
The Complexity of Games on Highly Regular Graphs
(Extended Abstract)

Constantinos Daskalakis∗ Christos H. Papadimitriou†

July 7, 2005

Abstract

We present algorithms and complexity results for the problem of finding equilibria (mixed Nash
equilibria, pure Nash equilibria and correlated equilibria) in games with extremely succinct description
that are defined on highly regular graphs such as thed-dimensional grid; we argue that such games are of
interest in the modelling of large systems of interacting agents. We show that mixed Nash equilibria can
be found in time exponential in the succinct representation by quantifier elimination, while correlated
equilibria can be found in polynomial time by taking advantage of the game’s symmetries. Finally, the
complexity of determining whether such a game on thed-dimensional grid has a pure Nash equilibrium
depends ond and the dichotomy is remarkably sharp: it is solvable in polynomial time (in factNL -
complete) whend = 1, but it isNEXP-complete ford ≥ 2.

∗UC Berkeley, Computer Science Division, Soda Hall, Berkeley, CA 94720. Email:costis@cs.berkeley.edu . Part of
this work was done while the first author was a senior undergraduate student at the National Technical University of Athens.

†UC Berkeley, Computer Science Division, Soda Hall, Berkeley, CA 94720. Supported by an NSF ITR grant and a Microsoft
Research grant. Email:christos@cs.berkeley.edu .

1 Introduction

In recent years there has been some convergence of ideas and research goals between game theory and
theoretical computer science, as both fields have tried to grapple with the realities of the Internet, a large
system connecting optimizing agents. An important open problem identified in this area is that of computing
a mixed Nash equilibrium; the complexity of even the 2-player case is, astonishingly, open (see, e.g., [9, 15]).
Since a mixed Nash equilibrium is always guaranteed to exist, ordinary completeness techniques do not
come into play. The problem does fall into the realm of “exponential existence proofs” [11], albeit of a kind
sufficiently specialized that, here too, no completeness results seem to be forthcoming. On the other hand,
progress towards algorithms has been very slow (see, e.g., [10, 7]).

We must mention here that this focus on complexity issues is not understood and welcome by all on the
other side. Some economists are mystified by the obsession of our field with the complexity of a problem
(Nash equilibrium) that arises in a context (rational behavior of agents) that is not computational at all.We
believe that complexity issues are of central importance in game theory, and not just the result of professional
bias by a few computer scientists. The reason is simple: Equilibria in games are important concepts of
rational behavior and social stability, reassuring existence theorems that enhance the explanatory power of
game theory and justify its applicability. An intractability proof would render these existence theorems
largely moot, and would cast serious doubt on the modelling power of games. How can one have faith in a
model predicting that a group of agents will solve an intractable problem? In the words of Kamal Jain: “If
your PC cannot find it, then neither can the market.”

However, since our ambition is to model by games the Internet and the electronic market, we must
extend our complexity investigations well beyond 2-person games. This is happening: [2, 4, 5, 12, 10]
investigate the complexity of multi-player games of different kinds. But there is an immediate difficulty:
Since a game withn players ands strategies each needsnsn numbers to be specified (see Section 2 for
game-theoretic definitions) the input needed to define such a game is exponentially long. This presents
with two issues: First, a host of tricky problems become easy just because the input is so large. More
importantly, exponential input makes a mockery of claims of relevance: No important problem can need an
astronomically large input to be specified (and weare interested in largen, and of courses ≥ 2). Hence, all
work in this area has focused on certain natural classes ofsuccinctly representable games.

One important class of succinct games is that of thegraphical gamesproposed and studied by Michael
Kearns et al. [4, 5]. In a graphical game, we are given a graph with the players as nodes. It is postulated that
an agent’s utility depends on the strategy chosen by the playerand by the player’s neighbors in the graph.
Thus, such games played on graphs of bounded degree can be represented by polynomially many (inn and
s) numbers. Graphical games are quite plausible and attractive as models of the interaction of agents across
a large network or market. There has been a host of positive complexity results for this kind of games. It has
been shown, for example, that correlated equilibria (a sophisticated equilibrium concept defined in Section
2) can be computed in polynomial time for graphical games that are trees [4], later extended to all graphical
games [10].

But if we are to study truly large systems of thousands or millions of interacting agents, it is unrealistic to
assume that we know the arbitrarily complex details of the underlying interaction graph and of the behavior
of every single player — the size of such description would be forbidding anyway. One possibility, explored
brilliantly in the work of Roughgarden and Tardos [14], is to assume a continuum of behaviorally identical
players. In the present paper we explore an alternative model of large populations of users, within the
realm of graphical games. Imagine that the interaction graph is perhaps then× n grid, and that all players
are locally identical (our results apply to many highly regular topologies of graphs and the case of several
player classes). The representation of such a game would then be extremely succinct: Just the game played
at each locus, andn, the size of the grid.Such games, called highly regular graph games, are the focus of

1

this paper. For concreteness and economy of description, we mainly consider the homogeneous versions
(without boundary phenomena) of the highly regular graphs (cycle in 1 dimension, torus in 2, and so on);
however, both our positive and negative results apply to the grid, as well as all reasonable generalizations
and versions (see the discussion after Theorem 5.1).

We examine the complexity of three central equilibrium concepts:pure Nash equilibrium, mixed Nash
equilibrium and the more general concept ofcorrelated equilibrium. Pure Nash equilibrium may or may
not exist in a game, but, when it does, it is typically much easier to compute than its randomized gener-
alization (it is, after all, a simpler object easily identified by inspection). Remarkably, in highly regular
graph games this is reversed: By a symmetry argument combined with quantifier elimination [1, 13], we
can compute a (succinct description of a) mixed Nash equilibrium in ad-dimensional highly regular graph
game in exponential time (see theorem 3.4; recall that the best known algorithms for even 2-player Nash
equilibria are exponential in the worst case). In contrast, regarding pure Nash equilibria, we establish an
interesting dichotomy: The problem is polynomially solvable (andNL -complete) ford = 1 (the cycle) but
becomesNEXP-complete ford ≥ 2 (the torus and beyond). The algorithm for the cycle is based on a rather
sophisticated analysis of the cycle structure of the Nash dynamics of the basic game.NEXP-completeness
is established by a generic reduction which, while superficially quite reminiscent of the tiling problem [6],
relies on several novel tricks for ensuring faithfulness of the simulation. Finally, our main algorithmic result
states that a succinct description of a correlated equilibrium in a highly regular game of any dimension can
be computed in polynomial time.

2 Definitions

In a gamewe haven players1, . . . , n. Each playerp, 1 ≤ p ≤ n, has a finite set ofstrategiesor choices,
Sp with |Sp| ≥ 2. The setS =

∏n
i=1 Si is calledthe set of strategy profilesand we denote the set

∏
i6=p Si

by S−p. Theutility or payoff function of playerp is a functionup : S → N. Thebest response function of
playerp is a function BRup : S−p → 2Sp defined by

BRup(s−p) , {sp ∈ Sp|∀s′p ∈ Sp : up(s−p; sp) ≥ up(s−p; s′p)}
that is, for everys−p ∈ S−p, BRup(s−p) is the set of all strategiessp of playerp that yield the maximum
possible utility given that the other players plays−p.

To specify a game withn players ands strategies each we neednsn numbers, an amount of information
exponential in the number of players. However, players often interact with a limited number of other players,
and this allows for much more succinct representations:

Definition 2.1 A graphical gameis defined by:

• A graphG = (V, E) whereV = {1, . . . , n} is the set of players.

• For every playerp ∈ V :

– A non-empty finite set ofstrategiesSp

– A payoff functionup :
∏

i∈N (p) Si → N (whereN (p) = {p} ∪ {v ∈ V |(p, v) ∈ E})

Graphical games can achieve considerable succinctness of representation. But if we are interested in
modelling huge populations of players, we may need, and may be able to achieve, even greater economy of
description. For example, it could be that the graph of the game is highly regular and that the games played
at each neighborhood are identical. This can lead us to an extremely succinct representation of the game —
logarithmic in the number of players. The following definition exemplifies these possibilities.

