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Abstract. We present a fast converging method for distance-based
phylogenetic inference, which is novel in two respects. First, it is the
only method (to our knowledge) to guarantee accuracy when knowledge
about the model tree, i.e bounds on the edge lengths, is not assumed.
Second, our algorithm guarantees that, with high probability, no false
assertions are made. The algorithm produces a maximal edge-disjoint
subforest of the model tree, with running time O(n4) in the worst case.
Empirical testing has been promising, comparing favorable to Neighbor
Joining and Maximum Parsimony, with the advantage of making no false
assertions about the topology of the model tree; guarantees against false
positives can be controlled as a parameter by the user.

1. Introduction

The shortcomings of “naive” distance methods in phylogenetic reconstruc-
tion, such as Neighbor Joining (NJ) [12], are well-known, and reconstructing
trees from small subtrees is evidently both desirable and increasingly pop-
ular. All quartet-based methods are examples of this paradigm. However,
this divide-and-conquer approach presents at least two serious difficulties:
(1) identifying those subsets of taxa on which a tree topology can be ac-
curately inferred; and (2) retaining accuracy when some subtree topologies
cannot be correctly determined. In particular, quartet methods, such as
the Dyadic Closure Method of [4] and the series of Disk-Covering Methods
(DCM) [8, 13] are confined to considering only quartets of small diameter,
so-called short quartets, in the hope that these provide enough information
for a complete reconstruction. These methods, moreover, are compelled to
reconstruct the entire tree; consequently, errors are incurred when attempt-
ing to combine subtrees when the given distance matrix simply does not
justify the attempt.

The first DCM method, DCM1, is a good illustration of these difficulties.
That method iterates over thresholds D̂(i, j) where D̂ is the given distance
matrix–estimated from sequences, for example. At threshold w, a graph
Gw is constructed, where the vertices of Gw are the taxa, with an edge
between i, j whenever D̂(i, j) ≤ w. Trees are built on maximal cliques of
a triangulation G∗

w of Gw using a base method such as NJ and merged
according to a perfect elimination order of G∗

w. In some cases, there may be
1
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no accuracy guarantees for the trees built on maximal cliques of G∗
w, and

the merging procedure–using strict consensus merger–is provable only when
D̂ is nearly additive (so that Gw itself is chordal).

Much recent work in the study of distance-based methods has focused on
the notion of fast convergence. Indeed, the work of [4, 5] can be considered
a breakthrough in this vein; there, the authors delineate an algorithm which
accurately infers almost all trees on n leaves when provided sequences of
length O(poly(log(n)), and all trees with O(poly(n)) length sequences. By
way of comparison, the venerable NJ requires exponentially long sequences.
A notable drawback of the Dyadic Closure method of [4], however, is the
dearth of useful performance guarantees when sequence lengths are small.
In this paper, we will present an algorithm which achieves fast convergence,
to the same extent and with similar time complexity as in [5], and further,
is guaranteed to return accurate subtrees even when sequences are too short
to infer the whole tree correctly.

To this end, we adapt the work of [9], a method which reconstructs a
collection of edge-disjoint subtrees of the model tree from which only a
constant fraction of edges is omitted, when given O(log n) characters. We
have improved on the framework of [9], for we do away with the need for
parameters f and g, the lower and upper bounds on the lengths of edges
of the model tree. Specifically, we prove a local quartet reliability criterion,
which is blissfully ignorant of f and g. This permits our algorithm to produce
an accurate subforest which is as large as possible from the data provided–it
builds everything that can be built. Subsequently, such a forest can be used
to boost other reconstruction methods by, for example, inferring sequences
at ancestral nodes.

In the following subsection, we will present a number of definitions to-
wards formulating the optimization problem for which our algorithm is a
solution, namely, the Maximal Subforest (MS) problem. In Section 2 we
delineate the subtree reconstruction and forest construction algorithms and
analyze their performance. This section also constitutes a significant sim-
plification of the arguments in [9], and the efficiency of our methods is such
that we have been able to implement them. Experimental results are ex-
amined in Section 4. In Section 3, we prove that our method reconstructs
almost all n-leaf trees accurately given sequences of length O(poly(log(n)));
our method achieves this guarantee with marked improvements in efficiency.

