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Abstract. A recent sequence of results established that computinly &aslib-
ria in normal form games is a PPAD-complete problem even énctise of two
players [11, 6, 4]. By extending these techniques we provereergl theorem,
showing that, for a far more general class of families of matly representable
multiplayer games, the Nash equilibrium problem can alsetaced to the two-
player case. In view of empirically successful algorithragilable for this prob-
lem, this is in essence a positive result — even though, dtigetcomplexity of
the reductions, it is of no immediate practical significalWie further extend this
conclusion to extensive form games and network congestiomeg, two classes
which do not fall into the same succinct representation &aork, and for which
no positive algorithmic result had been known.

1 Introduction

Nash proved in 1951 that every game has a mixed Nash equitijdi5]. However, the
complexity of the computational problem of finding such anitogrium had remained
open for more than half century, attacked with increasezhisity over the past decades.
This question was resolved recently, when it was estalulieg the problem is PPAD-
complete [6] (the appropriate complexity level, definedi8]) and thus presumably
intractable, for the case of 4 players; this was subsequangiroved to three players
[5, 3] and, most remarkably, two players [4].

In particular, the combined results of [11, 6, 4] establisdt the general Nash equi-
librium problem for normal form games (the standard and reggticit representation)
and for graphical agames (an important succinct repres@ntaee the next paragraph)
can all be reduced to 2-player games. 2-player games in &uribe solved by several
techniques such as the Lemke-Howson algorithm [14, 20inalsix-like technique that
is known empirically to behave well even though exponewtiainterexamples do exist
[19]. In this paper we extend these results to essentially all knkwds of succinct
representations of games, as well as to more sophisticatedapts of equilibrium.

Besides this significant increase in our understanding wipdexity issues, compu-
tational considerations also led to much interessuncinct representations of games.
Computer scientists became interested in games becaydediipenodel networks and
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auctions; thus we should mainly focus on games with manyegpfayHowever, multi-
player games in normal form require in order to be descrilmeanaount of data that is
exponential in the number of players. When the number ofgrkaig large, the resulting
computational problems are hardly legitimate, and conipléssues are hopelessly dis-
torted. This has led the community to consider broad classmsccinctly representable
gamessome of which had been studied by traditional game theorgdcades, while
others (like the graphical games [13]) were invented by aatepscientists spurred by
the motivations outline above. (We formally define succames in the next section,
but also deal in this paper with two cases, network congegtmnes and extensive form
games, that do not fit within this definition.)

The first general positive algorithmic result for succinattes was obtained only
recently [17]: a polynomial-time algorithm for finding a celated equilibrium (an im-
portant generalization of the Nash equilibrium due to Aumgr). The main result in
[17] states that a family of succinct games has a polynotnigd-algorithm for corre-
lated equilibria provided that there is a polynomial timaae which, given a strategy
profile, computes the expected utility of each player.

In this paper, using completely different techniques iregbfrom [11], we show a
general result (Theorem 2) that is remarkably parallel & ¢ifi[17]: The Nash equilib-
rium problem of a family of succinct games can be reducedd@thlayer case provided
that a (slightly constrainegd)olynomial-length straight-line arithmetic prograexists
which computes, again, the expected utility of a given statprofile (notice the ex-
tra algebraic requirement here, necessitated by the agetture of our techniques).
We proceed to point out thdodr all major knownfamilies of succinct games such a
straight-line program exists (Corollary 1).

We also extend these techniques to two other game classtgoikecongestion
games [7] and extensive form games, which do not fit into occisgtness framework,
because the number of strategies is exponential in the,iapdtfor which the result of
[17] does not apply, Theorems 3 and 4, respectively).

2 Definitions and Background

In agame in normal fornwe haver > 2 players (and for each playgr< r a finite set
S, of pure strategies. We denote the Cartesian product d§jiseby S (the set ofpure
strategy profilesand the Cartesian product of the pure strategy sets of fdather
thanp by S_,. Finally, for eaclp < r ands € S we have gayoffu?.

