the simulation. Finally, our main algorithmic result
states that a succinct description of a correlated equilibrium in a highly regular game of any dimension can
be computed in polynomial time.

2 Definitions

In agamewe haven playersl,...,n. Each playep, 1 < p < n, has a finite set oftrategiesor choices
Sp with [Sp| > 2. The setS = [[, S; is calledthe set of strategy profileend we denote the sgf, ,, S;
by S_,. Theutility or payoff function of playerp is a functionu, : S — N. Thebest response function of
playerpis afunctionBR, : S, — 250 defined by

BRy, (s—p) = {sp € Sp|Vs;, € Sy up(s_p; 5p) > up(s_p; s,)}

that is, for everys_, € S_,, BR,,(s—p) is the set of all strategies, of playerp that yield the maximum
possible utility given that the other players play,.

To specify a game with players and strategies each we need” numbers, an amount of information
exponential in the number of players. However, players often interact with a limited number of other players,
and this allows for much more succinct representations:

Definition 2.1 A graphical gamas defined by:
e AgraphG = (V, E) whereV = {1,...,n} is the set of players.
e For every playep € V:

— A non-empty finite set oftrategiesS,
— A payoff functionu, : [T;c ) Si = N (whereN(p) = {p} U {v € V|(p,v) € E})

Graphical games can achieve considerable succinctness of representation. But if we are interested in
modelling huge populations of players, we may need, and may be able to achieve, even greater economy of
description. For example, it could be that the graph of the game is highly regular and that the games played
at each neighborhood are identical. This can lead us to an extremely succinct representation of the game —
logarithmic in the number of players. The following definition exemplifies these possibilities.
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Definition 2.2 A d-dimensional torus gamis a graphical game with the following properties:
e The graphG = (V, E) of the game is thé-dimensional torus

-V={1,...,m}?
- ((41,---,%q), (J1,---,74)) € E ifthereis ak < d such that:

Jr = i £ 1(modm) andyj, = i,, forr # k

e All the m? players are identical in the sense that:

— they have the same strategy 8et {1, ..., s}
— they have the same utility functian: ¥2¢+1 — N

Notice that a torus game with utilities boundedby,. requiress?**! log |u4.| + log m bits to be repre-
sented.

A torus game isully symmetridf it has the additional property that the utility functianis symmetric
with respect to th@d neighbors of each node. Our negative results will hold even for this special case, while
our positive results will apply to all torus games.

We could also define torus games withequal sideandgrid games:torus games where the graph does
not wrap around at the boundaries, andisp 1 games must be specified, one for the nodes in the middle
and one for each type of boundary node. Furthermore, there are the fully symmetric special cases for each.
It turns out that very similar results would hold for all such kinds. We sketch the necessary modifications of
the proofs whenever it is necessary and/or expedient.

Consider a gamé&' with n players and strategy sefs, . . ., .S,. For every strategy profile, we denote
by s, the strategy of playep in this strategy profile and by_, the (n — 1)-tuple of strategies of all
players butp. For everys;, € S, ands_, € S_, we denote by(s_,;s;) the strategy profile in which
playerp plays s, and all the other players play accordingso,. Also, we denote byA(A) the set of
probability distributions over a set and we'll call the sef [ ; A(S;) set of mixed strategy profilesf
the gameG. For a mixed strategy profile and a mixed strategy,, of playerp, the notationsr,, o,
and(o_,; 0,,) are analogous to the corresponding notations for the strategy profiles. Finadlys oye'll
denote the probability distribution in product form(si)o2(s2) ... on(s,) that corresponds to the mixed
strategy profiler.

Definition 2.3 A strategy profiles is apure Nash equilibriunif for every playerp and strategy,, € S, we
haveu,(s) > up(s—p; tp).

Definition 2.4 A mixed strategy profile- of a gameG = (n, {Sp }1<p<n, {up}1<p<n) is amixed Nash equi-
librium if for every playerp and for all mixed strategies, € A(S,) the following is true:E,, () [u,(s)] >
Eo_,.0)(5) [up(s)], where byE ;) [u,(s)], f € A(S), we denote the expected value of the payoff function
up(s) under the distributiorf .

Definition 2.5 A probability distributionf € A(S) over the set of strategy profiles of a garfieis a
correlated equilibriumiff for every playerp, 1 < p < n, and for allz, j € .S, the following is true:

Z [up(s—p; @) — up(s—p; J)]f (s-p;7) = 0

s_pES_p



Every game has a mixed Nash Equilibrium [8] and, therefore, a correlated equilibrium, since, as can
easily be checked, a mixed Nash equilibrium is a correlated equilibrium in product form. However, it may
or may not have a pure Nash equilibrium.

The full description of an equilibrium of any kind in a torus game would require an exponential (doubly
exponential in the correlated case) number of bits. Accordingly, our algorithms shall always output some
kind of succinct representation of the equilibrium, from which one can generate the equilibrium in output
polynomial time. In other words, succinct representationf an equilibrium (or any other object) is a
stringy such thaty| is polynomial in the input size and = f(y) for some functionf computable in time
polynomial in|z| + |y|.

3 Mixed Nash Equilibria
We start with a theorem due to Nash ([8]).

Definition 3.1 An automorphisnof a gameG = (n, {S,}, {u,}) is a permutationp of the set J;_, .S,
along with two induced permutations of the playeérand of the strategy profileg, with the following
properties:

o Vp,Vz,y € S, there existg’ = ¢(p) such thatp(z) € S,y andg(y) € Sy
o Vs €S, Vp:uy(s)= U(p) (x(s))

Definition 3.2 A mixed Nash equilibrium of a game &ymmetridf it is invariant under all automorphisms
of the game.

Theorem 3.3 [8]Every game has a symmetric mixed Nash equilibrium.

Now we can prove the following.

Theorem 3.4 For anyd > 1, we can compute a succinct description of a mixed Nash equilibrium of a
d-dimensional torus game in time polynomial(ii)®, the size of the game description, and the number of
bits of precision required, but independent of the number of players.

