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Abstract. A recent sequence of results established that computing Nash equilib-
ria in normal form games is a PPAD-complete problem even in the case of two
players [11, 6, 4]. By extending these techniques we prove a general theorem,
showing that, for a far more general class of families of succinctly representable
multiplayer games, the Nash equilibrium problem can also bereduced to the two-
player case. In view of empirically successful algorithms available for this prob-
lem, this is in essence a positive result — even though, due tothe complexity of
the reductions, it is of no immediate practical significance. We further extend this
conclusion to extensive form games and network congestion games, two classes
which do not fall into the same succinct representation framework, and for which
no positive algorithmic result had been known.

1 Introduction

Nash proved in 1951 that every game has a mixed Nash equilibrium [15]. However, the
complexity of the computational problem of finding such an equilibrium had remained
open for more than half century, attacked with increased intensity over the past decades.
This question was resolved recently, when it was established that the problem is PPAD-
complete [6] (the appropriate complexity level, defined in [18]) and thus presumably
intractable, for the case of 4 players; this was subsequently improved to three players
[5, 3] and, most remarkably, two players [4].

In particular, the combined results of [11, 6, 4] establish that the general Nash equi-
librium problem for normal form games (the standard and mostexplicit representation)
and for graphical agames (an important succinct representation, see the next paragraph)
can all be reduced to 2-player games. 2-player games in turn can be solved by several
techniques such as the Lemke-Howson algorithm [14, 20], a simplex-like technique that
is known empirically to behave well even though exponentialcounterexamples do exist
[19]. In this paper we extend these results to essentially all known kinds of succinct
representations of games, as well as to more sophisticated concepts of equilibrium.

Besides this significant increase in our understanding of complexity issues, compu-
tational considerations also led to much interest insuccinct representations of games.
Computer scientists became interested in games because they help model networks and
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auctions; thus we should mainly focus on games with many players. However, multi-
player games in normal form require in order to be described an amount of data that is
exponential in the number of players. When the number of players is large, the resulting
computational problems are hardly legitimate, and complexity issues are hopelessly dis-
torted. This has led the community to consider broad classesof succinctly representable
games, some of which had been studied by traditional game theory for decades, while
others (like the graphical games [13]) were invented by computer scientists spurred by
the motivations outline above. (We formally define succinctgames in the next section,
but also deal in this paper with two cases, network congestion games and extensive form
games, that do not fit within this definition.)

The first general positive algorithmic result for succinct games was obtained only
recently [17]: a polynomial-time algorithm for finding a correlated equilibrium (an im-
portant generalization of the Nash equilibrium due to Aumann [1]). The main result in
[17] states that a family of succinct games has a polynomial-time algorithm for corre-
lated equilibria provided that there is a polynomial time oracle which, given a strategy
profile, computes the expected utility of each player.

In this paper, using completely different techniques inspired from [11], we show a
general result (Theorem 2) that is remarkably parallel to that of [17]: The Nash equilib-
rium problem of a family of succinct games can be reduced to the 2-player case provided
that a (slightly constrained)polynomial-length straight-line arithmetic programexists
which computes, again, the expected utility of a given strategy profile (notice the ex-
tra algebraic requirement here, necessitated by the algebraic nature of our techniques).
We proceed to point out thatfor all major knownfamilies of succinct games such a
straight-line program exists (Corollary 1).

We also extend these techniques to two other game classes, Network congestion
games [7] and extensive form games, which do not fit into our succinctness framework,
because the number of strategies is exponential in the input, and for which the result of
[17] does not apply, Theorems 3 and 4, respectively).