A mixed strategyor playerp is a distribution onS,, that is,|S,| nonnegative real
numbers adding td. Call a set ofr mixed strategiesﬁ,p =1,...,rj € S, aNash
equilibriumif, for eachp, its expected payoffy | __ o u? H;:l z? is maximized over
all mixed strategies gb. That is, a Nash equilibrium is a set of mixed strategies from
which no player has an incentive to deviate. soe S_,, letz, = [] 2% . Itis
well-known (see, e.g., [16]) that the following is an eql&rd condition for a set of
mixed strategies to be a Nash equilibrium:

Vp, j Z ul s > Z ul, xs = o, = 0. (1)
se€S_p se€S_p



Also, a set of mixed strategies is asNash equilibriunfor somes > 0 if the following
holds:

Z uj s > Z ul x5+ = al, = 0. (2)
s€S_p s€S_p

We next define the complexity class PPAD. ANP search problen® is a set of
inputs I C X* such that for eaclr € Ip there is an associated set of solutions
P, C Xl=I" for some integek, such that for eacr € Ip andy € XI=I" whether
y € P, is decidable in polynomial time (notice that this is prelis¢P with an added
emphasis on finding a witness). For exampi®lAsH is the search problef@ in which
eachx € Ip is anr-player game in normal form together with a binary integefthe
accuracy specificationand?,, is the set of%-Nash equilibria of the game.

A search problem isotal if P, # () for all z € Ip. For example, Nash’s 1951
theorem [15] implies that-NASH is total. The set of all total FNP search problems is
denoted TFNP. TFENP seems to have no generic complete prpatehso we study its
subclasses: PLS [12], PPP, PPA and PPAD [18]. In particBBAD is the class of all
total search problems reducible to the following:

END OF THE LINE: Given two circuitsS and P with n input bits and» output bits,
such thatP(0™) = 0™ # S(0™), find an inputz € {0,1}" such thatP(S(z)) # x or
S(P(x)) # x # 0™

Intuitively, END OF THE LINE creates a directed graph with vertex §@t1}™ and
an edge from: to y wheneverP(y) = x andS(z) = y (S and P stand for “successor
candidate” and “predecessor candidate”). This graph liegiree and outdegree at most
one, and at least one source, nam#lyso it must have a sink. We seek either a sink,
or a source other that*. Thus, PPAD is the class of all total functions whose totalit
is proven via the simple combinatorial argument outlinedvab

A polynomially computable functiorf is a polynomial-time reductiofrom total
search problerfP to total search probler@ if, for every inputz of P, f(x) is an input
of @, and furthermore there is another polynomially computimetiong such that for
everyy € Qg (., 9(y) € P.. A search problen® in PPAD is calledPPAD-complete
if all problems in PPAD reduce to it. ObviouslyND OF THE LINEiS PPAD-complete;
we now know thaR-NAsH is PPAD-complete [6, 4].

In this paper we are interested succinct gamesA succinct game [17(7 =
(I,T,U) is a set of inputs/ € P, and two polynomial algorithm§ and U. For
eachz € I, T(z) returns atype that is, the number of players < |z| and anr-
tuple (t1,...,t.) where|S,| = t,. We say thatG is of polynomial typef all ¢,’s are
bounded by a polynomial ifx|. In this paper we are interested in games of both poly-
nomial (Section 3) and non-polynomial type (Sections 5 gné&ihally, for anyr-tuple

of positive integers = (s1,...,s,), wheres, < t,, andp < r, U(z,p, s) returns an
integer standing for the utility?. The game in normal form thus encodedby I is
denoted byG(z).

Examples of succinct games (due to space constraints wetloenibrmal defini-
tions, see [17] for more details) are:

— graphical game§l3], where players are nodes on a graph, and the utility ¢dyep
depends only on the strategies of the players in its neididuat.