Proof: Suppose we are givend— dimensional torus games = (m, ¥, u) with n = m? players. By
theorem 3.3, gamé& has a symmetric mixed Nash equilibriwmm We claim that ino all players play the
same mixed strategy. Indeed for every pair of playgrs- in the torus, there is an automorphigm ¢, x)

of the game such that(p;) = p2 and¢ maps the strategies of player to the same strategies of player
p2. (In this automorphism, the permutatigris an appropriatéd-dimensional cyclic shift of the players and
permutationp always maps strategies of one player to the same strategies of the player’'s image.)arhus in
every player plays the same mixed strategy.

It follows that we can describesuccinctly by giving the mixed strategy. that every player plays. Let’s
suppose that = {1,2,...,s}. For all possible support C 2%, we can check if there is a symmetric
mixed Nash equilibriunw with support?™ as follows. Without loss of generality let's suppose tihat=
{1,2,...,j} for somej, j < s. We shall construct a system of polynomial equations and inequalities with
variablespy, pa, . . ., p;, the probabilities of the strategies in the support.

Let us callE; the expected payoff of an arbitrary playeif s/he chooses the pure stratelggnd every
other player plays,. E; is a polynomial of degre@d in the variable®, p, ..., p;. Now o, is a mixed



Nash equilibrium of the game if and only if the following conditions hold (because of the symmetry, if they
hold for one player they hold for every player of the torus):

El:El+1,vl€{1,...,j_l}
EjZEl,VZE{j-Fl,...,S}

We need to solve simultaneous polynomial equations and inequalities of degiiér O(s) variables. It

is known — see [13] — that this problem can be solved in time polynomigldh’, the number of bits of

the numbers in the input and the number of bits of precision required. Since the number of bits required
to define the system of equations and inequalities is polynomial in the size of the description of the utility
function, we get an algorithm polynomial {2d)#, the size of the game description and the number of bits

of precision required, but independent of the number of playiérs.

4 An Algorithm for Correlated Equilibria

We show that we can compute a succinct description of a correlated equilibrium of any torus game in time
polynomial in the size of the game description.

Theorem 4.1 Given any torus game, we can compute a succinct representation of a correlated equilibrium
in time polynomial in the description of the game.

Proof: It is obvious from the definition of correlated equilibrium that computing one requires computing
s™* numbers. To achieve polynomial time we will not compute a correlated equilibfiubut the mar-

ginal probability of a correlated equilibrium in the neighborhood of one play&ie then will show that

the computed marginal can be extended in a systematic way (and in fact in time polynomial in the output
complexity) to a correlated equilibrium.

The construction is easier when m is a multiple of 2d+1, and thus we shall assume first that this is the
case Let us rewrite the defining inequalities of a correlated equilibrium as follows:

VZ:] €X: Z [u(sneigh; Z) - U(Sneigh;j)] Z f(soth; Sneighs Z) >0 (1)
Snei_thEQd sothezmd—Qd—l
SVi,jeX: Z [u(sneigh§ Z) - U(Sneigh§j)]fp(sneigh§ Z) >0 (2)
sneighGEQd

wheref, is the marginal probability corresponding to playemd the2d players inp's neighborhood. Now,
if () is thes24t1 x 1 vector of the unknown values of the margirfgl then by appropriate definition of
thes? x s2¢+1 matrix U we can rewrite inequalities (2) as follows:

Ux(P) 2 0

and we can construct the following linear program:

maxz xl(-p)

Ux(p) Z 0
1> 2(P) >0



whose solution:(?) defines an unnormalized distribution that might be the marginal distribution of player
p’s neighborhood in a correlated equilibrium of the game. We note that a non-zero solution of the linear
program is guaranteed from the existence of a correlated equilibrium.

In order to have a guarantee that the distribution corresponding to the solution of the linear program
can be extended to a correlated equilibrium, we shall add some further constraints to our linear program
requiring from the solution to have some symmetry. For now, let's assume that vi(atfd " - (2d + 1)!)
symmetry constraints so that the distribution defined by the solution of the linear program is symmetric with
respect to its arguments. It will be clear later in the proof that in fact we don’t need full symmetry and that
O(s*¥*1 . 2d) symmetry constraints are enough. The new linear program will be the following:

max Z $Z(-p )

Um(P) > 0
(symmetry constrainfs
1 > :C(p) > 0

As noted in section 3, gan@ possesses a symmetric mixed Nash equilibrium in which all players play the
same mixed strategy and, thus, a correlated equilibrium that is in product form and symmetric with respect
to all the players of the game. Therefore, our linear program has at least one non-zero solution.

Let z(P)* be the solution of the linear program after normalization. Solutiéh defines a probability
distribution g(sg, s1, . . ., soq) over the sef2?+! which is symmetric with respect to its arguments. We
argue that every such distribution can be extended in a systematic way (in fact, by an algorithm polynomial
in the output complexity) to a correlated equilibrium for the gah@rovided m is a multiple of 2d+1We,
actually, only need to show that we can construct a probability distriblﬁienA(Emd) with the property
that the marginal probability of the neighborhood of every player is equal to the probability distripution
Then, by the definition of, inequalities (1) will hold and, thug will be a correlated equilibrium of the
game.

We first give the intuition behind the construction. Probability distribugjoran be seen as the joint
probability of 2d + 1 random variablesXy, X1, ..., Xo4. If we can "tile” the d-dimensional torus with
the random variableXy, X1, ..., Xo4 In such a way that all thed + 1 random variables appear in the
neighborhood of every player (as in figure 1), then we can define probability distribfigsnthe proba-
bility distribution that first draws a samplé, /1, ..., l24) according tog and then assigns strategyto all
players that are tiled witkX; for all i € {0,1,...,2d}. This way the marginal distribution of in every
neighborhood will be the same agsinceg is symmetric).

X, X, X, X, X X X, X

0 X
*—0—0—o

2 1 2

Figure 1: A tiling of the ring with the random variablég, X;, X». We generalize this “periodic tiling” in
d-dimensions.