2 Definitions and Background

In a game in normal formwe haver ≥ 2 players (and for each playerp ≤ r a finite set
Sp of pure strategies. We denote the Cartesian product of theSp’s by S (the set ofpure
strategy profiles) and the Cartesian product of the pure strategy sets of players other
thanp by S−p. Finally, for eachp ≤ r ands ∈ S we have apayoffup

s.
A mixed strategyfor playerp is a distribution onSp, that is,|Sp| nonnegative real

numbers adding to1. Call a set ofr mixed strategiesxp
j , p = 1, . . . , r, j ∈ Sp a Nash

equilibrium if, for eachp, its expected payoff,
∑

s∈S up
s

∏r
q=1 xq

sq
is maximized over

all mixed strategies ofp. That is, a Nash equilibrium is a set of mixed strategies from
which no player has an incentive to deviate. Fors ∈ S−p, let xs =

∏
q 6=p xq

sq
. It is

well-known (see, e.g., [16]) that the following is an equivalent condition for a set of
mixed strategies to be a Nash equilibrium:

∀p, j
∑

s∈S−p

up
jsxs >

∑

s∈S−p

up
j′sxs =⇒ xp

j′ = 0. (1)



Also, a set of mixed strategies is anε-Nash equilibriumfor someε > 0 if the following
holds:

∑

s∈S−p

up
jsxs >

∑

s∈S−p

up
j′sxs + ε =⇒ xp

j′ = 0. (2)

We next define the complexity class PPAD. AnFNP search problemP is a set of
inputs IP ⊆ Σ∗ such that for eachx ∈ IP there is an associated set of solutions
Px ⊆ Σ|x|k for some integerk, such that for eachx ∈ IP andy ∈ Σ|x|k whether
y ∈ Px is decidable in polynomial time (notice that this is precisely NP with an added
emphasis on finding a witness). For example,r-NASH is the search problemP in which
eachx ∈ IP is anr-player game in normal form together with a binary integerA (the
accuracy specification), andPx is the set of1

A
-Nash equilibria of the game.

A search problem istotal if Px 6= ∅ for all x ∈ IP . For example, Nash’s 1951
theorem [15] implies thatr-NASH is total. The set of all total FNP search problems is
denoted TFNP. TFNP seems to have no generic complete problem, and so we study its
subclasses: PLS [12], PPP, PPA and PPAD [18]. In particular,PPAD is the class of all
total search problems reducible to the following:

END OF THE LINE: Given two circuitsS andP with n input bits andn output bits,
such thatP (0n) = 0n 6= S(0n), find an inputx ∈ {0, 1}n such thatP (S(x)) 6= x or
S(P (x)) 6= x 6= 0n.

Intuitively, END OF THE LINE creates a directed graph with vertex set{0, 1}n and
an edge fromx to y wheneverP (y) = x andS(x) = y (S andP stand for “successor
candidate” and “predecessor candidate”). This graph has indegree and outdegree at most
one, and at least one source, namely0n, so it must have a sink. We seek either a sink,
or a source other than0n. Thus, PPAD is the class of all total functions whose totality
is proven via the simple combinatorial argument outlined above.

A polynomially computable functionf is a polynomial-time reductionfrom total
search problemP to total search problemQ if, for every inputx of P , f(x) is an input
of Q, and furthermore there is another polynomially computablefunctiong such that for
everyy ∈ Qf(x), g(y) ∈ Px. A search problemP in PPAD is calledPPAD-complete
if all problems in PPAD reduce to it. Obviously,END OF THE LINE is PPAD-complete;
we now know that2-NASH is PPAD-complete [6, 4].

In this paper we are interested insuccinct games. A succinct game [17]G =
(I, T, U) is a set of inputsI ∈ P, and two polynomial algorithmsT and U . For
eachz ∈ I, T (z) returns atype, that is, the number of playersr ≤ |z| and anr-
tuple (t1, . . . , tr) where|Sp| = tp. We say thatG is of polynomial typeif all tp’s are
bounded by a polynomial in|z|. In this paper we are interested in games of both poly-
nomial (Section 3) and non-polynomial type (Sections 5 and 4). Finally, for anyr-tuple
of positive integerss = (s1, . . . , sr), wheresp ≤ tp, andp ≤ r, U(z, p, s) returns an
integer standing for the utilityup

s. The game in normal form thus encoded byz ∈ I is
denoted byG(z).

Examples of succinct games (due to space constraints we omitthe formal defini-
tions, see [17] for more details) are:

– graphical games[13], where players are nodes on a graph, and the utility of a player
depends only on the strategies of the players in its neighborhood.



– congestion games[7], where strategies are sets ofresources, and the utility of a
player is the sum of the delays of the resources in the set it chose, where the delay
is a resource-specific function of the number of players who chose this resource.