— congestion gamelF], where strategies are sets resourcesand the utility of a
player is the sum of the delays of the resources in the sebgetwhere the delay
is a resource-specific function of the number of players wiase this resource.

— network congestion gameshere the strategies of each player are given implicitly
as paths from a source to a sink in a graph; since the numbéatégies is poten-
tially exponential, this representation is not of polynahtype; we treat network
congestion games in Section 4.

— multimatrix gamesvhere each player plays a different 2-person game with each
other player, and the utilities are added.

— semi-anonymous gamés generalization of symmetric games not considered in
[17]) in which all players have the same set of strategied, each player has a
utility function that depends solely on thrmimberof other players who choose
each strategy (and not the identities of these players).

— several other classes suchlasal effect games, scheduling games, hypergraphical
games, network design games, facility location garets, as catalogued in [17].

Our main result, shown in the next section, implies that ttodlem finding a Nash
equilibrium in all of these classes of games can be reduc2eplayer games (equiva-
lently, belongs to the class PPAD).

Lastly, we define dounded (division-free) straight-line programmbe an arithmetic
binary circuit with nodes performing addition, subtraati@r multiplication on their
inputs, or evaluating to pre-set constants, with the aaiuliti constraint that the values
of all the nodes remain ifo, 1]. This restriction is not severe, as it can be shown that
an arithmetic circuit of sizex with intermediate nodes bounded in absolute value by
2proly(n) can be transformed in polynomial time to fit the above coirstravith the
output scaled down by a factor dependent only on the bound).

3 The Main Result

Given a succinct game, the following problem, calledPECTED UTILITY, is of inter-
est: Given a mixed strategy profite, . . ., 2", compute the expected utility of player
Notice that the result sought is a polynomial in the inputalales. It was shown in [17]
that a polynomial-time algorithm faexPECTED UTILITY (for succinct games of poly-
nomial type) implies a polynomial-time algorithm for contimg correlated equilibria
for the succinct game. Here we show a result of a similar flavor

3.1 Mapping Succinct Games to Graphical Games

Theorem 1. If for a succinct gamé of polynomial type there is a bounded division-
free straight-line program of polynomial length for comipgt EXPECTED UTILITY,
then G can be mapped in polynomial time to a graphical gagheo that there is a
polynomially computable surjective mapping from the s&tash equilibria oG to the
set of Nash equilibria ofy.

Proof. Let G be a succinct game for which there is a bounded straightgingram
for computingeEXPECTED UTILITY. In time polynomial in|G|, we will construct a



graphical gamej so that the statement of the theorem holds. Suppose@hasr

players,1,...,r, with strategy sets, = {1,...,¢,},Vp < r. The players of game

G, which we shall calhodesin the following discussion to distinguish them from the

players ofG, will have two strategies each, strategygnd strategy. We will interpret

the probability with which a node of G chooses strategyas a real number ifo, 1],

which we will denote, for convenience, by the same symbitblat we use for the node.
Below we describe the nodes Gfas well as the role of every node in the con-

struction. We will describg as a directed network with vertices representing the nodes

(players) ofG and directed edges denoting directed flow of informatiomd4&1, 6].

1. Foreveryplayep = 1,...,r of G and for every pure strategye S,,, gameg has
a node:v‘j. VaIuexij should be interpreted as the probability with which player
plays strategy; in fact, we will establish later that, given a Nash equililon of G,
this interpretation yields a Nash equilibrium@f As we will see in Item 4 below,
our construction will ensure that, at any Nash equilibri ,_1 x =1,vp<r.
Therefore, it is legitimate to interpret the set of vaIL{e§ }; as a mixed strategy
for playerp in G.