We now show how this can be done in a systematic way. For convenience, let us fix an arbitrary player
of the d-dimensional torus as the origin and assign orientation to each dimension, so that we can label each
playerx of the torus with a namér, zo, ..., z4),z; € {1,...,m},Vi. The configurations of strategies in
the support off will be in a one-to-one correspondence with the configurations in the supperthdbre



specifically, for every configuration= (I§,17,...,5,) in the support ofj, we include in the support of
the configuration in which every playét, zs, . .., z4) plays strategyfxl+2x2+3x3+__’+dxd mod 2d+1)*. So
we define the support of the distributigrto be:

d
Sf = {S ex” Ba(s)a iv SR l;d) S Sg S.t.sy = l(x1+2x2+3:c3+...+dxd mod 2d+1)}
and the distribution itself to be:

0, ifs¢ S
=% e
g5, 15, ..., 15,), ifseS;

By the symmetry of functiory and the definition of the suppafl, it is not difficult to see that, ifn is

a multiple of2d + 1, the distributionf has the property that the marginal distribution of every player’s
neighborhood is equal to the distributigh This completes the proof. Additionally, we note that for our
construction to work we don't neegto be fully symmetric. We only need it to be equal@§2d) out of the

total number ofO((2d + 1)!) functions that result by permuting its arguments. For example, in the case of
the ring presented in figure (1) it suffices that:

9(zo, 1, x2) = g(x1, T2, 20) = g(x2, 0, 1)

So the number of symmetry constraints we added to the linear program can be redO¢etf td - 2d).

To generalize this result to the case in which m is not a multiple of 2kt s first reflect on the reason
why the above technique fails in the case wheris not a multiple oRd+1. If m is not a multiple oRd+1,
then, if we are given an arbitrary probability distributigriefined in the neighborhood of one player, we
cannot always find a probability distribution on the torus so that its marginal in the neighborhood of every
player is the same ag even ifg is symmetrié. As an illustration (but not a proof) of this, observe that the
periodic tiling scheme that we used above fails if the size of the ring is not a multiple of 3 (see figure 2).
X, X, X, 7

2 0

Figure 2: An attempt to tile the ring with the random variablgs X1, X2 using the periodic tiling scheme.
The tiling fails whenm is not a multiple of 3(2d + 1).

Thus, instead of starting of with the computation of a probability distribution in the neighborhood of
one player, we compute a probability distributibrwith an augmented number of arguments. Let’s call
v = m mod 2d + 1. Probability distributiom will have the following properties:

*In terms of tiling thed-dimensional torus with the random variabl&s, X1, ..., X24, the construction that we describe
assigns variableéX, to the origin player and then assigns variables periodically with step 1 in the first dimension, step 2 in the
second dimension etc.

To prove this, we only need to observe that for every pldyetzs, . . ., z4) and for everyk € {0, 1, ..., 2d} there exists an
indexi € {1,2,...,d} such that

k=x1+222+3x3+...+iz, +...+drgmod 2d + 1

wherex; € {x;,z; + 1 mod m, z; = x; — 1 mod m}, if m is a multiple of2d + 1.
There is actually a very simple counterexample that we omit here.



e it will have 2 x (2d + 1) arguments

e it will be symmetric with respect to its arguments (we’ll relax this requirement later in the proof to
get fewer symmetry constraints for our linear program)

e the marginal distributiory, of the first2d + 1 variables will satisfy inequalities (2); then, because
of the symmetry of the function, the marginal of every ordered subset of 2d+1 arguments will satisfy
inequalities (2) (this will also be relaxed)

Again, the existence of a probability distributibrwith the above properties follows from the existence
of a symmetric mixed Nash equilibrium in which all players play the same mixed strategy. Morgover,
can be found in time polynomial in the size of the game description/teébe thes2*(24+1) x 1 vector of
variables corresponding to the probability distributiomndz(®) the s2¢+1 x 1 vector of variables corre-
sponding to the marginalization of the fitst + 1 arguments of.. Also, letU be the same matrix we used
above. Then we can find an unnormalized distribufiaihat satisfies the above properties by solving the
following linear program:

max Z yz(p )

Ux® >0

(symmetry constraints for vectgf”))

(constraints “marginalizing” vector,®) to vectorz ()
1> y(P) >0

By normalizing the solution of the linear program we get a probability distributiasith the properties that
we stated.

To conclude the proof we show how we can usé produce a correlated equilibrium of the game
in a systematic way (and, in fact, with polynomial output complexity). Before doing so, we make the
following observations (again let us consider an arbitrary player of the torus as the origin, and let us assign
orientation to each dimension so that every play@f the torus has a name, s, . .., z4) wherez; €
{1,...,m},Vi):

e Probability distribution, can be seen as the joint probability distributior2of (2d + 1) random vari-
ables Xy, X1,...,Xoq4, 2o, Z1, ..., Zoq. If we can “tile” the d-dimensional torus with these random
variables in such a way that the neighborhood of every player coritdinsl distinct random vari-
ables, then this tiling implies a probability distribution on the torus with the property that the marginal
of every player’s neighborhood is equalfipand thus is a correlated equilibrium.

e Given2d+1 random variables, we can use the tiling scheme described aboveaimtiledimensional
grid in such a way that every neighborhood of sizeas: distinct random variables. However, if we
“fold” the grid to form the torus this property might not holdrif is not a multiple of2d + 1; there
might be player with at least one coordinate equdl tw m (who before was at the boundary of the
grid) whose neighborhood does not h&ee+ 1 distinct random variables.

Following this line of thought, if we can partition the players of #heimensional torus in disjoint
d-dimensional grids and we tile every grid with a set of random variables so that every two neighboring
grids are tiled with disjoint sets of random variables, then we automatically define a tiling with the required
properties.



To do so, we partition thé-dimensional torus i< gridsT, t € {0, 1}¢, where gridl'; is the subgraph
of thed-dimensional torus defined by players with nartes z», . . ., z4), wherez; € {1,2,...,m—(2d+
1+ wv)}iftheid-th bitoftis 0 andz; € {m — (2d + 1+ v) + 1,...,m} if the i-th bit of ¢ is 1. For every
gridI';, let’s calln (T;) the number of’s in ¢5. The following observation is key to finishing the proof:

Lemma 4.2 If two gridsT';, I'y are neighboring them (I'y) = n (I'y) + Lorn (I'y) = n (I'y) — 1.