2

Definition 2.2 A d-dimensional torus gameis a graphical game with the following properties:

• The graphG = (V,E) of the game is thed-dimensional torus:

– V = {1, . . . , m}d

– ((i1, . . . , id), (j1, . . . , jd)) ∈ E if there is ak ≤ d such that:

jk = ik ± 1(modm) andjr = ir, for r 6= k

• All the md players are identical in the sense that:

– they have the same strategy setΣ = {1, . . . , s}
– they have the same utility functionu : Σ2d+1 → N

Notice that a torus game with utilities bounded byumax requiress2d+1 log |umax|+ log m bits to be repre-
sented.

A torus game isfully symmetricif it has the additional property that the utility functionu is symmetric
with respect to the2d neighbors of each node. Our negative results will hold even for this special case, while
our positive results will apply to all torus games.

We could also define torus games withunequal sidesandgrid games:torus games where the graph does
not wrap around at the boundaries, and sod + 1 games must be specified, one for the nodes in the middle
and one for each type of boundary node. Furthermore, there are the fully symmetric special cases for each.
It turns out that very similar results would hold for all such kinds. We sketch the necessary modifications of
the proofs whenever it is necessary and/or expedient.

Consider a gameG with n players and strategy setsS1, . . . , Sn. For every strategy profiles, we denote
by sp the strategy of playerp in this strategy profile and bys−p the (n − 1)-tuple of strategies of all
players butp. For everys′p ∈ Sp ands−p ∈ S−p we denote by(s−p; s′p) the strategy profile in which
playerp playss′p and all the other players play according tos−p. Also, we denote by∆(A) the set of
probability distributions over a setA and we’ll call the set

∏n
i=1 ∆(Si) set of mixed strategy profilesof

the gameG. For a mixed strategy profileσ and a mixed strategyσ′p of playerp, the notationsσp, σ−p

and(σ−p;σ′p) are analogous to the corresponding notations for the strategy profiles. Finally, byσ(s) we’ll
denote the probability distribution in product formσ1(s1)σ2(s2) . . . σn(sn) that corresponds to the mixed
strategy profileσ.

Definition 2.3 A strategy profiles is apure Nash equilibriumif for every playerp and strategytp ∈ Sp we
haveup(s) ≥ up(s−p; tp).

Definition 2.4 A mixed strategy profileσ of a gameG = 〈n, {Sp}1≤p≤n, {up}1≤p≤n〉 is amixed Nash equi-
librium if for every playerp and for all mixed strategiesσ′p ∈ ∆(Sp) the following is true:Eσ(s)[up(s)] ≥
E(σ−p,σ′p)(s)[up(s)], where byEf(s)[up(s)], f ∈ ∆(S), we denote the expected value of the payoff function
up(s) under the distributionf .

Definition 2.5 A probability distributionf ∈ ∆(S) over the set of strategy profiles of a gameG is a
correlated equilibriumiff for every playerp, 1 ≤ p ≤ n, and for alli, j ∈ Sp, the following is true:

∑

s−p∈S−p

[up(s−p; i)− up(s−p; j)]f(s−p; i) ≥ 0

3

Every game has a mixed Nash Equilibrium [8] and, therefore, a correlated equilibrium, since, as can
easily be checked, a mixed Nash equilibrium is a correlated equilibrium in product form. However, it may
or may not have a pure Nash equilibrium.

The full description of an equilibrium of any kind in a torus game would require an exponential (doubly
exponential in the correlated case) number of bits. Accordingly, our algorithms shall always output some
kind of succinct representation of the equilibrium, from which one can generate the equilibrium in output
polynomial time. In other words, asuccinct representationof an equilibrium (or any other object)x is a
stringy such that|y| is polynomial in the input size andx = f(y) for some functionf computable in time
polynomial in|x|+ |y|.

3 Mixed Nash Equilibria

We start with a theorem due to Nash ([8]).

Definition 3.1 An automorphismof a gameG = 〈n, {Sp}, {up}〉 is a permutationφ of the set
⋃n

p=1 Sp

along with two induced permutations of the playersψ and of the strategy profilesχ, with the following
properties:

• ∀p, ∀x, y ∈ Sp there existsp′ = ψ(p) such thatφ(x) ∈ Sp′ andφ(y) ∈ Sp′

• ∀s ∈ S, ∀p : up(s) = uψ(p)(χ(s))

Definition 3.2 A mixed Nash equilibrium of a game issymmetricif it is invariant under all automorphisms
of the game.

Theorem 3.3 [8]Every game has a symmetric mixed Nash equilibrium.

Now we can prove the following.

Theorem 3.4 For any d ≥ 1, we can compute a succinct description of a mixed Nash equilibrium of a
d-dimensional torus game in time polynomial in(2d)s, the size of the game description, and the number of
bits of precision required, but independent of the number of players.

Proof: Suppose we are given ad − dimensional torus gameG = 〈m, Σ, u〉 with n = md players. By
theorem 3.3, gameG has a symmetric mixed Nash equilibriumσ. We claim that inσ all players play the
same mixed strategy. Indeed for every pair of playersp1, p2 in the torus, there is an automorphism(φ, ψ, χ)
of the game such thatψ(p1) = p2 andφ maps the strategies of playerp1 to the same strategies of player
p2. (In this automorphism, the permutationψ is an appropriated-dimensional cyclic shift of the players and
permutationφ always maps strategies of one player to the same strategies of the player’s image.) Thus inσ
every player plays the same mixed strategy.

It follows that we can describeσ succinctly by giving the mixed strategyσx that every player plays. Let’s
suppose thatΣ = {1, 2, . . . , s}. For all possible supportsT ⊆ 2Σ, we can check if there is a symmetric
mixed Nash equilibriumσ with supportTn as follows. Without loss of generality let’s suppose thatT =
{1, 2, . . . , j} for somej, j ≤ s. We shall construct a system of polynomial equations and inequalities with
variablesp1, p2, . . . , pj , the probabilities of the strategies in the support.

Let us callEl the expected payoff of an arbitrary playerp if s/he chooses the pure strategyl and every
other player playsσx. El is a polynomial of degree2d in the variablesp1, p2, . . . , pj . Now σx is a mixed

4

Nash equilibrium of the game if and only if the following conditions hold (because of the symmetry, if they
hold for one player they hold for every player of the torus):

El = El+1,∀l ∈ {1, . . . , j − 1}
Ej ≥ El,∀l ∈ {j + 1, . . . , s}

We need to solves simultaneous polynomial equations and inequalities of degree2d in O(s) variables. It
is known — see [13] — that this problem can be solved in time polynomial in(2d)s, the number of bits of
the numbers in the input and the number of bits of precision required. Since the number of bits required
to define the system of equations and inequalities is polynomial in the size of the description of the utility
function, we get an algorithm polynomial in(2d)s, the size of the game description and the number of bits
of precision required, but independent of the number of players.¥

4 An Algorithm for Correlated Equilibria

We show that we can compute a succinct description of a correlated equilibrium of any torus game in time
polynomial in the size of the game description.

Theorem 4.1 Given any torus game, we can compute a succinct representation of a correlated equilibrium
in time polynomial in the description of the game.

Proof: It is obvious from the definition of correlated equilibrium that computing one requires computing
smd

numbers. To achieve polynomial time we will not compute a correlated equilibriumf , but the mar-
ginal probability of a correlated equilibrium in the neighborhood of one playerp. We then will show that
the computed marginal can be extended in a systematic way (and in fact in time polynomial in the output
complexity) to a correlated equilibrium.