2. Foreveryplayep = 1,...,r of G and for every pure strategye S,, gameg has
nodesUJ’.’ andUgj. The construction of will ensure that, at a Nash equilibrium,
value U” equals the utility of playep for playing pure strategy if every other
playerq #+ p plays the mixed strategy specified by the drstrrbutimﬁ}J Also, the
construction will ensure thdtf” . = max; <; U%,. Without loss of generalrty, we
assume that all utilities i are scaled down to lie ifo), 1].

3. For every node of typef;.’ there is a set of nodes fhthat simulate the intermediate
variables used by the straight-line program computing ¥peeted utility of player
p for playing pure strategy when the other players play according to the mixed
strategies specified bff{x{};},.,. This is possible due to our constraint on the
straight-line program.

4. For every playep of G, there is a set of node, defining a componerg, of G
whose purpose is to guarantee the following at any Nashibrjuih of G:

@) 77 a7 =

(b) U’ >U” :>x§’, =

The structure and the functionality &f, are described in section 3 of [11], so its
details will be omitted here. Note that the nodes of®ginteract only with the
nodes{U}};, {UZ,}; and{z"};. The nodes of type@p andUZ; are not affected
by the nodes i, and should be interpreted as mput '@, whereas the nodes of
type:c are only affected bg, and not by the rest of the game and are the “output
of G,,. The construction ofj, ensures that they satisfy Properties 4a and 4b.

Having borrowed the construction of the componefsp < r, from [11], the only
components ofj that remain to be specified are those that compute expedlitié st
With the bound on intermediate variable values, the constm of these components
can be easily done using the gandes G., G+, G_, G. for assignment, assignment of
a constant, addition, subtraction and multiplication that were defime[11]. Finally,
the components of that give values to nodes of typﬁéﬁ can be easily constructed
using gameg§ ..., from [11]. It remains to argue that, given a Nash equilibrinfry, we



can find in polynomial time a Nash equilibrium @fand moreover that this mapping is
onto. The first claim follows from the following lemma and thecond is easy to verify.

Lemma 1. Ata Nash equilibrium of gamg, values{{z/};}, constitute a Nash equi-
librium of gameG.

Proof. From the correctness of gam@s, p < r, it follows that, at any Nash equilib-
rium of gameg, ZJ , 2§ = 1,Vp. Moreover, from the correctness of ganis, G,
G+, G-, G., it follows that, at any Nash equilibrium of ganég U” will be equal to
the utiIity of playerp for playing pure strategy when every other player # p plays
as specified by the value{sq}7 From the correctness ¢, it follows that, at any
Nash equilibrium of gamég, U2 ;. = max; <; U! /,Vp j. Finally, from the correctness
of gamegj,, p < r, it follows that atany Nash equmbrlum of gargefor everyp <r
and for everyj, j' € Sp,j # j": U} > Uj, = =%, = 0. By combining the above it
follows that{{z},}, constitute a Nash equrllbrrum of gamie OO

3.2 Succinct Games in PPAD

We now explore how the mapping described in Theorem 1 can éeé insderiving
complexity results for the problem of computing a Nash épriiim in succinct games.

Theorem 2. If for a succinct gamé- of polynomial type there is a bounded division-
free straight-line program of polynomial length for comipgt EXPECTED UTILITY,
then the problem of computing a Nash equilibrium in the surtajame polynomially
reduces to the problem of computing a Nash equilibrium ofda3er game.

Proof. We will describe a reduction from the problem of computing @asN equilib-
rium in a succinct game to the problem of computing a Nashligguim in a graphical
game. This is sufficient since the latter can be reduced tpithislem of computing a
Nash equilibrium in a 2-player game [6, 4]. Note that the wtitun sought does not fol-
low trivially from Theorem 1; the mapping there makes suwd the exact equilibrium
points of the graphical game can be efficiently mapped tote@ailibrium points of
the succinct game. Here we seek something stronger; we want @proximate Nash
equilibrium of the former to be efficiently mapped to an apgmtate Nash equilibrium
of the latter. This requirement turns out to be more delittzé@ the previous one.