Using lemma 4.2, we can tile thedimensional torus as follows: if a grid; has evem (I';) then use
random variables(y, X1, ..., Xo4 and the tiling scheme described above to tile it; otherwise use random
variables?y, Z1, . . ., Zyq to tile it. This completes the proof. Additionally, we note that for our construction
to work we don't need: to be fully symmetric: we only need it to be equal®dd) out of the total number
of O((2 x (2d + 1))!) functions that result by permuting its arguments. So we need a polynomial in the
game complexity number of symmetry constraiiliis.

5 The Complexity of Pure Nash Equilibria in d Dimensions

In this section we show our dichotomy result: Telling whethdrdimensional torus game has a pure Nash
equilibrium isNL-complete ifd = 1 andNEXP-complete ifd > 1.

5.1 The Ring

Theorem 5.1 Given al-dimensional torus game we can check whether the game has a pure Nash equilib-
rium in polynomial time, and in fact in nondeterministic logarithmic space.

Proof:

Given such a game we construct a directed gtBiph (Vr, Er) as follows.

Vr = {(z,y,2) | #,y,2 € ¥ :y € BR,(,2)}

Er = {(v1,v2) | v1,v2 € V1 01y = oy A1, = U2y}

Itis obvious that the construction of the grdpltan be done in time polynomial inand thafVr| = O(s?).
Thus the adjacency matrity of the graph ha®)(s?) rows and columns.

We now prove the following lemma:

Lemma 5.2 G has a pure Nash equilibrium iff there is a closed walk of lengtin the graphT’
Proof: (=) Suppose that gant has a pure Nash equilibriusn= (so, s2, ..., Sm—1). From the definition of
the pure Nash equilibrium it follows that, for alle [m], s; € BRy(S;—1 mod m» Si+1 mod m)- 1hus from the
definition of grapHhr’ it follows that: ¢; = (S;—1 mod m» Si» Si+1 mod m) € Vr for all i € [m] and moreover
that (;, ti+1 moa m) € E7 for all i € [m] (note that the;’s need not be distinct).

It follows that the sequence of nodgsto, . .., t,, t1 is a closed walk of lengthn in the graphr.

(<) Suppose that there is a closed walkv,, ..., v, v1 in the graphl. Sincevy,vs,...,v, € Vpit
follows that eachy; is of the form(z;, y;, z;) andy; € BR,(x;, z;). Moreover, SinC&v;, v;+1 mod m) € ET
we havey; = ;41 mod m N 2i = Yi+1 mod m- It fOllOows that the strategy profiléyo, y1, ..., ym) IS a pure
Nash equilibrium Bl

Sn (I';) is the number of dimensions of the grid in which the coordinates take values from the se2d+1-+v)+1,...,m}



It follows that, in order to check whether the game has a pure Nash equilibrium, it suffices to check
whether there exists a closed walk of lengttin graphT. This can be easily done in polynomial time, for
example by findingd7' using repeated squaring.

We briefly sketch why it can be done in nondeterministic logarithmic space. There are two cases: If
m is at most polynomial irs (and thus in the size df), then we can guess the closed walk in logarithmic
space, counting up tm. The difficulty is whenm is exponential irs, and we must guess the closed walk
of lengthm in spacelog log m, that is, without counting up te:. We first establish that every such walk
can be decomposed into a short closed walk of lepgth s5, plus a set of cycles, all connected to this
walk, and of lengthsg;, ..., ¢, (each cycle repeated a possibly exponential number of times) such that the
greatest common divisor @f;, . . ., ¢, dividesm — g. We therefore guess the short walk®fof lengthg,
guess the cycles, compute the greatest common divisor of their lengthsggcd(cy, . . . , ¢;) in logarithmic
space, and then check whethedividesm — ¢; this latter can be done by space-efficient long division, in
spaceog g and without writing downn — ¢. Finally, NL-completeness is shown by a rather complicated
reduction from the problem of telling whether a directed graph has an odd cycle, which can be easily shown
to beNL-complete &

The same result holds when the underlying graph id tenensional grid (the path); the only difference
is that we augment the set of nodes/oby two appropriate node-sets to account for the “left” and “right”
-for an arbitrary direction on the path- boundary players; we are now seeking a path ofitendgthetween
those two distinguished subsets of the nodes.
We note that the problem has the same complexity for several generalizations of the path topology such
as theladder graphand many others.

5.2 The Torus

The problem becomedEXP-complete whenl > 1, even in the fully symmetric case. The proof is by a
generic reduction.

Theorem 5.3 For anyd > 2, the problem of deciding whether there exists a pure Nash equilibrium in a
fully symmetrial-dimensional torus game ISEXP-complete.
Proof: A non-deterministic exponential time algorithm can choos@ im?) nondeterministic steps a pure
strategy for each player, and then check the equilibrium conditions for each player. Thus, the problem
belongs to the clagdEXP.

Our NEXP-hardness reduction is from the problem of deciding, given a one-tape nondeterministic Tur-
ing machineM and an integet, whether there is a computation df that halts withinst — 2 steps. We
present thel = 2 case, the generalization tb> 2 being trivial. Given such\/ and¢, we construct the
torus game’y, ; with sizem = 5t + 1. Intuitively, the strategies of the players will correspond to states
and tape symbols at/, so that a Nash equilibrium will spell a halting computation\éfin the “tableau”
format (rows are steps and columns are tape squares). In this sense, the reduction is similar to that showing
completeness of thiling problem (see figure 3): Can one tile the x m square by square tiles of unit
side and belonging to certain types, when each side of each type comes with a label restricting the types that
can be used next to it? Indeed, each strategy will simulate a tile having on the horizontal sides labels of the
form (symbo] statg whereas on the vertical sidéstate action). (Furthermore, as shown in figure 3, each
strategy will also be identified by a pdif, j) of integers in5], standing for the coordinates moddof the
node that plays this strategy; the necessity of this, as well as the chdicevidif be come more clear later
in the proof).
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Figure 3: A pure strategy as a tile