The construction is easier when m is a multiple of 2d+1, and thus we shall assume first that this is the
case. Let us rewrite the defining inequalities of a correlated equilibrium as follows:

∀i, j ∈ Σ :
∑

sneigh∈Σ2d

[u(sneigh; i)− u(sneigh; j)]
∑

soth∈Σmd−2d−1

f(soth; sneigh; i) ≥ 0 (1)

⇔∀i, j ∈ Σ :
∑

sneigh∈Σ2d

[u(sneigh; i)− u(sneigh; j)]fp(sneigh; i) ≥ 0 (2)

wherefp is the marginal probability corresponding to playerp and the2d players inp’s neighborhood. Now,
if x(p) is thes2d+1 × 1 vector of the unknown values of the marginalfp, then by appropriate definition of
thes2 × s2d+1 matrixU we can rewrite inequalities (2) as follows:

Ux(p) ≥ 0

and we can construct the following linear program:

max
∑

i

x
(p)
i

Ux(p) ≥ 0

1 ≥ x(p) ≥ 0

5

whose solutionx(p) defines an unnormalized distribution that might be the marginal distribution of player
p’s neighborhood in a correlated equilibrium of the game. We note that a non-zero solution of the linear
program is guaranteed from the existence of a correlated equilibrium.

In order to have a guarantee that the distribution corresponding to the solution of the linear program
can be extended to a correlated equilibrium, we shall add some further constraints to our linear program
requiring from the solution to have some symmetry. For now, let’s assume that we addO(s2d+1 · (2d + 1)!)
symmetry constraints so that the distribution defined by the solution of the linear program is symmetric with
respect to its arguments. It will be clear later in the proof that in fact we don’t need full symmetry and that
O(s2d+1 · 2d) symmetry constraints are enough. The new linear program will be the following:

max
∑

i

x
(p)
i

Ux(p) ≥ 0
(symmetry constraints)

1 ≥ x(p) ≥ 0

As noted in section 3, gameG possesses a symmetric mixed Nash equilibrium in which all players play the
same mixed strategy and, thus, a correlated equilibrium that is in product form and symmetric with respect
to all the players of the game. Therefore, our linear program has at least one non-zero solution.

Let x(p)∗ be the solution of the linear program after normalization. Solutionx(p)∗ defines a probability
distributiong(s0, s1, . . . , s2d) over the setΣ2d+1 which is symmetric with respect to its arguments. We
argue that every such distribution can be extended in a systematic way (in fact, by an algorithm polynomial
in the output complexity) to a correlated equilibrium for the gameG, provided m is a multiple of 2d+1. We,
actually, only need to show that we can construct a probability distributionf ∈ ∆(Σmd

) with the property
that the marginal probability of the neighborhood of every player is equal to the probability distributiong.
Then, by the definition ofg, inequalities (1) will hold and, thus,f will be a correlated equilibrium of the
game.

We first give the intuition behind the construction. Probability distributiong can be seen as the joint
probability of 2d + 1 random variablesX0, X1, . . . , X2d. If we can ”tile” the d-dimensional torus with
the random variablesX0, X1, . . . , X2d in such a way that all the2d + 1 random variables appear in the
neighborhood of every player (as in figure 1), then we can define probability distributionf as the proba-
bility distribution that first draws a sample(l0, l1, ..., l2d) according tog and then assigns strategyli to all
players that are tiled withXi for all i ∈ {0, 1, . . . , 2d}. This way the marginal distribution off in every
neighborhood will be the same asg (sinceg is symmetric).

X

0

X

1

X

2

X

0

X

1

X

2

X

0

X

1

X

2

Figure 1: A tiling of the ring with the random variablesX0, X1, X2. We generalize this “periodic tiling” in
d-dimensions.

We now show how this can be done in a systematic way. For convenience, let us fix an arbitrary player
of thed-dimensional torus as the origin and assign orientation to each dimension, so that we can label each
playerx of the torus with a name(x1, x2, . . . , xd), xi ∈ {1, . . . , m},∀i. The configurations of strategies in
the support off will be in a one-to-one correspondence with the configurations in the support ofg. More

6

specifically, for every configurations = (ls0, l
s
1, . . . , l

s
2d) in the support ofg, we include in the support off

the configuration in which every player(x1, x2, . . . , xd) plays strategyls(x1+2x2+3x3+...+dxd mod 2d+1)
∗. So

we define the support of the distributionf to be:

Sf = {s ∈ Σmd |∃(ls0, ls1, . . . , ls2d) ∈ Sg s.t. sx = l(x1+2x2+3x3+...+dxd mod 2d+1)}

and the distribution itself to be:

f(s) =

{
0, if s /∈ Sf

g(ls0, l
s
1, . . . , l

s
2d), if s ∈ Sf

By the symmetry of functiong and the definition of the supportSf , it is not difficult to see that, ifm is
a multiple of2d + 1, the distributionf has the property that the marginal distribution of every player’s
neighborhood is equal to the distributiong†. This completes the proof. Additionally, we note that for our
construction to work we don’t needg to be fully symmetric. We only need it to be equal toO(2d) out of the
total number ofO((2d + 1)!) functions that result by permuting its arguments. For example, in the case of
the ring presented in figure (1) it suffices that:

g(x0, x1, x2) = g(x1, x2, x0) = g(x2, x0, x1)

So the number of symmetry constraints we added to the linear program can be reduced toO(s2d+1 · 2d).

To generalize this result to the case in which m is not a multiple of 2d+1, let us first reflect on the reason
why the above technique fails in the case wherem is not a multiple of2d+1. If m is not a multiple of2d+1,
then, if we are given an arbitrary probability distributiong defined in the neighborhood of one player, we
cannot always find a probability distribution on the torus so that its marginal in the neighborhood of every
player is the same asg, even ifg is symmetric‡. As an illustration (but not a proof) of this, observe that the
periodic tiling scheme that we used above fails if the size of the ring is not a multiple of 3 (see figure 2).

X

0

X

1

X

2

X

0

X

1

X

2

X

0

X

1

X

2

??

Figure 2: An attempt to tile the ring with the random variablesX0, X1, X2 using the periodic tiling scheme.
The tiling fails whenm is not a multiple of 3(=2d + 1).

Thus, instead of starting of with the computation of a probability distribution in the neighborhood of
one player, we compute a probability distributionh with an augmented number of arguments. Let’s call
υ = m mod 2d + 1. Probability distributionh will have the following properties:

∗In terms of tiling thed-dimensional torus with the random variablesX0, X1, . . . , X2d, the construction that we describe
assigns variableX0 to the origin player and then assigns variables periodically with step 1 in the first dimension, step 2 in the
second dimension etc.

†To prove this, we only need to observe that for every player(x1, x2, . . . , xd) and for everyk ∈ {0, 1, . . . , 2d} there exists an
indexi ∈ {1, 2, . . . , d} such that

k = x1 + 2x2 + 3x3 + . . . + ix′i + . . . + dxd mod 2d + 1

wherex′i ∈ {xi, xi + 1 mod m, x′i = xi − 1 mod m}, if m is a multiple of2d + 1.
‡There is actually a very simple counterexample that we omit here.

7

• it will have 2× (2d + 1) arguments

• it will be symmetric with respect to its arguments (we’ll relax this requirement later in the proof to
get fewer symmetry constraints for our linear program)

• the marginal distributionfp of the first2d + 1 variables will satisfy inequalities (2); then, because
of the symmetry of the function, the marginal of every ordered subset of 2d+1 arguments will satisfy
inequalities (2) (this will also be relaxed)

Again, the existence of a probability distributionh with the above properties follows from the existence
of a symmetric mixed Nash equilibrium in which all players play the same mixed strategy. Moreover,h
can be found in time polynomial in the size of the game description: lety(p) be thes2×(2d+1) × 1 vector of
variables corresponding to the probability distributionh andx(p) the s2d+1 × 1 vector of variables corre-
sponding to the marginalization of the first2d + 1 arguments ofh. Also, letU be the same matrix we used
above. Then we can find an unnormalized distributionh that satisfies the above properties by solving the
following linear program:

max
∑

i

y
(p)
i

Ux(p) ≥ 0

(symmetry constraints for vectory(p))

(constraints “marginalizing” vectory(p) to vectorx(p))

1 ≥ y(p) ≥ 0

By normalizing the solution of the linear program we get a probability distributionh with the properties that
we stated.