Formally, letG be a succinct game for which there is a straight line progmam f
computingEXPECTED UTILITY and lets be an accuracy specification. Suppose that
hasr players1,...,r, with strategy sets, = {1,...,¢,},Vp < r. In time polynomial
in |G| + |1/¢|, we will specify a graphical gam@ and an accuracy with the property
that, given are’-Nash equilibrium of7, one can recover in polynomial time arNash
equilibrium of G. In our reduction, the graphical gargewill be the same as the one
described in the proof of Theorem 1, while the accuracy $igation will be of the
form e’ = ¢/2P("), wherep(n) is a polynomial inn = |G| that will be be specified
later. Using the same notation for the nodes of gghas we did in Theorem 1, let us
consider if the equivalent of Lemma 1 holds for approximagsiNequilibria.

Observation 1 For anye’ > 0, there exist’-Nash equilibria of gamg in which the
values{{z!};}, do not constitute are-Nash equilibrium of game.



Proof. A careful analysis of the mechanics of gadgéts p < r, shows that prop-
erty (2) which is the defining property of an approximate Nasjilibrium is not
guaranteed to hold. In fact, there areequilibria of G in which - ¢ uf s >
Dses, ul, x5 + ¢’ for somep < r, j andj’, and, yeta?, is any value in0, ¢, - €'].
The details are omitted]

Moreover, the value$x§.’ }; do not necessarily constitute a distribution as specified by
the following observation.

Observation 2 For anye’ > 0, for anyp < r, at ane’-Nash equilibrium of gamg,
Zj xf is not necessarily equal tb

Proof. Again by carefully analyzing the behavior of gadgétsp < r, at an<’-Nash
equilibrium of game7, it can be shown that there are equilibria in WhE]} xf can be
any value inl + 2¢,¢’. The details are omitted

Therefore, the extraction of aaNash equilibrium of gamé&' from ans’-Nash equilib-
rium of gameg cannot be done by just interpreting the valde$} as the probability
distribution of playerp. What we show next is that, for the right choicesof a trim
and renormalizestrategy succeeds in deriving afNash equilibrium of gamé& from
ane’-Nash equilibrium of gamé. For anyp < r, suppose thafi?}; are the values
derived from{z”}; as follows: make all values smaller thag’ equal to zero (trim)
and renormalize the resulting values so thatz? = 1. The argument will rely on the
tightness of the bounds mentioned above, also obtainedtfrergadgets’ properties:

Observation 3 In an '-Nash equilibrium of gam¢, | >-; 2% — 1| < 2t,¢', and, if
Doses., WisTs > Does Uy @s + & thenzl, € 0,8, - €]

Lemma 2. There exists a polynomial(n) such that, if:’ = ¢/2P("), then, at are’-
Nash equilibrium of gamg, the values {i%},}, constitute are-Nash equilibrium of
gamegG.

Proof. We will denote byLﬁ() the function defined by the straight-line program that
computes the utility of playep for choosing pure strategy. We need to compare
the valued/; () with the values of the nodds} of the graphical gam¢ at ane’-
Nash equilibrium. For convenience, [éf = uf(:i:) be the expected utility of player

for playing pure strategy when the other players play according{tpi{}, },x,. Our
ultimate goal is to show that, at aftNash equilibrium of gamég, forallp < r,j <t,

U > Ul +e—ih = (3)

Let us takec(n) to be the polynomial bound dt,. Using Observation 3, we get that,
forall p, 7,

2 4 c(n)e’ (4)