1.1. Definitions and notation. Let T be an edge-weighted, unrooted bi-
nary tree. (In the sequel, all trees are assumed to be unrooted.) Then, we
define L(T ) to be the set of leaves of T . For any subset X of L(T ), T |X de-
notes the restriction of T to X. We assume that T is leaf-labelled by a set of
taxa, S, of size n and that S is equipped with a distance matrix D̂. For each
taxon v ∈ S, let L(v) denote a subset of S such that if D̂(v, y) < D̂(v, x) and
x ∈ L(v), then y ∈ L(v). For x, y ∈ S, let P (x, y) denote the set of edges
of the path from x to y in T . We say that L(u) and L(v) are edge-sharing
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if there exist x, y ∈ L(u) and x′, y′ ∈ L(v) such that P (x, y) ∩ P (x′, y′) is
nonempty; otherwise, L(u) and L(v) are edge-disjoint. For U ⊆ S, E(U)
is the graph with vertex set {L(x)|x ∈ U} and edges determined by the
edge-sharing relation. Naturally, E(U) is called an edge-sharing graph on
U . For convenience, we will freely identify a node L(x) of E(S) with x it-
self. Let N(v) denote the set of neighbors of v in E(S). Then, we define
SL(v) = L(v) ∪⋃

u∈N(v) L(u).
We will make use of the strict consensus merger [3] method for construct-

ing supertrees. The strict consensus merger of two unrooted leaf-labelled
trees is defined as follows. Let t and t′ be trees. Let L = L(t) ∩ L(t′)and
let z = t|L and z′ = t′|L; let Z be the maximally resolved tree that is a
contraction of both z and z′. We call Z the backbone of t and t′. Finally,
reattach the remaining pieces of t and t′ to Z appropriately. Note that the
strict consensus merger of a pair of trees need not be unique. In particu-
lar, this method may attach two pieces of t and t′ to the same edge of Z,
returning a vertex of degree greater than three.

Generally, each taxon s ∈ S is identified with a sequence over some alpha-
bet Σ–for example, Σ = {A,C, G, T}. S is equipped with a distance matrix
D̂, which is, by definition, symmetric, zero along the diagonal, and positive
off the diagonal. The following several definitions and Theorem 1 motivate
the algorithms of this paper.

Definition 1. Let T be an edge-weighted binary tree, leaf-labelled by S, and
let D be the associated additive matrix. Suppose 0 < ε < M . We say that
D̂ : S × S → R+ is a local (ε,M) distortion for S′ ⊆ S if

(1) D̂ is a distance matrix.
(2) D̂(x, y) = ∞ implies D(x, y) > M , for all x, y ∈ S′

(3) D̂(x, y) < M implies |D̂(x, y)−D(x, y)| < ε, for all x, y ∈ S′

Definition 2. Let T be an edge-weighted trivalent tree, leaf-labelled by S,
and let D be the associated additive matrix. Suppose S = C1 t ... tCα such
that T |Ci and T |Cj are edge-disjoint for each 1 ≤ i < j ≤ α. For each
i ≤ α, let 0 < εi < Mi be given. Suppose D̂ : S × S → R+. We say that
C = {(Ci, εi, Mi) : 0 ≤ i ≤ α} is a local distortion decomposition of D̂ if D̂
is a local (εi, Mi) distortion for Ci, for each i = 1, ..., α.

Furthermore, let fi be the weight of the smallest edge in T |Ci, and let
εi < fi

2 ; and let ri ≤ Mi−7εi
6 , and assume Mi > 7εi. For each v ∈ Ci, let

L(v) be the ball of radius ri about v. If E(Ci) are the connected components
of E(S), then we say that C is constructive.

The component reconstruction procedure presented below justifies the
use of the word “constructive”; in the case described, we can accurately
reconstruct T |Ci in polynomial time.

Theorem 1 ([9]). Let T be an edge-weighted trivalent tree, leaf-labelled by
S, and let D be the associated additive matrix. Suppose D̂ is an (ε,M)
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distortion for S with ε < f/2 and M > 7ε, where f is the weight of the
smallest edge in T . Let g be the weight of the largest edge in T . Let E(S)
be the edge-sharing graph of r-balls around leaves where r = M−7ε

6 , and let
C1, ..., Cα be the components of E(S). Then C = {(Ci, ε,M)} is a construc-
tive local distortion decomposition, and α ≤ 1+ 60√

2
2−(M−ε)/2g ·n. Moreover,

the corresponding forest can be constructed in polynomial time.