To conclude the proof we show how we can useh to produce a correlated equilibrium of the game
in a systematic way (and, in fact, with polynomial output complexity). Before doing so, we make the
following observations (again let us consider an arbitrary player of the torus as the origin, and let us assign
orientation to each dimension so that every playerx of the torus has a name(x1, x2, . . . , xd) wherexi ∈
{1, . . . ,m}, ∀i):

• Probability distributionh can be seen as the joint probability distribution of2× (2d+1) random vari-
ablesX0, X1, . . . , X2d, Z0, Z1, ..., Z2d. If we can “tile” thed-dimensional torus with these random
variables in such a way that the neighborhood of every player contains2d + 1 distinct random vari-
ables, then this tiling implies a probability distribution on the torus with the property that the marginal
of every player’s neighborhood is equal tofp and thus is a correlated equilibrium.

• Given2d+1 random variables, we can use the tiling scheme described above to tileanyd-dimensional
grid in such a way that every neighborhood of sizei hasi distinct random variables. However, if we
“fold” the grid to form the torus this property might not hold ifm is not a multiple of2d + 1; there
might be player with at least one coordinate equal to1 or m (who before was at the boundary of the
grid) whose neighborhood does not have2d + 1 distinct random variables.

Following this line of thought, if we can partition the players of thed-dimensional torus in disjoint
d-dimensional grids and we tile every grid with a set of random variables so that every two neighboring
grids are tiled with disjoint sets of random variables, then we automatically define a tiling with the required
properties.

8

To do so, we partition thed-dimensional torus in2d gridsΓt, t ∈ {0, 1}d, where gridΓt is the subgraph
of thed-dimensional torus defined by players with names(x1, x2, . . . , xd), wherexi ∈ {1, 2, . . . , m−(2d+
1 + υ)} if the i-th bit of t is 0 andxi ∈ {m − (2d + 1 + υ) + 1, . . . , m} if the i-th bit of t is 1. For every
grid Γt, let’s calln (Γt) the number of1’s in t§. The following observation is key to finishing the proof:

Lemma 4.2 If two gridsΓt, Γt′ are neighboring thenn (Γt) = n (Γt′) + 1 or n (Γt) = n (Γt′)− 1.

Using lemma 4.2, we can tile thed-dimensional torus as follows: if a gridΓt has evenn (Γt) then use
random variablesX0, X1, . . . , X2d and the tiling scheme described above to tile it; otherwise use random
variablesZ0, Z1, . . . , Z2d to tile it. This completes the proof. Additionally, we note that for our construction
to work we don’t needh to be fully symmetric: we only need it to be equal toO(d) out of the total number
of O((2 × (2d + 1))!) functions that result by permuting its arguments. So we need a polynomial in the
game complexity number of symmetry constraints.¥

5 The Complexity of Pure Nash Equilibria in d Dimensions

In this section we show our dichotomy result: Telling whether ad-dimensional torus game has a pure Nash
equilibrium isNL -complete ifd = 1 andNEXP-complete ifd > 1.

5.1 The Ring

Theorem 5.1 Given a1-dimensional torus game we can check whether the game has a pure Nash equilib-
rium in polynomial time, and in fact in nondeterministic logarithmic space.
Proof:
Given such a game we construct a directed graphT = (VT , ET) as follows.

VT = {(x, y, z) | x, y, z ∈ Σ : y ∈ BRu(x, z)}
ET = {(v1, v2) | v1, v2 ∈ VT : v1y = v2x ∧ v1z = v2y}

It is obvious that the construction of the graphT can be done in time polynomial ins and that|VT | = O(s3).
Thus the adjacency matrixAT of the graph hasO(s3) rows and columns.

We now prove the following lemma:

Lemma 5.2 G has a pure Nash equilibrium iff there is a closed walk of lengthm in the graphT
Proof: (⇒) Suppose that gameG has a pure Nash equilibriums = (s0, s2, ..., sm−1). From the definition of
the pure Nash equilibrium it follows that, for alli ∈ [m], si ∈ BRu(si−1 mod m, si+1 mod m). Thus from the
definition of graphT it follows that: ti = (si−1 mod m, si, si+1 mod m) ∈ VT for all i ∈ [m] and moreover
that(ti, ti+1 mod m) ∈ ET for all i ∈ [m] (note that theti’s need not be distinct).

It follows that the sequence of nodest1, t2, . . . , tn, t1 is a closed walk of lengthm in the graphT .

(⇐) Suppose that there is a closed walkv1, v2, . . . , vm, v1 in the graphT . Sincev1, v2, . . . , vm ∈ VT it
follows that eachvi is of the form(xi, yi, zi) andyi ∈ BRu(xi, zi). Moreover, since(vi, vi+1 mod m) ∈ ET

we haveyi = xi+1 mod m ∧ zi = yi+1 mod m. It follows that the strategy profile〈y0, y1, . . . , ym〉 is a pure
Nash equilibrium.¥

§n (Γt) is the number of dimensions of the grid in which the coordinates take values from the set{m−(2d+1+υ)+1, . . . , m}

9

It follows that, in order to check whether the game has a pure Nash equilibrium, it suffices to check
whether there exists a closed walk of lengthm in graphT . This can be easily done in polynomial time, for
example by findingAm

T using repeated squaring.
We briefly sketch why it can be done in nondeterministic logarithmic space. There are two cases: If

m is at most polynomial ins (and thus in the size ofT), then we can guess the closed walk in logarithmic
space, counting up tom. The difficulty is whenm is exponential ins, and we must guess the closed walk
of lengthm in spacelog log m, that is, without counting up tom. We first establish that every such walk
can be decomposed into a short closed walk of lengthq ≤ s6, plus a set of cycles, all connected to this
walk, and of lengthsc1, . . . , cr (each cycle repeated a possibly exponential number of times) such that the
greatest common divisor ofc1, . . . , cr dividesm − q. We therefore guess the short walk ofT of lengthq,
guess ther cycles, compute the greatest common divisor of their lengthsg = gcd(c1, . . . , cr) in logarithmic
space, and then check whetherg dividesm − q; this latter can be done by space-efficient long division, in
spacelog g and without writing downm − q. Finally, NL -completeness is shown by a rather complicated
reduction from the problem of telling whether a directed graph has an odd cycle, which can be easily shown
to beNL -complete.¥

The same result holds when the underlying graph is the1-dimensional grid (the path); the only difference
is that we augment the set of nodes ofT by two appropriate node-sets to account for the “left” and “right”
-for an arbitrary direction on the path- boundary players; we are now seeking a path of lengthm−1 between
those two distinguished subsets of the nodes.

We note that the problem has the same complexity for several generalizations of the path topology such
as theladder graphand many others.

5.2 The Torus

The problem becomesNEXP-complete whend > 1, even in the fully symmetric case. The proof is by a
generic reduction.

Theorem 5.3 For any d ≥ 2, the problem of deciding whether there exists a pure Nash equilibrium in a
fully symmetricd-dimensional torus game isNEXP-complete.
Proof: A non-deterministic exponential time algorithm can choose inO(md) nondeterministic steps a pure
strategy for each player, and then check the equilibrium conditions for each player. Thus, the problem
belongs to the classNEXP.