To carry on the analysis, note that, althod@us the output of funcUoM"( -) oninput
{24} .0, U} is notthe correctoutput éf} () oninput{z"}; ,.. This s, because ataft
Nash eqU|I|br|um of gamg, the games that simulate the gates of the arithmetic circuit
introduce an additive error of absolute value up:stger operation. So, to compare
UP with U?, we shall compare the “erroneous” evaluation of the aritfirakcircuit on
input{z"}; , carried insidej againstthe ideal evaluation of the circuiton inpat }; ,.
Let us assign a nonnegative “level” to every wire of the ani¢ical circuit in the natural
way: the wires to which the input is provided are at lev@ind a wire out of a gate is
at level one plus the maximum level of the gate’s input wifisce the arithmetical
circuits that compute expected utilities are assumed toflg@lynomial length the
maximum level that a wire can be assigned tg(is), ¢(-) being some polynomial. The
“erroneous” and the “ideal” evaluations of the circuit oputs {="}; , and {#/};,
respectively satisfy the following property which can bewh by induction:

Lemma 3. Letw, © be the values of a wire at levebf the circuit in the erroneous and
the ideal evaluation respectively. Then

b —g(i)e’ <v <o+ g(i)e
whereg(i) = 37 - (c(n) + 3) — 1.
By this lemma, the outputs of the two evaluations will satisf
7P _ (94(n) . _ ) n) . _
UP — (29 - (e(n) +1) = e’ < UP < UF + (27 - (e(n) + 1) — 1)¢’

Thus, setting’ = W yieIds|Up—U”| < e/4. After applying the same argument

to U}, andU”,, we have thaU” > U” + ¢ implies U} + ¢/4 > U” > Up +e>
U;, +35/4 and thugy? > U7, +s/2 > U}, +¢'. Then, from Observatlon 3 it follows
thatx < tpe’ and, from the definition of our trimming process, tbr?,t 0.So (3)is
sat|sf|ed therefore making{#%},}, an e-Nash equilibriumd0C

In Section 3.4 we point out that tteXPECTED UTILITY problem in typical succinct
games of polynomial type is very hard. However, in all welblum succinct games in
the literature, it turns out that there is a straight-linegram of polynomial length that
COMPUteEXPECTED UTILITY:

Corollary 1. The problem of computing a Nash equilibrium in the followfaugpilies of
succinct games can be polynomially reduced to the samegirofdr 2-player games:
graphical games, congestion games, multimatrix games;@eamymous games, local
effect games, scheduling games, hypergraphical gamesprietesign games, and
facility location games.

Proof. It turns out that, for all these families, there is indeedraight-line program as
specified in Theorem 2. For graphical games, for exampleptbgram computes ex-
plicitly the utility expectation of a player with respectite neighbors; the other mixed
strategies do not matter. For multimatrix games, the pragramputes one quadratic
form per constituent game, and adds the expectations (bwiriiy). For hypergraph-
ical games, the program combines the previous two ideasthieoremaining kinds,



the program combines results of several instances of th@afiolg problem (and pos-
sibly the two previous ideas, linearity of expectation arglieit expectation calcula-
tion): Givenn Bernoulli variablese, . .., z, with Pf{z, = 1] = p;, calculateg; =
P>, z; = j]for j = 0,...,n. This can be done by dynamic programming, letting
¢¢ = P ¢, 2; = 5] (and omitting initializations)g®, , = (1 — p;)g"~! + pigi =,
obviously a polynomial division-free straight-line pragn.C]

3.3 An Alternative Proof

We had been looking for some time for an alternative proofhig tesult, not rely-
ing on the machinery of [11]. This proof would start by redigcithe Nash equilib-
rium problem to Brouwer by the reduction of [10]. The Brouviignction in [10] maps
each mixed strategy profile = (z1,...,,) to another(y,...,y,), wherey;, =
argmax (E(,_, ,)[Ui] — |ly: — x4][?). Thatis,y; optimizes a trade-off between utility
and distance from;. It should be possible, by symbolic differentiation of theaght-
line program, to approximate this optimum and thus the Brexufiinction. There are,
though, difficulties in proceeding, because the next sexiugtion to Sperner’'s Lemma)
seems to require precision incompatible with guarantetsmdd this way.