In principle, a binary search on r might be expected to find the decomposi-
tion of Theorem 1. Observe, however that Theorem 1 takes the length of the
shortest edge f as a global criterion for accurate reconstruction of subtrees.
But if edge-disjointness can be maintained, the length fi of the shortest
edge in T |Ci has no bearing on the reconstruction of T |Cj , when i 6= j.
One should prefer to consider ball radii as large as possible, thereby increas-
ing the sizes of the components of E(S), without incurring false resolutions.
Thus, our work can be considered a solution of the following optimization
problem:

Definition 3 (Maximal Subforest Problem). Given a distance matrix D̂
generated on a binary tree T , find a constructive local distortion decomposi-
tion of D̂ such that the number of edge-dispoint components α is minimized.

2. Our Algorithm

We start off by giving a high level picture of the algorithm, with the
details of the various pieces to be described in later sections. Intuitively, in
order to maximize the radii ri of Definition 2, when minimal edge weights
are unknown, it is reasonable to grow radii incrementally. Thus, we sort the
set of pairs (x, y), x, y ∈ S, under D̂. We would like to continue throwing in
pairs (x, y) just as long as we are certain of the accuracy of every T |SL(v).
Accuracy will be guaranteed by virtue of Algorithm 2 for quartet reliability.

2.1. A Local Quartet Reliability Criterion. We describe a test which,
given sequences at 4 leaves, returns the correct quartet split with high prob-
ability or fails if the sequences at the leaves are too noisy. For succinctness
of description, we will present the test in the context of the Cavender-Farris-
Neyman 2-state model, but as will become clear, it can be easily generalized
to the general Markov model by virtue of the analysis in section 7 of [5].

We begin with a high level description of the CFN model and introduce
some notation. Suppose T is a rooted tree and p : E(T ) → (0, 1/2) is a
function associating to each edge a transition probability. Under the CFN
model, a character is chosen at the root of the tree uniformly at random
from Σ = {−1, 1}, and this value is propagated towards the leaves, mutat-
ing along each edge with probability p(e). An equivalent description of the
corresponding Markov model is the following: along every edge of the tree
with probability θ(e) = 1− 2p(e), the child copies its value from the father,
and with probability 1− θ(e), it randomizes uniformly in {−1, 1}. It follows
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Algorithm 1 (Forest Reconstruction Algorithm)

Sort the set of pairs E of vertices in ascending order under D̂.
Let Forest be the set of subtrees of T ; initially each subtree consists of a
single leaf.
while E 6= ∅ do

(x, y) := pop(E)
L(x) := L(x) ∪ {y} and L(y) := L(y) ∪ {x}
Compute E(S) and SL(·) trees (Algorithm 3)
if Algorithm 3 failed, i.e. a quartet induced by the new edge (x, y) is
wrong then

E := E \ {(x, y)}; undo L(·) augmentations;
else

Construct T |C, x, y ∈ C, storing in Forest (Algorithm 4)
end if

end while

easily from the above definitions that the probability p(u, v) that the end-
points u, v of a path P (u, v) of topological length k are in different states is
related to the mutation probabilities pe1 , pe2 , . . . , pek

of the edges of P (u, v)
by the formula p(u, v) = 1

2 (1− θ(u, v)) where

θ(u, v) =
k∏

i=1

θ(ei)

This formula justifies the definition of d(u, v) = −1
2 log θ(u, v) as a path

metric on the tree.
Now, given k samples of the process at the leaves of the tree, {σk

L(T )}k
t=1,

we can empirically estimate θ(u, v) for all u, v ∈ L(T ), using the following
empirical measure:

c(u, v) =
1
k

k∑

t=1

σt
uσt

v

The local test for finding quartet splits reliably is described briefly in Algo-
rithm 2 and its correctness is proved in Theorem 2.

Theorem 2. If Algorithm 2 outputs a quartet split, then this split is correct
with probability at least 1− δ1.

Proof. By the Azuma-Hoeffding inequality, it is not hard to see that for all
i, j ∈ {1, 2, 3, 4},

P [|θ(i, j)− c(i, j)| ≥ α(k, δ1)] ≤ 2 · exp
{
−α(k, δ1)2k

2

}

From the choice of α(k, δ1) it follows that, with probability at least 1− δ1,
we have |θ(i, j) − c(i, j)| ≤ α(k, δ1) for all i, j ∈ {1, 2, 3, 4} Without loss of
generality, suppose that the correct quartet on the leaves {1, 2, 3, 4} is 12|34.