OurNEXP-hardness reduction is from the problem of deciding, given a one-tape nondeterministic Tur-
ing machineM and an integert, whether there is a computation ofM that halts within5t − 2 steps. We
present thed = 2 case, the generalization tod > 2 being trivial. Given suchM andt, we construct the
torus gameGM, t with sizem = 5t + 1. Intuitively, the strategies of the players will correspond to states
and tape symbols ofM , so that a Nash equilibrium will spell a halting computation ofM in the “tableau”
format (rows are steps and columns are tape squares). In this sense, the reduction is similar to that showing
completeness of thetiling problem (see figure 3): Can one tile them × m square by square tiles of unit
side and belonging to certain types, when each side of each type comes with a label restricting the types that
can be used next to it? Indeed, each strategy will simulate a tile having on the horizontal sides labels of the
form (symbol, state) whereas on the vertical sides(state, action). (Furthermore, as shown in figure 3, each
strategy will also be identified by a pair(i, j) of integers in[5], standing for the coordinates modulo5 of the
node that plays this strategy; the necessity of this, as well as the choice of5, will be come more clear later
in the proof).

10

(i,j)

(
s

up

,k

up

)

(s

down

,k

down

)

(k

left

,a

left

)
 (k

right

,a

right

)

Figure 3: A pure strategy as a tile

Superficially, the reduction now seems straightforward: Have a strategy for each tile type, and make sure
that the best response function of the players reflects the compatibility of the tile types. There are, however,
several important difficulties in doing this, and we summarize the principal ones below.

difficulty 1 In tiling, the compatibility relation can be partial, in that no tile fits at a place when the neighbors are
tiled inappropriately. In contrast, in our problem the best response function must be total.

difficulty 2 Moreover, since we are reducing to fully symmetric games, the utility function must be symmetric
with respect to the strategies of the neighbors. However, even if we suppose that for a given 4-tuple
of tiles (strategies) for the neighbors of a player there is a matching tile (strategy) for this player, that
tile does not necessarily match every possible permutation-assignment of the given 4-tuple of tiles to
the neighbors. To put it otherwise, symmetry causes alack of orientation, making the players unable
to distinguish among their ‘up’, ‘down’, ‘left’ and ‘right’ neighbors.

difficulty 3 The third obstacle is thelack of boundariesin the torus which makes it difficult to define the strategy
set and the utility function in such a way as to ensure that some “bottom” row will get tiles that
describe the initial configuration of the Turing machine and the computation tableau will get built on
top of that row.

It is these difficulties that require our reduction to resort to certain novel stratagems and make the proof
rather complicated. Briefly, we state here the essence of the tricks (we’ll omit some technicalities):

solution 1 To overcome the first difficulty, we introduce three special strategies (setK in the appendix) and we
define our utility function in such a way that (a) these strategies are the best responses when we have
no tile to match the strategies of the neighbors and (b) no equilibria of the game can contain any of
these strategies.

solution 2 To overcome the second difficulty we attach coordinates modulo 5 to all of the tiles that correspond
to the interior of the computation tableau (setS1 in the appendix) and we define the utility function in
such a way that in every pure Nash equilibrium a player who plays a strategy with coordinates modulo
5 equal to(i, j) has a neighbor who plays a strategy with each of the coordinates(i±1, j±1 mod 5).
This implies (through a nontrivial graph-theoretic argument, see Lemma A.2 in the appendix) that the
torus is “tiled” by strategies respecting the counting modulo 5 in both dimensions.

solution 3 To overcome difficulty 3, we define the side of the torus to be5t + 1 and we introduce strategies
that correspond to the boundaries of the computation tableau (setS2 in the appendix) and are best
responses only in the case their neighbors’ coordinates are not compatible with the counting modulo 5.
The choice of side length makes it impossible to tile the torus without using these strategies and, thus,

11

ensures that one row and one column (at least) will get strategies that correspond to the boundaries of
the computation tableau.

We postpone further details to an Appendix.¥

6 Discussion

We have classified satisfactorily the complexity of computing equilibria of the principal kinds in highly
regular graph games. We believe that the investigation of computational problems on succinct games, of
which the present paper as well as [3] and [12, 10] are examples, will be an active area of research in the
future. One particularly interesting research direction is to formulate and investigate games on highly regular
graphs in which the players’ payoffs depend in a natural and implicit way on the players’ location on the
graph, possibly in a manner reflecting routing congestion, facility location, etc., in a spirit similar to that of
non-atomic games [14].

References

[1] G. E. Collins “Quantifier elimination for real closed fields by cylindrical algebraic decomposition,”
Springer Lecture Notes in Computer Science, 33, 1975, 515–532.

[2] A. Fabrikant, C. H. Papadimitriou, K. Talwar “The Complexity of Pure Nash Equilibria,”STOC, 2004,
604–612.

[3] L. Fortnow, R. Impagliazzo, V. Kabanets, C. Umans “On the complexity of succinct zero-sum games,”
IEEE Conference on Computational Complexity, 2005.

[4] S. Kakade, M. Kearns, J. Langford, and L. Ortiz “Correlated Equilibria in Graphical Games,”ACM
Conference on Electronic Commerce, 2003.

[5] M. Kearns, M. Littman, S. Singh “Graphical Models for Game Theory,”Proceedings of UAI, 2001.

[6] H. Lewis, C. H. Papadimitriou “Elements of the Theory of Computation,”Prentice-Hall, 1981.

[7] R. J. Lipton, E. Markakis “Nash Equilibria via Polynomial Equations,”LATIN, 2004, 413–422.

[8] J. Nash “Noncooperative games,”Annals of Mathematics, 54,289–295, 1951.

[9] C. H. Papadimitriou “Algorithms, Games, and the Internet,”STOC, 2001, 749–753.

[10] C. H. Papadimitriou “Computing correlated equilibria in multiplayer games,”STOC, 2005.

[11] C. H. Papadimitriou “On the Complexity of the Parity Argument and Other Inefficient Proofs of Exis-
tence,”J. Comput. Syst. Sci., 48(3), 1994, 498–532.

[12] C. H. Papadimitriou, T. Roughgarden “Computing equilibria in multiplayer games,”SODA, 2005.

[13] J. Renegar “On the Computational Complexity and Geometry of the First-Order Theory of the Reals,
I, II, III,” J. Symb. Comput., 13(3), 1992, 255–352.

[14] T. Roughgarden, E. Tardos “How bad is selfish routing?,”J. ACM, 49(2), 2002, 236-259.

12

[15] R. Savani, B. von Stengel “Exponentially many steps for finding a Nash equilibrium in a bimatrix
game,”FOCS, 2004.

[16] H. Wang, “Proving theorems by pattern recognition II,”Bell Systems Technical Journal 40, 1961, 1–42.

A Missing Proofs

Proof of theorem 5.3: We present here some of the omitted technicalities of the proof. Let us define the
following language which is not difficult to verify that isNEXP-complete (byNTM we denote the set of
one-tape non-deterministic Turing Machines):

L = {(〈M〉, t),M ∈ NTM, t ∈ N|on empty inputM halts within5t− 2 steps}

We shall show a reduction from languageL to the problem of determining whether a 2-dimensional fully
symmetric torus game has a pure Nash equilibrium. That is, given(〈M〉, t) we will construct a 2-dimensional
fully symmetric torus gameGM, t = 〈m,Σ, u〉 so that:

(〈M〉, t) ∈ L ⇔ gameGM, t has a pure Nash Equilibrium (3)

SinceNTM is the set ofone tape non-deterministic Turing Machines, a machineM ∈ NTM can be
described by a tuple〈M〉 = 〈K,A, δ, q0〉, whereK is the set of states,A is the alphabet,δ : K × A →
2K×A×{→,←,−} is the transition function andq0 is the initial state of the machine. For proof convenience,
we’ll make two non-restrictive assumptions for our model of computation:

1. The transition functionδ satisfies(q, a,−) ∈ δ(q, a),∀q ∈ K, a ∈ A (transitions“do nothing”).

2. The tape of the machine contains in its two leftmost cells the symbolsBB′ throughout all of the
computation; furthermore the head of the machine points initially at the cell that containsB′ and the
head never reaches the leftmost cell of the tape.

Now let’s construct the gameGM, t = 〈m, Σ, u〉.