3.4 Intractability

Let us briefly explore the limits of the upper bound in thist&et

Proposition 1. There are succinct games of polynomial type for whictPECTED
UTILITY is #P-hard.

Proof. Consider the case in which each player has two strategiase andf al se,
and the utility of player 1 is 1 if the chosen strategies $afsgiven Boolean formula.
Then the expected utility, when all players play each siateith probability% is the
number of satisfying truth assignments dividedX3y a #P-hard problem’]

Thus, the sufficient condition of our Theorem is nontrivaaid there are games of
polynomial type that do not satisfy iAire there games of polynomial type for which
computing Nash equilibria is intractable beyond PPADRis is an important open
guestion. Naturally, computing a Nash equilibrium of a gahsuccinct game is EXP-
hard (recall that it is so even for 2-person zero-sum game},[&nd the nonzero ver-
sion can be easily seen to be complete for the exponentiatemart of PPAD).

Finally, it is interesting to ask whether our sufficient caiwh (polynomial com-
putability of EXPECTED UTILITY by a bounded division-free straight-line program) is
strictly weaker than the condition in [17] for correlatedudipria (polynomial com-
putability of EXPECTED UTILITY by Turing machines). It turns outhat it is, unless
@P is in nonuniform polynomial time [2]. Determining the pise complexity nature
of this condition is another interesting open problem.

1 Many thanks to Peter Bilrgisser for pointing this out to us.



4 Network Congestion Games

A network congestion game [7] is specified by a network wittagéunctions, that is,

a directed grapliV, E') with a pair of nodega,, b,) for each playep, and also, for
each edge € FE, adelay functiond. mapping[n| to the positive integers; for each
possible number of players “using” edggd. assigns a delay. The set of strategies for
playerp is the set of all paths from, to b,. Finally, the payoffs are determined as
follows: If s = (s1,...,sy) iS a pure strategy profile, define(s) = [{p : e € s}
(here we consider paths as sets of edges); then the utilflagérp unders is simply

- Zeesp d.(ce(s)), the negation of the total delay on the edgeg’mstrategy. It was
shown in [7] that gpure Nash equilibrium of a network congestion game (known to
always exist) can be found in polynomial time when the ganmsymmetrida, = a;
andb, = b, for all p), and PLS-complete in the general case. There is no known
polynomial-time algorithm for finding Nash equilibria (enykind of equilibria, such
as correlated [17]) in general network congestion gamegidee:

Theorem 3. The problem of computing a Nash equilibrium of a network estign
game polynomially reduces to the problem of computing a Naghlibrium of a 2-
player game.

Proof. (Sketch.) We will map a network congestion game to a graplg@med. To
finish the proof one needs to use techniques parallel to@e8t?. To simulate network
congestion games by graphical games we use a nonstandaedasfation of mixed
strategy: We consider a mixed strategy for playép be aunit flowfrom a,, to b, that

is, an assignment of nonnegative valygée) to the edges of the network such that all
nodes are balanced except tgy who has a deficit of 1 and, who has a gain of 1.
Intuitively, f,(e) corresponds to the sum of the probabilities of all pathsubet.

It turns out that such flow can be set up in the simulating ggblgame by a gadget
similar to the one that sets up the mixed strategy of eachepl&ly particular, for every
playerp and for every edge of the network there will be a player in the graphical game
whose value will represerfi,(e). Moreover, for every node # a,, b, of the network,
there will be a playef? in the graphical game whose value will be equal to the sum of
the flows of playep on the edges entering nodgthere will also be a gadgéf similar
to the one used in proof of Theorem 1, whose purpose will béstoilolite the flow of
playerp enteringv, i.e. valueS?, to the edges leaving node therefore guaranteeing
that Kirchhoff’s first law holds. The distribution of the v S? on the edges leaving
v will be determined by finding the net delays between theipeimts and nodé,, as
specified by the next paragraphs. Finally, note that the gfadgr nodes., andb,, are
similar but will inject a gain ofl ata, and a deficit ofl atb,. Some scaling will be
needed to make sure that all computed values aj& in.