Superficially, the reduction now seems straightforward: Have a strategy for each tile type, and make sure
that the best response function of the players reflects the compatibility of the tile types. There are, however,
several important difficulties in doing this, and we summarize the principal ones below.

difficulty 1 In tiling, the compatibility relation can be partial, in that no tile fits at a place when the neighbors are
tiled inappropriately. In contrast, in our problem the best response function must be total.

difficulty 2 Moreover, since we are reducing to fully symmetric games, the utility function must be symmetric
with respect to the strategies of the neighbors. However, even if we suppose that for a given 4-tuple
of tiles (strategies) for the neighbors of a player there is a matching tile (strategy) for this player, that
tile does not necessarily match every possible permutation-assignment of the given 4-tuple of tiles to
the neighbors. To put it otherwise, symmetry causkeslaof orientation making the players unable
to distinguish among their ‘up’, ‘down’, ‘left’ and ‘right’ neighbors.

difficulty 3 The third obstacle is thiack of boundarie$n the torus which makes it difficult to define the strategy
set and the utility function in such a way as to ensure that some “bottom” row will get tiles that
describe the initial configuration of the Turing machine and the computation tableau will get built on
top of that row.

It is these difficulties that require our reduction to resort to certain novel stratagems and make the proof
rather complicated. Briefly, we state here the essence of the tricks (we’ll omit some technicalities):

solution 1 To overcome the first difficulty, we introduce three special strategies(sethe appendix) and we
define our utility function in such a way that (a) these strategies are the best responses when we have
no tile to match the strategies of the neighbors and (b) no equilibria of the game can contain any of
these strategies.

solution 2 To overcome the second difficulty we attach coordinates modulo 5 to all of the tiles that correspond
to the interior of the computation tableau ($gtin the appendix) and we define the utility function in
such a way that in every pure Nash equilibrium a player who plays a strategy with coordinates modulo
5 equal to(i, j) has a neighbor who plays a strategy with each of the coordifiate j +1 mod 5).
This implies (through a nontrivial graph-theoretic argument, see Lemma A.2 in the appendix) that the
torus is “tiled” by strategies respecting the counting modulo 5 in both dimensions.

solution 3 To overcome difficulty 3, we define the side of the torus to5be- 1 and we introduce strategies
that correspond to the boundaries of the computation tableaw{satthe appendix) and are best
responses only in the case their neighbors’ coordinates are not compatible with the counting modulo 5.
The choice of side length makes it impossible to tile the torus without using these strategies and, thus,
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ensures that one row and one column (at least) will get strategies that correspond to the boundaries of
the computation tableau.

We postpone further details to an Appendik.

6 Discussion

We have classified satisfactorily the complexity of computing equilibria of the principal kinds in highly
regular graph games. We believe that the investigation of computational problems on succinct games, of
which the present paper as well as [3] and [12, 10] are examples, will be an active area of research in the
future. One particularly interesting research direction is to formulate and investigate games on highly regular
graphs in which the players’ payoffs depend in a natural and implicit way on the players’ location on the
graph, possibly in a manner reflecting routing congestion, facility location, etc., in a spirit similar to that of
non-atomic games [14].
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A Missing Proofs

Proof of theorem 5.3 We present here some of the omitted technicalities of the proof. Let us define the
following language which is not difficult to verify that SEXP-complete (byNT M we denote the set of
one-tape non-deterministic Turing Machies

L ={((M),t),M € NTM,t € N|on empty inputd/ halts within5¢ — 2 stepg

We shall show a reduction from languag@eo the problem of determining whether a 2-dimensional fully
symmetric torus game has a pure Nash equilibrium. That is, ¢z, ¢) we will construct a 2-dimensional
fully symmetric torus gamés; + = (m, £, u) so that:

((M),t) € L & gameG)y, + has a pure Nash Equilibrium 3)

Since NT M is the set ofone tape non-deterministic Turing MachinesmachineM € NTM can be
described by a tupléM) = (K, A, J, q0), whereK is the set of statesd is the alphabety : K x A —

oK xAx{—.—~} is the transition function ang, is the initial state of the machine. For proof convenience,
we’ll make two non-restrictive assumptions for our model of computation:

1. The transition function satisfieqq,a, —) € d(q,a),Vq € K, a € A (transitions‘do nothing”).

2. The tape of the machine contains in its two leftmost cells the symbplsthroughout all of the
computation; furthermore the head of the machine points initially at the cell that contaarsl the
head never reaches the leftmost cell of the tape.

Now let’s construct the gam@y;,+ = (m, X, u).
Size of torus: We choosen = 5t + 1

Set of strategiesX: Every pure strategy, except for some special ones that we'll define later, will be an
11-tuple of the form:

0 = (%, J, Sdowns Edown Sups Eups lefts Kiefts Grights kright, V)
where (let’s give tav the connotation ofémpty field):
e i,7 € [5] U{w} (counters or “empty”)
® Sdoun, Sup € AU {w} (alphabet symbols or “empty”)

® Kdown, Kiefts kups kKdown € K U {w} (state symbols or “empty”)

Aright, Gleft € {—, <, w} (action symbols or “empty”)

v € {Bp, By, L,w} (special labels or “empty”)

13



We shall henceforth refer to a specific field of a pure strategy using the label of the field as a subscript, for
examples|;, o|; ando|s,,. Also, it will be helpful to think of pure strategies we can think of thentiles
(see figure 3 in section 5).