– network congestion games, where the strategies of each player are given implicitly
as paths from a source to a sink in a graph; since the number of strategies is poten-
tially exponential, this representation is not of polynomial type; we treat network
congestion games in Section 4.

– multimatrix gameswhere each player plays a different 2-person game with each
other player, and the utilities are added.

– semi-anonymous games(a generalization of symmetric games not considered in
[17]) in which all players have the same set of strategies, and each player has a
utility function that depends solely on thenumberof other players who choose
each strategy (and not the identities of these players).

– several other classes such aslocal effect games, scheduling games, hypergraphical
games, network design games, facility location games, etc., as catalogued in [17].

Our main result, shown in the next section, implies that the problem finding a Nash
equilibrium in all of these classes of games can be reduced to2-player games (equiva-
lently, belongs to the class PPAD).

Lastly, we define abounded (division-free) straight-line programto be an arithmetic
binary circuit with nodes performing addition, subtraction, or multiplication on their
inputs, or evaluating to pre-set constants, with the additional constraint that the values
of all the nodes remain in[0, 1]. This restriction is not severe, as it can be shown that
an arithmetic circuit of sizen with intermediate nodes bounded in absolute value by
2poly(n) can be transformed in polynomial time to fit the above constraint (with the
output scaled down by a factor dependent only on the bound).

3 The Main Result

Given a succinct game, the following problem, calledEXPECTED UTILITY, is of inter-
est: Given a mixed strategy profilex1, . . . , xr, compute the expected utility of playerp.
Notice that the result sought is a polynomial in the input variables. It was shown in [17]
that a polynomial-time algorithm forEXPECTED UTILITY (for succinct games of poly-
nomial type) implies a polynomial-time algorithm for computing correlated equilibria
for the succinct game. Here we show a result of a similar flavor.

3.1 Mapping Succinct Games to Graphical Games

Theorem 1. If for a succinct gameG of polynomial type there is a bounded division-
free straight-line program of polynomial length for computing EXPECTED UTILITY,
thenG can be mapped in polynomial time to a graphical gameG so that there is a
polynomially computable surjective mapping from the set ofNash equilibria ofG to the
set of Nash equilibria ofG.

Proof. Let G be a succinct game for which there is a bounded straight-lineprogram
for computingEXPECTED UTILITY. In time polynomial in|G|, we will construct a



graphical gameG so that the statement of the theorem holds. Suppose thatG hasr
players,1, . . . , r, with strategy setsSp = {1, . . . , tp}, ∀p ≤ r. The players of game
G, which we shall callnodesin the following discussion to distinguish them from the
players ofG, will have two strategies each, strategy0 and strategy1. We will interpret
the probability with which a nodex of G chooses strategy1 as a real number in[0, 1],
which we will denote, for convenience, by the same symbolx that we use for the node.

Below we describe the nodes ofG as well as the role of every node in the con-
struction. We will describeG as a directed network with vertices representing the nodes
(players) ofG and directed edges denoting directed flow of information as in [11, 6].

1. For every playerp = 1, . . . , r of G and for every pure strategyj ∈ Sp, gameG has
a nodexp

j . Valuexp
j should be interpreted as the probability with which playerp

plays strategyj; in fact, we will establish later that, given a Nash equilibrium of G,
this interpretation yields a Nash equilibrium ofG. As we will see in Item 4 below,
our construction will ensure that, at any Nash equilibrium,

∑tp

j=1 xp
j = 1, ∀p ≤ r.

Therefore, it is legitimate to interpret the set of values{xp
j}j as a mixed strategy

for playerp in G.
2. For every playerp = 1, . . . , r of G and for every pure strategyj ∈ Sp, gameG has

nodesUp
j andUp

≤j . The construction ofG will ensure that, at a Nash equilibrium,
valueUp

j equals the utility of playerp for playing pure strategyj if every other
playerq 6= p plays the mixed strategy specified by the distribution{xq

j}j. Also, the
construction will ensure thatUp

≤j = maxj′≤j Up
j′ . Without loss of generality, we

assume that all utilities inG are scaled down to lie in[0, 1].
3. For every node of typeUp

j there is a set of nodes inG that simulate the intermediate
variables used by the straight-line program computing the expected utility of player
p for playing pure strategyj when the other players play according to the mixed
strategies specified by{{xq

j}j}q 6=p. This is possible due to our constraint on the
straight-line program.