Size of torus: We choosem = 5t + 1

Set of strategiesΣ: Every pure strategy, except for some special ones that we’ll define later, will be an
11-tuple of the form:

σ = (i, j, sdown, kdown, sup, kup, aleft, kleft, aright, kright, v)

where (let’s give toω the connotation of “empty field”):

• i, j ∈ [5] ∪ {ω} (counters or “empty”)

• sdown, sup ∈ A ∪ {ω} (alphabet symbols or “empty”)

• kdown, kleft, kup, kdown ∈ K ∪ {ω} (state symbols or “empty”)

• aright, aleft ∈ {→,←, ω} (action symbols or “empty”)

• v ∈ {BB, Bt, x, ω} (special labels or “empty”)

13

We shall henceforth refer to a specific field of a pure strategy using the label of the field as a subscript, for
exampleσ|i, σ|j andσ|sup . Also, it will be helpful to think of pure strategies we can think of them astiles
(see figure 3 in section 5).

Now we choseΣ = S1 ∪ S2 ∪ K where:

• SetS1 contains the strategies-tiles that, in a high level, we intend to fill the interior of the computation
tableau:

– ∀a ∈ A, ∀i, j ∈ [5] strategy:(i, j, a, ω, a, ω, ω, ω, ω, ω, ω)

– ∀q, p ∈ K, ∀a, b ∈ A s.t. (p, b,−) ∈ δ(q, a), ∀i, j ∈ [5] strategy:(i, j, a, q, b, p, ω, ω, ω, ω, ω)

– ∀q, p ∈ K, ∀a, b ∈ A s.t. (p, b,→) ∈ δ(q, a), ∀γ ∈ A, ∀i, j ∈ [5] strategies:

(i, j, a, q, b, ω, ω, ω,→, p, ω) and(i, j, γ, ω, γ, p,→, p, ω, ω, ω)

– ∀q, p ∈ K, ∀a, b ∈ A s.t. (p, b,←) ∈ δ(q, a), ∀γ ∈ A, ∀i, j ∈ [5] strategies:

(i, j, a, q, b, ω,←, p, ω, ω, ω) and(i, j, γ, ω, γ, p, ω, ω,←, p, ω)

– ∀a ∈ A, ∀i, j ∈ [5] strategy:(i, j, a, h, a, h, ω, ω, ω, ω, ω) (h is the halting state)

– strategy:(1, 0, B′, ω, B′, q0, ω, ω, ω, ω, ω)

• SetS2 contains the strategies-tiles that, in a high level, we intend to span the boundaries of the com-
putation tableau:

– ∀i ∈ [5] strategy:(i, ω, ω, ω, ω, ω, ω, ω, ω, ω,Bt) (abbreviated:sit)

(these strategies are intended to span the “horizontal” boundary of the computation tableau)

– ∀j ∈ [5] strategy:(ω, j, ω, ω, ω, ω, ω, ω, ω, ω, BB) (abbreviated:sj
B)

(these strategies are intended to span the “vertical” boundary of the computation tableau)

– strategy:(ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, x) (abbreviated:sx)

(this strategy is intended to appear at the corners of the computation tableau)

• SetK contains three special strategiesK1,K2,K3 that we invent to overcome the first difficulty we
stated in the abstract description of the proof (see section 5 and lemma A.1)

It’s easy to see that the setΣ we defined can be computed in timeO(|〈M〉|), where|〈M〉| is the size of
description of the machineM .

Utility Function u: In order to be more concise, we’ll define functionu in an undirect way. In fact, we’ll
give some properties that the best response function BRu must have. It will be obvious that we can construct
in polynomial time a functionu so that BRu has these properties. Before stating the properties we note that
sinceu is symmetric with respect to the neighbors, BRu must be symmetric in all its arguments, so instead
of writing BRu(x, y, z, t) we can write BRu({{x, y, z, t}}) (by {{x, y, z, t}} we denote the multiset with
elementsx, y, z, t). The properties that we require from BRu are given bellow. We give in comments the
intuition behind the definition of each property. The claims that we state, however, should not be taken as
proofs. The correctness of the reduction is only established by lemmata A.1 through A.8.

/* the following properties ensure that lemma A.1 will hold*/

14

1. If K1 ∈ {w, y, z, t} then BRu({{w, y, z, t}}) = {K2}
2. If w = y = z = t = K2 then: BRu({{w, y, z, t}}) = {K3}

/* the following property says: one player can play the strategy that stands for the corner of the com-
putation tableau if s/he has two neighbors that play strategies standing for pieces of the horizontal
boundary and two neighbors that play strategies standing for pieces of the vertical boundary (note
that we try to encode a computation of the machineM on the torus so the horizontal boundary start-
ing from the corner player eventually meets the corner player from the other side and the same holds
for the vertical boundary; note also that according to lemma A.6 there can by multiple horizontal and
vertical boundaries, in which case the property we stated should hold as well)*/

3. If w = s0t, y = s4t, z = s0
B, t = s4

B then: BRu({{w, y, z, t}}) = {sx}

/* the following properties make possible the formation of a row encoding the horizontal boundary of
the computation tableau; such rows (they can be more than one, see lemma A.6) will serve as down
and up boundaries of encoded computations of the machineM on the torus*/

4. If w = sx, y = s1t, z = (0, 0, B, ω,B, ω, ω, ω, ω, ω, ω), t = (0, 4, B, ω, B, ω, ω, ω, ω, ω, ω) then:

BRu({{w, y, z, t}}) = {s0
t}

5. If w = sx, y = s3t, z = (4, 0,t, ω,t, ω, ω, ω, ω, ω, ω), t = (4, 4, λ, κ, λ, κ, ω, ω, ω, ω, ω), for some
λ ∈ A andκ ∈ {ω, h} then:

BRu({{w, y, z, t}}) = {s4
t}

6. If for somel ∈ [5], w = s
(l−1) mod 5
t , y = s

(l+1) mod 5
t , z|i = l∧z|j = 0 andt = (l, 4, λ, κ, λ, κ, ω, ω, ω, ω, ω)

for someλ ∈ A andκ ∈ {ω, h} then:

BRu({{w, y, z, t}}) = {sl
t}

/* the following properties make possible the formation of a column encoding the vertical boundary of
the computation tableau; such columns (they can be more than one, see lemma A.6) will serve as left
and right boundaries of encoded computations of the machineM on the torus*/

7. If w = sx, y = s1
B, z = (0, 0, B, ω,B, ω, ω, ω, ω, ω, ω), t = (4, 0,t, ω,t, ω, ω, ω, ω, ω, ω) then:

BRu({{w, y, z, t}}) = {s0
B}

8. If w = sx, y = s3
B, z = (0, 4, B, ω,B, ω, ω, ω, ω, ω, ω), t = (4, 4, λ, κ, λ, κ, ω, ω, ω, ω, ω) for some

λ ∈ A andκ ∈ {ω, h} then
BRu({{w, y, z, t}}) = {s4

B}

9. If for somel ∈ [5], w = s
(l−1) mod 5
B , y = s

(l+1) mod 5
B , z = (0, l,B, ω, B, ω, ω, ω, ω, ω, ω), t|i =

4 ∧ t|j = l then:
BRu({{w, y, z, t}}) = {sl

B}

/** INTERIOR OF THE COMPUTATION TABLEAU**/

/* column encoding the leftmost cell of the tape through an encoded computation ofM */

15

10. If w = s0t, y = s0
B, z = (0, 1, B, ω,B, ω, ω, ω, ω, ω, ω), t|i = 1 ∧ t|j = 0 then:

BRu({{w, y, z, t}}) = {(0, 0, B, ω,B, ω, ω, ω, ω, ω, ω)}

11. If w = (0, 3, B, ω, B, ω, ω, ω, ω, ω, ω), y = s0t, z = s4
B, t|i = 1 ∧ t|j = 4 then:

BRu({{w, y, z, t}}) = {(0, 4, B, ω,B, ω, ω, ω, ω, ω, ω)}

12. If for somel ∈ [5]:

• w = (0, (l − 1) mod 5, B, ω,B, ω, ω, ω, ω, ω, ω)