The rest of the construction is based on the following Lemniase simple proof
we omit. Fix a playep and a set of unit flowg, for the other players. These induce an
expected delay on each edgé[d.(c.(k))] wherek is 1 (for playerp) plus the sum of
n — 1 variables that are 1 with probabilitf; (e) and else). Call this quantityD,,(e).

Lemma 4. A set of unit flowg,(e),p = 1,...,n is ane-Nash equilibrium if and only
if fp(e) > 0implies thate lies on a path whose length (defined as net delay ufygr
is at most: above the length of the shortest path frapto b,,.



We shall show that these conditions can be calculated bymhtrline program in
polynomial time; this implies the Theorem. This is done dkfes: First we compute
the distance®), (e) for all edges and players by dynamic programming, as in thefpr
of Corollary 1. Then, for each playgrand edg€u, v) we calculate the shortest path
distances, unddb,, (a) froma,, to b,; (b) froma, to u and (c) fromw to b,,. This is done
by the Bellman-Ford algorithm, which is a straight line praxg with the additional use
of the min operator (see [11] for gadget). The condition themuires that the sum of
the latter two and), (u, v) be at most the former plus This completes the prodil

5 Extensive Form Games

An r-playerextensive form gamgsee, e.g., [16]) is represented by a game tree with
each non-leaf vertex assigned to a player(v), who “plays” by choosing one of the
outgoing labeled edges, and with a vector of payaffsat each leaf: (let X be the
set of leaves). All edges have labels, with the constramtitty, v') # I(v,v”). The
vertex set is partitioned intmformation setd € Z, with all v € I owned by the same
playerp(I), and having identical sets of outgoing edge laldglsWe also defing,, =

{I € Z|p(I) = p}. Information sets represent a player’s knowledge of theegstaite.

A behavioral strategy? for playerp is an assignment of distributior{af"l}j@, over
the outgoing edge labels of eatke Z,,. A behavioral strategy profile = (o!,...,0")
induces a distribution over the leaves of the game tree, andéhexpected utilities. A
behavioral Nash equilibriuris the natural equivalent of the normal form’s mixed Nash
equilibrium: ac such that no playey can change® and increase his expected payoff.

Theorem 4. The problem of computing a behavioral Nash equilibrium (andact,
a subgame perfect equilibrium [16]) in an extensive form gdms polynomially re-
ducible to computing a mixed Nash equilibrium in a 2-playemal form game.

Proof. (Sketch.) As in Section 4, we will map an extensive form catiga game to a

graphical game, and omit the rest of the argument, whicls@alin to Section 3.2. The
graphical game construction is similar to that in Sectidn Bising nodes with strategy
sets{0, 1},

1. For every information sef with p(I) = p and an outgoing edge labgle Lj,
make a noderﬁ.”l, to represent the probability of picking

2. For every information sdtand everyj € L; make a nodé{jf; the value of/{f will
represent the utility of player(I) resulting from the optimal choice of distributions
playerp(I) can make in the part of the tree below information Egtven that the
player arrived at information sétand chosg and assuming that the other players
play as prescribed by the valuézs?’ll}q:p(p#p; the weighting of the vertices of
I when computing/{f is defined by the probabilities of the other players on the
edges that connedtto the closest information set pf7) abovel. Let/! be the
maximum oveujf. Assuming the value&!  for the information setg’ below I

are computed, \/aldeif can be found by arithmetic operations.



3. Finally, for every information set, take a gadgetsimilar toG, above that guaran-

tees thati) 3, ,, o' =1, and () u! > ul, = o2 =0

Further details are omitted. The construction works by argpts parallel to the proof
of Theorem 100
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