4. For every playerp of G, there is a set of nodesΨp defining a componentGp of G
whose purpose is to guarantee the following at any Nash equilibrium of G:
(a)

∑tp

j=1 xp
j = 1

(b) Up
j > Up

j′ =⇒ xp
j′ = 0

The structure and the functionality ofGp are described in section 3 of [11], so its
details will be omitted here. Note that the nodes of setΨp interact only with the
nodes{Up

j }j , {Up
≤j}j and{xp

j}j. The nodes of typesUp
j andUp

≤j are not affected
by the nodes inΨp and should be interpreted as “input” toGp, whereas the nodes of
typexp

j are only affected byGp and not by the rest of the game and are the “output”
of Gp. The construction ofGp ensures that they satisfy Properties 4a and 4b.

Having borrowed the construction of the componentsGp, p ≤ r, from [11], the only
components ofG that remain to be specified are those that compute expected utilities.
With the bound on intermediate variable values, the construction of these components
can be easily done using the gamesG=, Gζ , G+, G−, G∗ for assignment, assignment of
a constantζ, addition, subtraction and multiplication that were defined in [11]. Finally,
the components ofG that give values to nodes of typeUp

≤j can be easily constructed
using gamesGmax from [11]. It remains to argue that, given a Nash equilibriumof G, we



can find in polynomial time a Nash equilibrium ofG and moreover that this mapping is
onto. The first claim follows from the following lemma and thesecond is easy to verify.

Lemma 1. At a Nash equilibrium of gameG, values{{xp
j}j}p constitute a Nash equi-

librium of gameG.

Proof. From the correctness of gamesGp, p ≤ r, it follows that, at any Nash equilib-
rium of gameG,

∑tp

j=1 xp
j = 1, ∀p. Moreover, from the correctness of gamesG=, Gζ ,

G+, G−, G∗, it follows that, at any Nash equilibrium of gameG, Up
j will be equal to

the utility of playerp for playing pure strategyj when every other playerq 6= p plays
as specified by the values{xq

j}j . From the correctness ofGmax it follows that, at any
Nash equilibrium of gameG, Up

≤j = maxj′≤j Up
j′ , ∀p, j. Finally, from the correctness

of gamesGp, p ≤ r, it follows that, at any Nash equilibrium of gameG, for everyp ≤ r
and for everyj, j′ ∈ Sp, j 6= j′: Up

j > Up
j′ =⇒ xp

j′ = 0. By combining the above it
follows that{{xp

j}j}p constitute a Nash equilibrium of gameG. ��

3.2 Succinct Games in PPAD

We now explore how the mapping described in Theorem 1 can be used in deriving
complexity results for the problem of computing a Nash equilibrium in succinct games.

Theorem 2. If for a succinct gameG of polynomial type there is a bounded division-
free straight-line program of polynomial length for computing EXPECTED UTILITY,
then the problem of computing a Nash equilibrium in the succinct game polynomially
reduces to the problem of computing a Nash equilibrium of a 2-player game.

Proof. We will describe a reduction from the problem of computing a Nash equilib-
rium in a succinct game to the problem of computing a Nash equilibrium in a graphical
game. This is sufficient since the latter can be reduced to theproblem of computing a
Nash equilibrium in a 2-player game [6, 4]. Note that the reduction sought does not fol-
low trivially from Theorem 1; the mapping there makes sure that the exact equilibrium
points of the graphical game can be efficiently mapped to exact equilibrium points of
the succinct game. Here we seek something stronger; we want every approximate Nash
equilibrium of the former to be efficiently mapped to an approximate Nash equilibrium
of the latter. This requirement turns out to be more delicatethan the previous one.