• y = (0, (l + 1) mod 5,B, ω,B, ω, ω, ω, ω, ω, ω)

• z = (ω, l, ω, ω, ω, ω, ω, ω, ω, ω, BB)

• t|i = 1 ∧ t|j = l

then: BRu({{w, y, z, t}}) = {(0, l,B, ω,B, ω, ω, ω, ω, ω, ω)}

/* row encoding the initial configuration of the tape ofM*/

13. If w = s1t, y = (0, 0, B, ω,B, ω, ω, ω, ω, ω, ω), z|i = 1 ∧ z|j = 1, t|i = 2 ∧ t|j = 0 then:

BRu({{w, y, z, t}}) = {(1, 0, B′, ω,B′, q0, ω, ω, ω, ω, ω)}

14. If for some l ∈ [5], w = slt, y|i = l ∧ y|j = 1, z|i = (l − 1) mod 5 ∧ z|j = 0 ∧ z|sup 6= B,
t|i = (l + 1) mod 5 ∧ z|j = 0 then:

BRu({{w, y, z, t}}) = {(l, 0,t, ω,t, ω, ω, ω, ω, ω, ω)}

/* row encoding the configuration of the tape after the last step of the computation; note that we require
that the fieldkup of one of the neighbors must be eitherh or empty; in this way we force the encoded
computation to be halting and the halting state to be reached within at most5t− 2 steps (lemma A.8)
*/

15. If for somel ∈ [5]:

• w = slt
• y|i = l ∧ y|j = 3 ∧ y|kup ∈ {h, ω}
• z = ((l − 1) mod 5, 4, λ1, κ1, λ1, κ1, ω, ω, ω, ω, ω), whereλ1 ∈ A, κ1 ∈ {ω, h}
• t = ((l + 1) mod 5, 4, λ2, κ2, λ2, κ2, ω, ω, ω, ω, ω), whereλ2 ∈ A, κ2 ∈ {ω, h}

then: BRu({{w, y, z, t}}) = {(l, 4, y|sup , y|kup , y|sup , y|kup , ω, ω, ω, ω, ω)}
16. If for somel ∈ [5]:

• w = (l, ω, ω, ω, ω, ω, ω, ω, ω, ω, Bt)

• y|i = (l − 1) mod 5 ∧ y|j = 4

• z|i = (l + 1) mod 5 ∧ z|j = 4

• t|i = l ∧ t|j = 3

then: BRu({{w, y, z, t}}) = {(l, 4, t|sup , t|kup , t|sup , t|kup , ω, ω, ω, ω, ω)}

16

/* column encoding the rightmost cell of the tape that the machine reaches in an encoded computation
*/

17. If w = s4t, y = s0
B, z = (3, 0,t, ω,t, ω, ω, ω, ω, ω, ω), t = (4, 1,t, ω,t, ω, ω, ω, ω, ω, ω) then:

BRu({{w, y, z, t}}) = {(4, 0,t, ω,t, ω, ω, ω, ω, ω, ω)}

18. If w = s4t, y = s4
B, z|i = 4 ∧ z|j = 3 ∧ z|kup ∈ {ω, h}, t = (3, 4, λ, κ, λ, κ, ω, ω, ω, ω, ω), for some

λ ∈ A, κ ∈ {ω, h} then:

BRu({{w, y, z, t}}) = {(4, 4, z|sup , z|kup , z|sup , z|kup , ω, ω, ω, ω, ω)}

19. If, for somer ∈ [5], a, b ∈ A, q, p ∈ K, w|i = 4, w|j = (r − 1) mod 5, w|sup = a, w|kup = q,
y|i = 4, y|j = (r +1) mod 5, y|sdown

= b, y|kdown
= p, z|i = 3, z|j = r, z|aright

= ω, z|kright
= ω,

t = sr
B then:

BRu({{w, y, z, t}}) =

{
{(4, r, a, q, b, p, ω, ω, ω, ω, ω)}, if (p, b,−) ∈ δ(q, a)
{K1}, otherwise

20. If for somer ∈ [5], a ∈ A andp ∈ K:

• w|i = 4 ∧ w|j = (r − 1) mod 5 ∧ w|sup = a ∧ w|kup = ω

• y|i = 4 ∧ y|j = (r + 1) mod 5 ∧ y|sdown
= a ∧ y|kdown

= p

• z|i = 3 ∧ z|j = r ∧ z|aright
=→ ∧z|kright

= p

• t = sr
B

then: BRu({{w, y, z, t}}) =

{
{(4, r, a, ω, a, p,→, p, ω, ω, ω)}, if (p, z|sup ,→) ∈ δ(z|kdown

, a)
{K1}, otherwise

/** Cells between leftmost and rightmost**/

/* if a cell of the tape is not pointed to by the head at a particular step, its value will remain the same*/

21. If for somel, r ∈ [5], a ∈ A:

• w|i = l ∧ w|j = (r − 1) mod 5 ∧ w|sup = a ∧ w|kup = ω

• y|i = l ∧ y|j = (r + 1) mod 5 ∧ y|sdown
= a ∧ y|kdown

= ω

• z|i = (l − 1) mod 5 ∧ z|j = r ∧ z|aright
= ω ∧ z|kright

= ω

• t|i = (l + 1) mod 5 ∧ t|j = r ∧ t|aleft
= ω ∧ t|kleft

= ω

then: BRu({{w, y, z, t}}) = {(l, r, a, ω, a, ω, ω, ω, ω, ω, ω)}

/* change the symbol of the cell at which the head of the machine points; if for a particular choice of
states and symbols this cannot happen according to the machine’s transition function the best response
isK1 (see lemma A.1)*/

22. If for somel, r ∈ [5], a, b ∈ A, q, p ∈ K:

• w|i = l ∧ w|j = (r − 1) mod 5 ∧ w|sup = a ∧ w|kup = q

17

• y|i = l ∧ y|j = (r + 1) mod 5 ∧ y|sdown
= b ∧ y|kdown

= p

• z|i = (l − 1) mod 5 ∧ z|j = r ∧ z|aright
= ω ∧ z|kright

= ω

• t|i = (l + 1) mod 5 ∧ t|j = r ∧ t|aleft
= ω ∧ t|kleft

= ω

then: BRu({{w, y, z, t}}) =

{
{(l, r, a, q, b, p, ω, ω, ω, ω, ω)}, if (p, b,−) ∈ δ(q, a)
{K1}, otherwise

/* the following two properties make possible the encoding of a right transition of the machine*/

23. If for somel, r ∈ [5], a ∈ A, p ∈ K:

• w|i = l ∧ w|j = (r − 1) mod 5 ∧ w|sup = a ∧ w|kup = ω

• y|i = l ∧ y|j = (r + 1) mod 5 ∧ y|sdown
= a ∧ y|kdown

= p

• z|i = (l − 1) mod 5 ∧ z|j = r ∧ z|aright
=→ ∧z|kright

= p

• t|i = (l + 1) mod 5 ∧ t|j = r ∧ t|aleft
= ω ∧ t|kleft

= ω

then:BRu({{w, y, z, t}}) =

{
{(l, r, a, ω, a, p,→, p, ω, ω, ω)}, if (p, z|sup ,→) ∈ δ(z|kdown

, a)
{K1}, otherwise

24. If for somel, r ∈ {0, 1, 2, 3, 4}, a, b ∈ A, p, q ∈ K:

• w|i = l ∧ w|j = (r − 1) mod 5 ∧ w|sup = a ∧ w|kup = q

• y|i = l ∧ y|j = (r + 1) mod 5 ∧ y|sdown
= b ∧ y|kdown

= ω

• z|i = (l − 1) mod 5 ∧ z|j = r ∧ z|aright
= ω ∧ z|kright

= ω

• t|i = (l + 1) mod 5 ∧ t|j = r ∧ t|aleft
=→ ∧t|kleft

= p

then:BRu({{w, y, z, t}}) =

{
{(l, r, a, q, b, ω, ω, ω,→, p, ω)}, if (p, b,→) ∈ δ(q, a)
{K1}, otherwise

/* the following two properties make possible the encoding of a left transition of the machine*/