Now we chose = S; U Sy U K where:

e SetS; contains the strategies-tiles that, in a high level, we intend to fill the interior of the computation
tableau:
- Ya € A,Vi,j € [5] strategy:(i, j, a,w, a,w, w, w, w, w,w)
- Vq,p € K,Va,b € As.t.(p,b,—) € d(q,a), Vi, j € [5] strategy:(, j, a, ¢, b, p, w, w, w,w,w)
- Vq,p € K,Va,b € As.t.(p,b,—) € d(q,a),Vy € A, Vi,j € [5] strategies:

(i7j7a7q7b7w7w7w7—>7p7w> and(i7j777w7’y7p7H7p7w7w7w)
- Vq,p € K,Va,be As.t.(p,b,—) € d(q,a),Vy € A, Vi,j € [5] strategies:
(4,4, a,4,b,w, , p,w,w,w) and(i, j,v,w, v, p,w, w, <, p,w)

— Ya € A,Vi,j € [5] strategy:(i, j, a, h, a, h,w,w,w,w,w) (h is the halting state)
— strategy:(1,0, >, w, >', qo, w, w, w, w,w)

e SetS, contains the strategies-tiles that, in a high level, we intend to span the boundaries of the com-
putation tableau:

— Vi € [5] strategy:(i, w, w, w, w, w,w, w, w,w, B,) (abbreviateds! )

(these strategies are intended to span the “horizontal” boundary of the computation tableau)
— Vj € [5] strategy:(w, j, w, w, w, w, w, w, w, w, By ) (abbreviateds)

(these strategies are intended to span the “vertical” boundary of the computation tableau)
— strategy:(w, w, w, w, w,w,w,w,w,w,.) (abbreviateds,_)

(this strategy is intended to appear at the corners of the computation tableau)

e Set/C contains three special strategi€s, Ko, K3 that we invent to overcome the first difficulty we
stated in the abstract description of the proof (see section 5 and lemma A.1)

It's easy to see that the sEtwe defined can be computed in timd¥|(M)|), where|(M)| is the size of
description of the maching/.

Utility Function u: In order to be more concise, we’'ll define functioiin an undirect way. In fact, we’ll

give some properties that the best response functionB&st have. It will be obvious that we can construct

in polynomial time a function: so that BR, has these properties. Before stating the properties we note that
sinceu is symmetric with respect to the neighbors, BRust be symmetric in all its arguments, so instead

of writing BR,(z, y, z, t) we can write BR({{x,y, z,t}}) (by {{z,y, z,t}} we denote the multiset with
elementse, y, z,t). The properties that we require from BRre given bellow. We give in comments the
intuition behind the definition of each property. The claims that we state, however, should not be taken as
proofs. The correctness of the reduction is only established by lemmata A.1 through A.8.

/* the following properties ensure that lemma A.1 will htid
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If 1 € {w,y,z,t}then BR,({{w,y, z,t}}) = {K2}

2. fw=y=z2=1t=Kythen: BR,({{w,y, 2,t}}) = {Ks}

/*

/*

/*

/**

the following property says: one player can play the strategy that stands for the corner of the com-
putation tableau if s/he has two neighbors that play strategies standing for pieces of the horizontal
boundary and two neighbors that play strategies standing for pieces of the vertical boundary (note
that we try to encode a computation of the machifien the torus so the horizontal boundary start-

ing from the corner player eventually meets the corner player from the other side and the same holds
for the vertical boundary; note also that according to lemma A.6 there can by multiple horizontal and
vertical boundaries, in which case the property we stated should hold as*ell)

Mw=s),y=s},2=5%,t=skthen: BR,({{w,y, 2,t}}) = {s_}

the following properties make possible the formation of a row encoding the horizontal boundary of
the computation tableau; such rows (they can be more than one, see lemma A.6) will serve as down
and up boundaries of encoded computations of the macdhirmm the torud/

Ifw=s_,y=s.2=(000>wb>wwwwww),t=(040>w>wwwwww) then:

BR.({{w,y, 2, t}}) = {s}

Mw=s,y=35}2=(40,UwUwwwwww),t=44N\kK\kKw ww ww)), for some

A € Aandk € {w, h} then:
BR.({{w,y. 2, t}}) = {s}}

(I-1) mod 5 (i4+1) mod 5

. Iffor somel € [5], w = s VY =S 2l = IAz|j =0andt = (1,4, \, k, A, K, w, w, w, w, w)

for some\ € A andx € {w, h} then:
BRu({{w,y, 2 1}}) = {sL}

the following properties make possible the formation of a column encoding the vertical boundary of
the computation tableau; such columns (they can be more than one, see lemma A.6) will serve as left
and right boundaries of encoded computations of the machiren the torug/

Mw=s_,y=sL,2=(0,0,>,w, > w,w,w,w,ww),t= (4,0, w L w wwwwuw) then:

BR.({{w,y,2,1}}) = {s1}

3

Mw=s_,y=52,2=(0,4,>,w,>,w,w,w,w,w,w),t = 4,4\ K\ K w,w w w,w) for some

A € Aandk € {w, h} then
BRu({{w,y, 2 t}}) = {sL}

(I-1) mod 5 (I4+1) mod 5

. If for somel € [5], w = sy VY = S 2= (0,1,>,w, >, w,w, w,w,w,w), t|; =

4 N\ t|; = [l then:

BRu({{w,y, 2 t}}) = {sp.}

INTERIOR OF THE COMPUTATION TABLEA®Y
column encoding the leftmost cell of the tape through an encoded computafiéri/of
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10.

11.

12.

/*

13.

14.

/*

15.

16.

If w=sl,y=s,2=(0,1,>w > wwwwwuw),t

i =1 At|; = 0then:
BRu({{w,y,2,t}}) = {(0,0,>, w0, >, w,w,w,w, w,w) }

If w=(0,3,>,w,>,w,wwwww)y=s)z=sk,t

i =1 At|; =4then:

BR,({{w,y,2,t}}) = {(0,4,>,w, >, w, w, w,w,w,w) }

If for somel € [5]:

e w=(0,(l-1) mod5,>,w,>,w,w, w,w,w,w)
e y=(0,(I4+1) modb,>,w,>,w,w,w,w,w,w)
* z= (w7l>w7w7wawaw7w>w7waBl>)

° t|i:1/\t|j:l

then: BR,({{w, vy, z,t}}) = {(0, [, >,w, >, w,w,w,w,w,w) }

row encoding the initial configuration of the tape faf*/

If w=sl,y=(0,0>w>wwwwww),zli=1Az; =11t; =2At|; =0then:

BR,({{w, 9,2, t}}) = {(1,0,>",w, >, g0, w,w, w,w,w)}

If for somel € [5], w = sl yli =LAyl = 1,2/ = (1 —1) mod5Az|; = 0A 2|, # >,

t‘i = (l+ 1) mod 5/\Z|j = 0 then:

BR,({{w,y,2,t}}) = {(,0,U,w, U, w, w, w,w,w,w) }

row encoding the configuration of the tape after the last step of the computation; note that we require
that the fieldk,,,, of one of the neighbors must be eittteor empty; in this way we force the encoded
computation to be halting and the halting state to be reached within at fnes® steps (lemma A.8)

*/
If for somel € [5]:

o w=sl

o yli =IlNyl; =3ANylk,, € {h,w}

e 2= ((Il—-1) mod 5,4, 1, K1, A1, K1, w,w,w,w,w), Whereh; € A, k1 € {w,h}
e t =((l+1) mod 5,4, Ag, k2, A2, k2, w,w, w,w,w), Wherexy € A, ko € {w, h}

then: BRL({{w,y,z,t}}) = {(1747y’5up7y‘ku;ﬂy|3up’y‘kup7w7w7w’w7w)}
If for somel € [5]:

o w=(l,w,wwwwww,ww B)
yli=(—1) mod5Ay[; =4
zli=(+1) modbAz; =4
ti=1At; =3

then: BR,({{w, v, 2,t}}) = { (L, 4, t|sup tlkup» tlsups tlhups @, Wy w, w,w) }
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/* column encoding the rightmost cell of the tape that the machine reaches in an encoded computation
*/
17. fw=st,y=s2, 2= (3,0,U,w, 1, w,w,w,w,w,w), t = (4,1,U,w, U, ww w,w,w,w) then:

BR,({{w,y,z,t}}) ={(4,0,UJ,w,J,w,w,w,w,w,w)}

18. If w=s},y=st,2[i =4 A z[; =3 A Z|ky, € {w, h}, t = (3,4, )\, K, A\, K, w, w, w,w,w), for some
A€ A, k € {w, h}then:

BRU({{w,y,Z,t}}) = {(47472|Supyz|kupa Z|supa2|kupawawaw7W,w)}
19. I, for somer € [5], a,b € A, ¢,p € K, w|; = 4, w|; = (r — 1) mod 5, w|s,, = a, w|,, = ¢,

yli=4yl; = +1) mod 5, Ylsyuwn = 0 Ylkgw, =D 2li =3, 2] =1, 2 =w, 2|k
t = sf, then:

Qright right W,

47T7a7Q7b7p7w7w7w7w7w 9 If p7b7_ €6q7a‘
BR. ({2, 11}) = § 1 W e ") € dlga)
{K1}, otherwise

20. If for somer € [5],a € Aandp € K:

o wlj=4ANw|j=(r—1) mod 5Awls,, =aAw,, =w
o yli=4Ayl; = +1) mod 5AYlssun = A Yk =P
° z|; = 3/\Z|j = r/\Z|aright = /\Z|/€m‘ght =D

o i =s[

4 if
then: BR,({{w,y, z,t}}) = {4,r,0,w,0,p, =, p,w,w,w)}, i (p,z\igup,—>) € 6(2|kyypns @)
{K1}, otherwise

[** Cells between leftmost and rightmdst
[* if a cell of the tape is not pointed to by the head at a particular step, its value will remain the*éame
21. If for somel,r € [5],a € A:

o wj=IlAwl;=(r—1) modb5Awls, =aAw,, =w
b y|l = l A y|] = (T + ]‘) mOd 5 A y|5down =aA y|kdmun =
b Z|l = (l - 1) mOd 5 /\ Z‘] =T /\ Z|a7'ight =w /\ Z‘kTight =w

o t|i=(l+1) mod 5At]; =7 Atla, =w Atk =w
then: BR,({{w, vy, 2,t}}) = {(l,r,a,w, a,w,w,w,w,w,w)}
/* change the symbol of the cell at which the head of the machine points; if for a particular choice of

states and symbols this cannot happen according to the machine’s transition function the best response
is KC1 (see lemma A.2Y

22. If for somel,r € [5],a,b € A, q,p € K:

e wj=IlAwl;=(r—1) mod5Awls, =aAw,, =q

17



/*

23.

24,

/*

25.

26.

i y”b = l A y|] = (T + 1) mOd 5 A ylsdown - b N y’kdown = p

o zli=(—1) mod5Azlj =7A2la, =wWA 2k, =w

right

o tl;=(+1) mod5At[;=7rNtlg, =wAtlk, =w

i B
then: BRL({{H)?y?Z’t}}) — {(177‘, a7q?b7p7w7w?w7w’w)}7 I (p7 b7. ) 6 5(Q7 a)
{K1}, otherwise

the following two properties make possible the encoding of a right transition of the ma&¢hine

If for somel,r € [5],a € A, p € K:

e wlj=IlAwl;=(r—1) mod5Awls, =aAw,, =w
L y|’L - l /\ y|] = ('F + 1) mOd 5 /\ y|3down =a /\ y|kdown = p
e z[i=(1—1) mod5Az[j=rA Z|am-ght = /\Z|kright =p

o t|i=(l+1) mod 5At]; =7 Atla, =w Atk =w

it
then: BR,({{w,y, z,t}}) = {{(l”’a?w’a’p’H’p’w’w’w)}’ it (21 2lsup> =) € 02k @)

{K1}, otherwise
If for somel,r € {0,1,2,3,4},a,b € A, p,q € K:

e wj=IlAwl;=(r—1) mod5Awls, =aAw,, =q
b y|’L = l /\y|] = (T+ 1) mOd 5 /\y|3down = b/\y|]€down =w
o zl;=(—1) mod5Azlj=7Azla,,, =wAzk

right =w

o t|i=(l+1) mod 5At|; =7 Atla,,; = Nk, =P

{K1}, otherwise

then: BR, ({{w,y, z,t}}) = {

the following two properties make possible the encoding of a left transition of the méthine