Formally, letG be a succinct game for which there is a straight line program for
computingEXPECTED UTILITY and letε be an accuracy specification. Suppose thatG
hasr players,1, . . . , r, with strategy setsSp = {1, . . . , tp}, ∀p ≤ r. In time polynomial
in |G|+ |1/ε|, we will specify a graphical gameG and an accuracyε′ with the property
that, given anε′-Nash equilibrium ofG, one can recover in polynomial time anε-Nash
equilibrium ofG. In our reduction, the graphical gameG will be the same as the one
described in the proof of Theorem 1, while the accuracy specification will be of the
form ε′ = ε/2p(n), wherep(n) is a polynomial inn = |G| that will be be specified
later. Using the same notation for the nodes of gameG as we did in Theorem 1, let us
consider if the equivalent of Lemma 1 holds for approximate Nash equilibria.

Observation 1 For anyε′ > 0, there existε′-Nash equilibria of gameG in which the
values{{xp

j}j}p do not constitute anε-Nash equilibrium of gameG.



Proof. A careful analysis of the mechanics of gadgetsGp, p ≤ r, shows that prop-
erty (2) which is the defining property of an approximate Nashequilibrium is not
guaranteed to hold. In fact, there areε′-equilibria of G in which

∑
s∈S−p

up
jsxs >∑

s∈S−p
up

j′sxs + ε′ for somep ≤ r, j andj′, and, yet,xp
j′ is any value in[0, tp · ε′].

The details are omitted.�

Moreover, the values{xp
j}j do not necessarily constitute a distribution as specified by

the following observation.

Observation 2 For anyε′ > 0, for anyp ≤ r, at anε′-Nash equilibrium of gameG,∑
j xp

j is not necessarily equal to1.

Proof. Again by carefully analyzing the behavior of gadgetsGp, p ≤ r, at anε′-Nash
equilibrium of gameG, it can be shown that there are equilibria in which

∑
j xp

j can be
any value in1 ± 2tpε

′. The details are omitted.�

Therefore, the extraction of anε-Nash equilibrium of gameG from anε′-Nash equilib-
rium of gameG cannot be done by just interpreting the values{xp

j} as the probability
distribution of playerp. What we show next is that, for the right choice ofε′, a trim
and renormalizestrategy succeeds in deriving anε-Nash equilibrium of gameG from
anε′-Nash equilibrium of gameG. For anyp ≤ r, suppose that{x̂p

j}j are the values
derived from{xp

j}j as follows: make all values smaller thantpε
′ equal to zero (trim)

and renormalize the resulting values so that
∑

j x̂p
j = 1. The argument will rely on the

tightness of the bounds mentioned above, also obtained fromthe gadgets’ properties:

Observation 3 In an ε′-Nash equilibrium of gameG, |
∑

j xp
j − 1| ≤ 2tpε

′, and, if∑
s∈S−p

up
jsxs >

∑
s∈S−p

up
j′sxs + ε′, thenxp

j′ ∈ [0, tp · ε′].

Lemma 2. There exists a polynomialp(n) such that, ifε′ = ε/2p(n), then, at anε′-
Nash equilibrium of gameG, the values{{x̂p

j}j}p constitute anε-Nash equilibrium of
gameG.

Proof. We will denote byUp
j (·) the function defined by the straight-line program that

computes the utility of playerp for choosing pure strategyj. We need to compare
the valuesUp

j (x̂) with the values of the nodesUp
j of the graphical gameG at anε′-

Nash equilibrium. For convenience, letÛp
j , Up

j (x̂) be the expected utility of playerp
for playing pure strategyj when the other players play according to{{x̂q

j}j}q 6=p. Our
ultimate goal is to show that, at anε′-Nash equilibrium of gameG, for all p ≤ r, j ≤ tp

Ûp
j > Ûp

j′ + ε =⇒ x̂p
j′ = 0 (3)

Let us takec(n) to be the polynomial bound on2tp. Using Observation 3, we get that,
for all p, j,

x̂p
j (1 − c(n)ε′) ≤ xp

j ≤ max{c(n)ε′, x̂p
j (1 + c(n)ε′)}

⇒ x̂p
j − c(n)ε′ ≤ xp

j ≤ x̂p
j + c(n)ε′ (4)