25. If for somel, r ∈ [5], a, b ∈ A, p, q ∈ K:

• w|i = l ∧ w|j = (r − 1) mod 5 ∧ w|sup = a ∧ w|kup = q

• y|i = l ∧ y|j = (r + 1) mod 5 ∧ y|sdown
= b ∧ y|kdown

= ω

• z|i = (l − 1) mod 5 ∧ z|j = r ∧ z|aright
=← ∧z|kright

= p

• t|i = (l + 1) mod 5 ∧ t|j = r ∧ t|aleft
= ω ∧ t|kleft

= ω

then:BRu({{w, y, z, t}}) =

{
{(l, r, a, q, b, ω,←, p, ω, ω, ω)}, if (p, b,←) ∈ δ(q, a)
{K1}, otherwise

26. If for somel, r ∈ [5], a ∈ A, p ∈ K:

• w|i = l ∧ w|j = (r − 1) mod 5 ∧ w|sup = a ∧ w|kup = ω

• y|i = l ∧ y|j = (r + 1) mod 5 ∧ y|sdown
= a ∧ y|kdown

= p

• z|i = (l − 1) mod 5 ∧ z|j = r ∧ z|aright
= ω ∧ z|kright

= ω

• t|i = (l + 1) mod 5 ∧ t|j = r ∧ t|aleft
=← ∧t|kleft

= p

18

then:BRu({{w, y, z, t}}) =

{
{(l, r, a, ω, a, p, ω, ω,←, p, ω)}, if (p, t|sup ,←) ∈ δ(t|kdown

, a)
{K1}, otherwise

/* the property that follows in combination with lemma A.1 makes all the rest-undesired 4-tuples of
neighbors’ strategies impossible*/

27. In all other cases:BRu({{w, y, z, t}}) = {K1}

Proof that: (〈M〉, t)∈L ⇔ gameGM, t has a pure Nash Equilibrium
(⇒) Supposing that machineM halts on empty input within5t − 2 steps, we can construct a Nash Equi-
librium of the gameGM, t. In order to do so, we pick an arbitrary row and column of the torus and assign
to the player at the intersection (that we’ll callcorner player) the strategysx. Then we assign to the other
players of the row strategies of the formsit, so that the player ’right’ from the corner player (with respect to
an arbitrary orientation of the rows) gets strategys0t, the player next to hims1t and so forth. Similarly, we
assign to the player ’up’ from the corner player (again with respect to an arbitrary orientation of the torus)
strategys0

B, to the player next to him strategys1
B and so forth. Now sincem = 5t + 1, the row and column

we chose contain a5t × 5t square area of players. These players will get strategies from the setS1. The
mapping of the tiles (strategies) of setS1 to the players of the square area is essentially the same as in the
NEXP-hardness proof of the tiling problem (see [6]). The only difference now is that the tiles (strategies)
have the extracoordinates modulo 5 labelswhich will be filled as follows. We assign coordinates(0, 0)
to the unique player with neighborss0

B ands0t, coordinates(1, 0) to its ’right’ neighbor and coordinates
(0, 1) to its ’up’ neighbor. We continue to assign coordinates modulo 5 in the obvious way. Based on the
properties of function BRu, it’s not difficult to prove that the assignment of strategies that we have described
is a pure Nash equilibrium of the gameGM, t.

(⇐) Suppose now that gameGM, t has a pure Nash equilibrium. We’ll prove that(〈M〉, t) ∈ L. The proof
goes through the following lemmas that are not very hard to prove.

Lemma A.1 In a pure Nash equilibrium no player plays a strategy from the setK.

Lemma A.1 ensures that, in a pure Nash equilibrium, there will be no undesired patterns of strategies on the
torus and, therefore, establishes the solution of the first difficulty in our reduction (see section 5.2). To see
that, note that while defining the best response function BRu we gave as best response to every undesired
configuration of the neighbors’ strategies the strategyK1.

Lemma A.2 Imagine a set of players that induces a connected subgraph of the torus. If all the players of
the set play strategies fromS1 then the coordinates of their strategies must form a 2-dimensional counting
modulo 5.

Since we chosem = 5t + 1, lemma A.2 immediately implies the following.

Lemma A.3 There is no pure Nash equilibrium in which players have only strategies from the setS1.

Lemmata A.1 and A.3 imply that, in a pure Nash equilibrium, there is at least one player that plays a strategy
from the setS2. Actually, something stronger is true as implied by the following lemmata.

Lemma A.4 In a pure Nash equilibrium there is at least one player that plays the strategysx.

Lemma A.5 If two players are diagonal one to the other, then they cannot play bothsx in a pure Nash
equilibrium.

19

Lemma A.6 Suppose that in a pure Nash equilibriumk players play strategysx. Then there is a divisorφ
of k, a set of rows of the torusR, with |R| = φ, and a set of columns of the torusC, with |C| = k/φ, such
that:

1. only the players that are located in the intersection of a row from setR and a column from setC play
strategysx

2. for all r1, r2 ∈ R the distance betweenr1, r2 is a multiple of 5

3. for all c1, c2 ∈ C the distance betweenc1, c2 is a multiple of 5

4. the players that are located in a row of setR or a column of setC but not at an intersection play
strategies from the setS2 \ {sx} and furthermore one of the following is true for these players:

• either all the players of the rows have strategies of the formsit and all the players of the columns
have strategies of the formsj

B
• or vice versa

5. all the other players of the torus have strategies from the setS1

Now let us assign an arbitrary orientation to each dimension and let us label each neighbor of a player as ‘up’,
‘down’, ‘left’ and ‘right’ with respect to that orientation. We callordered tuple of neighbors’ strategies
of a player the 4-tuple of strategies that has as its first field the strategy of the ‘up’ neighbor, second field the
strategy of the ‘down’ neighbor, third field the strategy of the ‘left’ and fourth field the strategy of the ‘right’
neighbor. The following is true.

Lemma A.7 In a pure Nash equilibrium all players that play the strategysx have the same ordered tuple
of neighbors’ strategies.

By combining lemmas (A.1) through (A.7) it follows that the rows of setR and the columns of setC (see
lemma (A.6)) define rectangular areas of players on the torus that play strategies from the setS1. One such
rectangular area might look as in figure 4 or might be a rotation or mirroring of that. Now that we have a
visual idea of what is happening on the torus we can state the final lemma.

Lemma A.8 Suppose a pure Nash equilibrium on the torus and one of the rectangular areas of players that
are defined by the rows of setR and the columns of setC (see lemma (A.6). The strategies of the players
inside the rectangular area correspond to a computation of the non-deterministic machineM on empty
input that halts within so many steps as the ”height” of the rectangular area minus 2 (where by height of
the rectangular area we mean half of its neighbors that play strategies of the formsi

B).

In a pure Nash equilibrium, the height of each of the rectangular areas that are defined is at most5t since
m = 5t+1. Thus, from lemma (A.8), if there is a pure Nash equilibrium, then there is a computation of the
machineM that halts within5t− 2 steps.¥

20

s

BB

s

BB

s

BB

s

BB

s
0

s
4

s

0
 s

0

s
1
 s
1

s
2
 s
2

s
2
 s

2

s

3
 s
3

s
4
 s
4

s

0

s
4

s
0

s
0
 s
1

s
1

s
2

s
2

s
4

s
4
 s
0

s

0
s

4

s

4

Figure 4: The boundary of every rectangular area of players

21