If for somel,r € [5],a,b € A, p,q € K:

e wl =lANwl; = (r—1) mod 5Awls,, =aAwl,, =q
e yli=IAylj=(r+1) mod5AYls,n, =AYby, =W
o zl;=(—-1) modb5Az[;=rA z\a”.ght = /\z]k,,,ight =p
o tl;=(l+1) m0d5/\t|j:r/\t\aleft:w/\t\kleﬁ:w

then: BR, Y, 2, 1) = .
(Hw.w.2 1)) {{ICl}, otherwise
If for somel,r € [5],a € A,p € K:

o wlj=IlAwl;=(r—1) mod5Awls, =aAw,, =w
o yli=1Aylj=(r+1) mod5AYlssu, =AYk, =P

o zli=(—1) mod5Az;=7rAza,., =wAzk,, =v

right

o tlj=(l+1) mod5At|; = r/\t\aleft = /\t’kleft =p
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[ if (p,tls,,, o(t ,
thenZBRu({{w,%z,t}}) — {( » T a7w7aap7w7w7<_7p7w)}a I (p7 |.up <_) € ( ‘kdown a)
{K1}, otherwise
[* the property that follows in combination with lemma A.1 makes all the rest-undesired 4-tuples of
neighbors’ strategies impossilile

27. In all other casesBR, ({{w,y, z,t}}) = {K1}

Proof that: ((M), t)eL < gameGa, ¢ has a pure Nash Equilibrium

(=) Supposing that machin& halts on empty input withist — 2 steps, we can construct a Nash Equi-
librium of the gameG,s, ¢ In order to do so, we pick an arbitrary row and column of the torus and assign
to the player at the intersection (that we’ll catirner playej the strategy, . Then we assign to the other
players of the row strategies of the fouh, so that the player 'right’ from the corner player (with respect to

an arbitrary orientation of the rows) gets stratefly the player next to hina!, and so forth. Similarly, we
assign to the player 'up’ from the corner player (again with respect to an arbitrary orientation of the torus)
strategys?, to the player next to him strategy, and so forth. Now since: = 5¢ + 1, the row and column

we chose contain & x 5t square area of players. These players will get strategies from titg .s&he
mapping of the tiles (strategies) of st to the players of the square area is essentially the same as in the
NEXP-hardness proof of the tiling problem (see [6]). The only difference now is that the tiles (strategies)
have the extraoordinates modulo 5 labelshich will be filled as follows. We assign coordinatés 0)

to the unique player with neighbord, ands?, coordinateq1, 0) to its 'right’ neighbor and coordinates
(0,1) to its 'up’ neighbor. We continue to assign coordinates modulo 5 in the obvious way. Based on the
properties of function BR, it's not difficult to prove that the assignment of strategies that we have described
is a pure Nash equilibrium of the gargby, ;.

(<) Suppose now that gante),, ; has a pure Nash equilibrium. We’'ll prove thal/),t) € L. The proof
goes through the following lemmas that are not very hard to prove.

Lemma A.1 In a pure Nash equilibrium no player plays a strategy from theGet

Lemma A.1 ensures that, in a pure Nash equilibrium, there will be no undesired patterns of strategies on the
torus and, therefore, establishes the solution of the first difficulty in our reduction (see section 5.2). To see
that, note that while defining the best response functiop BR gave as best response to every undesired
configuration of the neighbors’ strategies the strategy

Lemma A.2 Imagine a set of players that induces a connected subgraph of the torus. If all the players of
the set play strategies froi$y then the coordinates of their strategies must form a 2-dimensional counting
modulo 5.

Since we choser = 5t + 1, lemma A.2 immediately implies the following.

Lemma A.3 There is no pure Nash equilibrium in which players have only strategies from ti$g.set

Lemmata A.1 and A.3 imply that, in a pure Nash equilibrium, there is at least one player that plays a strategy
from the setS,. Actually, something stronger is true as implied by the following lemmata.

Lemma A.4 In a pure Nash equilibrium there is at least one player that plays the strategy

Lemma A.5 If two players are diagonal one to the other, then they cannot play botim a pure Nash
equilibrium.
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Lemma A.6 Suppose that in a pure Nash equilibridnplayers play strategy, . Then there is a divisop
of k, a set of rows of the toruR, with |R| = ¢, and a set of columns of the tora§ with |C| = k/¢, such
that:

1. only the players that are located in the intersection of a row fromfsahd a column from set’ play
strategys,_

2. forall r1, 79 € R the distance between, r- is a multiple of 5
3. forall ¢1, co € C the distance between, ¢ is a multiple of 5

4. the players that are located in a row of sBtor a column of set” but not at an intersection play
strategies from the se&f; \ {s_} and furthermore one of the following is true for these players:

o either all the players of the rows have strategies of the ferrand all the players of the columns
have strategies of the fored,

e Or Vvice versa

5. all the other players of the torus have strategies from theSset

Now let us assign an arbitrary orientation to each dimension and let us label each neighbor of a player as ‘up’,
‘down’, ‘left’ and ‘right’ with respect to that orientation. We cailrdered tuple of neighbors’ strategies

of a player the 4-tuple of strategies that has as its first field the strategy of the ‘up’ neighbor, second field the
strategy of the ‘down’ neighbor, third field the strategy of the ‘left’ and fourth field the strategy of the ‘right’
neighbor. The following is true.

Lemma A.7 In a pure Nash equilibrium all players that play the strategyhave the same ordered tuple
of neighbors’ strategies.

By combining lemmas (A.1) through (A.7) it follows that the rows of Beand the columns of sét (see
lemma (A.6)) define rectangular areas of players on the torus that play strategies fromSheGet such
rectangular area might look as in figure 4 or might be a rotation or mirroring of that. Now that we have a
visual idea of what is happening on the torus we can state the final lemma.

Lemma A.8 Suppose a pure Nash equilibrium on the torus and one of the rectangular areas of players that
are defined by the rows of s&tand the columns of sé&t (see lemma (A.6). The strategies of the players
inside the rectangular area correspond to a computation of the non-deterministic makthioe empty

input that halts within so many steps as the "height” of the rectangular area minus 2 (where by height of
the rectangular area we mean half of its neighbors that play strategies of thesform

In a pure Nash equilibrium, the height of each of the rectangular areas that are defined is &t sivost
m = 5t + 1. Thus, from lemma (A.8), if there is a pure Nash equilibrium, then there is a computation of the
machineM that halts withinst — 2 steps.ll
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Figure 4: The boundary of every rectangular area of players
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