To carry on the analysis, note that, althoughÛp
j is the output of functionUp

j (·) on input
{x̂p

j}j,p, Up
j is not the correct output ofUp

j (·) on input{xp
j}j,p. This is, because, at anε′-

Nash equilibrium of gameG, the games that simulate the gates of the arithmetic circuit
introduce an additive error of absolute value up toε′ per operation. So, to compare
Up

j with Ûp
j , we shall compare the “erroneous” evaluation of the arithmetical circuit on

input{xp
j}j,p carried insideG against the ideal evaluation of the circuit on input{x̂p

j}j,p.
Let us assign a nonnegative “level” to every wire of the arithmetical circuit in the natural
way: the wires to which the input is provided are at level0 and a wire out of a gate is
at level one plus the maximum level of the gate’s input wires.Since the arithmetical
circuits that compute expected utilities are assumed to be of polynomial length the
maximum level that a wire can be assigned to isq(n), q(·) being some polynomial. The
“erroneous” and the “ideal” evaluations of the circuit on inputs{xp

j}j,p and{x̂p
j}j,p

respectively satisfy the following property which can be shown by induction:

Lemma 3. Letv, v̂ be the values of a wire at leveli of the circuit in the erroneous and
the ideal evaluation respectively. Then

v̂ − g(i)ε′ ≤ v ≤ v̂ + g(i)ε′

whereg(i) = 3i · (c(n) + 1
2 ) − 1

2 .

By this lemma, the outputs of the two evaluations will satisfy

Ûp
j − (2q(n) · (c(n) + 1) − 1)ε′ ≤ Up

j ≤ Ûp
j + (2q(n) · (c(n) + 1) − 1)ε′

Thus, settingε′ = ε
8c(n)3q(n) yields|Up

j −Ûp
j | ≤ ε/4. After applying the same argument

to Up
j′ andÛp

j′ , we have that̂Up
j > Ûp

j′ + ε implies Up
j + ε/4 ≥ Ûp

j > Ûp
j′ + ε ≥

Up
j′ + 3ε/4, and thusUp

j > Up
j′ + ε/2 > Up

j′ + ε′. Then, from Observation 3, it follows
thatxp

j′ < tpε
′ and, from the definition of our trimming process, thatx̂p

j′ = 0. So (3) is
satisfied, therefore making{{x̂p

j}j}p an ε-Nash equilibrium.��

In Section 3.4 we point out that theEXPECTED UTILITY problem in typical succinct
games of polynomial type is very hard. However, in all well known succinct games in
the literature, it turns out that there is a straight-line program of polynomial length that
computesEXPECTED UTILITY:

Corollary 1. The problem of computing a Nash equilibrium in the followingfamilies of
succinct games can be polynomially reduced to the same problem for 2-player games:
graphical games, congestion games, multimatrix games, semi-anonymous games, local
effect games, scheduling games, hypergraphical games, network design games, and
facility location games.

Proof. It turns out that, for all these families, there is indeed a straight-line program as
specified in Theorem 2. For graphical games, for example, theprogram computes ex-
plicitly the utility expectation of a player with respect toits neighbors; the other mixed
strategies do not matter. For multimatrix games, the program computes one quadratic
form per constituent game, and adds the expectations (by linearity). For hypergraph-
ical games, the program combines the previous two ideas. Forthe remaining kinds,



the program combines results of several instances of the following problem (and pos-
sibly the two previous ideas, linearity of expectation and explicit expectation calcula-
tion): Givenn Bernoulli variablesx1, . . . , xn with Pr[xi = 1] = pi, calculateqj =
Pr[

∑n

i=1 xi = j] for j = 0, . . . , n. This can be done by dynamic programming, letting

qk
j = Pr[

∑k
i=1 xi = j] (and omitting initializations):qk

j+1 = (1 − pi)q
k−1
j + piq

k−1
j−1 ,

obviously a polynomial division-free straight-line program.�

3.3 An Alternative Proof

We had been looking for some time for an alternative proof of this result, not rely-
ing on the machinery of [11]. This proof would start by reducing the Nash equilib-
rium problem to Brouwer by the reduction of [10]. The Brouwerfunction in [10] maps
each mixed strategy profilex = (x1, . . . , xn) to another(y1, . . . , yn), whereyi =
arg max (E(x−i,yi)[Ui] − ||yi − xi||2). That is,yi optimizes a trade-off between utility
and distance fromxi. It should be possible, by symbolic differentiation of the straight-
line program, to approximate this optimum and thus the Brouwer function. There are,
though, difficulties in proceeding, because the next step (reduction to Sperner’s Lemma)
seems to require precision incompatible with guarantees obtained this way.

3.4 Intractability

Let us briefly explore the limits of the upper bound in this section.

Proposition 1. There are succinct games of polynomial type for whichEXPECTED

UTILITY is #P-hard.

Proof. Consider the case in which each player has two strategies,true andfalse,
and the utility of player 1 is 1 if the chosen strategies satisfy a given Boolean formula.
Then the expected utility, when all players play each strategy with probability 1

2 is the
number of satisfying truth assignments divided by2n, a#P-hard problem.�

Thus, the sufficient condition of our Theorem is nontrivial,and there are games of
polynomial type that do not satisfy it.Are there games of polynomial type for which
computing Nash equilibria is intractable beyond PPAD?This is an important open
question. Naturally, computing a Nash equilibrium of a general succinct game is EXP-
hard (recall that it is so even for 2-person zero-sum games [8, 9], and the nonzero ver-
sion can be easily seen to be complete for the exponential counterpart of PPAD).

Finally, it is interesting to ask whether our sufficient condition (polynomial com-
putability of EXPECTED UTILITY by a bounded division-free straight-line program) is
strictly weaker than the condition in [17] for correlated equilibria (polynomial com-
putability of EXPECTED UTILITY by Turing machines). It turns out1 that it is, unless
⊕P is in nonuniform polynomial time [2]. Determining the precise complexity nature
of this condition is another interesting open problem.

1 Many thanks to Peter Bürgisser for pointing this out to us.



4 Network Congestion Games

A network congestion game [7] is specified by a network with delay functions, that is,
a directed graph(V, E) with a pair of nodes(ap, bp) for each playerp, and also, for
each edgee ∈ E, a delay functionde mapping[n] to the positive integers; for each
possible number of players “using” edgee, de assigns a delay. The set of strategies for
playerp is the set of all paths fromap to bp. Finally, the payoffs are determined as
follows: If s = (s1, . . . , sn) is a pure strategy profile, definece(s) = |{p : e ∈ sp}|
(here we consider paths as sets of edges); then the utility ofplayerp unders is simply
−

∑
e∈sp

de(ce(s)), the negation of the total delay on the edges inp’s strategy. It was
shown in [7] that apure Nash equilibrium of a network congestion game (known to
always exist) can be found in polynomial time when the game issymmetric(ap = a1

and bp = b1 for all p), and PLS-complete in the general case. There is no known
polynomial-time algorithm for finding Nash equilibria (oranykind of equilibria, such
as correlated [17]) in general network congestion games. Weprove:

Theorem 3. The problem of computing a Nash equilibrium of a network congestion
game polynomially reduces to the problem of computing a Nashequilibrium of a 2-
player game.

Proof. (Sketch.) We will map a network congestion game to a graphical gameG. To
finish the proof one needs to use techniques parallel to Section 3.2. To simulate network
congestion games by graphical games we use a nonstandard representation of mixed
strategy: We consider a mixed strategy for playerp to be aunit flowfrom ap to bp, that
is, an assignment of nonnegative valuesfp(e) to the edges of the network such that all
nodes are balanced except forap who has a deficit of 1 andbp who has a gain of 1.
Intuitively, fp(e) corresponds to the sum of the probabilities of all paths thatusee.

It turns out that such flow can be set up in the simulating graphical game by a gadget
similar to the one that sets up the mixed strategy of each player. In particular, for every
playerp and for every edgee of the network there will be a player in the graphical game
whose value will representfp(e). Moreover, for every nodev 6= ap, bp of the network,
there will be a playerSp

v in the graphical game whose value will be equal to the sum of
the flows of playerp on the edges entering nodev; there will also be a gadgetGp

v similar
to the one used in proof of Theorem 1, whose purpose will be to distribute the flow of
playerp enteringv, i.e. valueSp

v , to the edges leaving nodev, therefore guaranteeing
that Kirchhoff’s first law holds. The distribution of the valueSp

v on the edges leaving
v will be determined by finding the net delays between their endpoints and nodebp as
specified by the next paragraphs. Finally, note that the gadgets for nodesap andbp are
similar but will inject a gain of1 at ap and a deficit of1 at bp. Some scaling will be
needed to make sure that all computed values are in[0, 1].

The rest of the construction is based on the following Lemma,whose simple proof
we omit. Fix a playerp and a set of unit flowsfq for the other players. These induce an
expected delay on each edgee, E[de(ce(k))] wherek is 1 (for playerp) plus the sum of
n − 1 variables that are 1 with probabilityfq(e) and else0. Call this quantityDp(e).

Lemma 4. A set of unit flowsfp(e), p = 1, . . . , n is anε-Nash equilibrium if and only
if fp(e) > 0 implies thate lies on a path whose length (defined as net delay underDp),
is at mostε above the length of the shortest path fromap to bp.



We shall show that these conditions can be calculated by a straight-line program in
polynomial time; this implies the Theorem. This is done as follows: First we compute
the distancesDp(e) for all edges and players by dynamic programming, as in the proof
of Corollary 1. Then, for each playerp and edge(u, v) we calculate the shortest path
distances, underDp, (a) fromap to bp; (b) fromap tou and (c) fromv to bp. This is done
by the Bellman-Ford algorithm, which is a straight line program with the additional use
of the min operator (see [11] for gadget). The condition thenrequires that the sum of
the latter two andDp(u, v) be at most the former plusε. This completes the proof.�

5 Extensive Form Games

An r-playerextensive form game(see, e.g., [16]) is represented by a game tree with
each non-leaf vertexv assigned to a playerp(v), who “plays” by choosing one of the
outgoing labeled edges, and with a vector of payoffsup

x at each leafx (let X be the
set of leaves). All edges have labels, with the constraint that l(v, v′) 6= l(v, v′′). The
vertex set is partitioned intoinformation setsI ∈ I, with all v ∈ I owned by the same
playerp(I), and having identical sets of outgoing edge labelsLI . We also defineIp =
{I ∈ I|p(I) = p}. Information sets represent a player’s knowledge of the game state.
A behavioral strategyσp for playerp is an assignment of distributions{σp,I

j }j∈LI
over

the outgoing edge labels of eachI ∈ Ip. A behavioral strategy profileσ = (σ1, . . . , σr)
induces a distribution over the leaves of the game tree, and hence expected utilities. A
behavioral Nash equilibriumis the natural equivalent of the normal form’s mixed Nash
equilibrium: aσ such that no playerp can changeσp and increase his expected payoff.

Theorem 4. The problem of computing a behavioral Nash equilibrium (and, in fact,
a subgame perfect equilibrium [16]) in an extensive form game Γ is polynomially re-
ducible to computing a mixed Nash equilibrium in a 2-player normal form game.

Proof. (Sketch.) As in Section 4, we will map an extensive form congestion game to a
graphical game, and omit the rest of the argument, which is also akin to Section 3.2. The
graphical game construction is similar to that in Section 3.1. Using nodes with strategy
sets{0, 1},

1. For every information setI with p(I) = p and an outgoing edge labelj ∈ LI ,
make a nodeσp,I

j , to represent the probability of pickingj.
2. For every information setI and everyj ∈ LI make a nodeUI

j ; the value ofUI
j will

represent the utility of playerp(I) resulting from the optimal choice of distributions
playerp(I) can make in the part of the tree below information setI given that the
player arrived at information setI and chosej and assuming that the other players
play as prescribed by the values{σq,I′

j }q=p(I′) 6=p; the weighting of the vertices of
I when computingUI

j is defined by the probabilities of the other players on the
edges that connectI to the closest information set ofp(I) aboveI. Let UI be the
maximum overUI

j . Assuming the valuesUI′

for the information setsI ′ below I

are computed, valueUI
j can be found by arithmetic operations.



3. Finally, for every information set, take a gadgetGI similar toGp above that guaran-

tees that (i)
∑

j∈LI
σ

p(I),I
j = 1, and (ii ) UI

j > UI
j′ =⇒ σ

p(I),I
j′ = 0.

Further details are omitted. The construction works by arguments parallel to the proof
of Theorem 1.�
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