6 C. DASKALAKIS, C. HILL, A. JAFFE, R. MIHAESCU, E. MOSSEL, S. RAO

Algorithm 2 (Quartet Reliability Criterion)

INPUT: k samples of the CFN model on four leaves {1, 2, 3, 4} and a
parameter δ1 > 0
OUTPUT: a quartet split of {1, 2, 3, 4} or “fail” if not enough data; if a
quartet split is returned, it is correct with probability at least 1− δ1

Take α(k, δ1) :=
√

2
k ln 12

δ1
and 1

ε := minu,v∈{1,2,3,4}
{

c(u,v)
α(k,δ1)

}

if ε ≥ 1 then
return “fail” /* the estimation error is bigger than some estimation*/

end if
for i, j ∈ {1, 2, 3, 4}, i 6= j do

for k, l ∈ {1, 2, 3, 4} − {i, j}, k 6= l do

if
√

c(i,j)c(k,l)
c(i,k)c(j,l) < 1− 2ε

1−ε then
return ij|kl

end if
end for

end for
return “fail”

Suppose that the middle “edge” of the quartet split corresponds to a path
p in T with θ(p) =

∏
e∈p θ(e). Since the algorithm does not return “fail,” it

needs be ε < 1, and we can show the following by easy calculations:

√
c(i, j)c(k, l)
c(i, k)c(j, l)





< θ(p) ·
(
1 + 2ε

1−ε

)
, if {i, j} = {1, 2} and {k, l} = {3, 4}

> 1
θ(p) ·

(
1− 2ε

1−ε

)
, if {i, j} = {1, 3} and {k, l} = {2, 4}

It follows that if
√

c(i,j)c(k,l)
c(i,k)c(j,l) < 1 − 2ε

1−ε then the split ij|kl is the correct
quartet split. ¤

2.2. Local Tree Reconstruction. In this section we will prove that Al-
gorithms 3 and 4 correctly reconstruct the subforest corresponding to a set
of L(·)’s as long as the sequence length permits correct estimation of the
quartet splits. If this is not the case, the algorithms will fail without re-
turning an incorrect tree. All the above claims are with high probability for
k > c(T, f, g) log n.

Theorem 3. If algorithm 3 does not fail, then the tree output by algorithm
4 is correct with probability at least 1− n4δ1.

Proof. Suppose that algorithm 3 does not “fail”. It follows that all quartets
it considers pass the test of Algorithm 2. Now, since there are at most

(
n
4

)
of them and each is estimated correctly with probability at least 1− δ1, the
probability that they are all estimated correctly is at least 1− n4δ1. It only
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remains to argue that if all quartets are estimated correctly, the tree output
by algorithm 4 is correct. Note that the T |SL(v)’s that are computed by
algorithm 3 are correct so that the input to algorithm 4 is correct. So we
have to show that 4 finds the supertree of these trees correctly. The proof
of the later is given by lemmas 1, 2 and 3 which, also, provide a streamlined
proof of the correctness of [9]. ¤

Algorithm 3 (Construction of Edge Sharing Graph and SL(·) trees)

INPUT: {L(v)}∀v∈L(T )

OUTPUT: Edge Sharing Graph and T |SL(v)’s or “fail”

ri := maxu∈L(i)D̂(u, i), Qi := ∅ for all i
for i = 1 to n do

for every quartet q that contains i and has estimated width ≤ 6ri do
if q does not pass test of algorithm 2 then

return “fail”;
else

store quartet in Qi;
end if

end for
end for
for i = 1 to n do

Merge quartets in Qi into a tree using some base method;
end for

Algorithm 4 (Component reconstruction)

INPUT: SL(·) trees of a connected component C of E(S)
OUTPUT: T |C

Let v1, ..., vr be a perfect elimination order of the leaves of a component
C of E(S) (by lemma 1 C is triangulated).
for 1 ≤ i ≤ r do

Let Xi = SL(vi) ∩ {vi+1, ..., vr}
Get ti = T |Xi ∪ {vi} by restricting T |SL(vi)

end for
Set Tr = tr
for i = r − 1 to 1 do

Ti := strict consensus merger of ti and Ti+1

end for
return T1
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Lemma 1. [7] Let G be a graph. Then the following are equivalent: (1)
G is a subtree intersection graph; (2) G is chordal; (3) G admits a perfect
elimination ordering.

Lemma 2. Suppose E(S) is correct and T |SL(v) is accurate for each v ∈ C.
Then, for each i ≤ n, Ti = T |{vi, ..., vr}. Moreover, T1 = T |C.

Proof. The argument is similar to that in [8]. We include it for the sake of
completeness. We proceed by induction on i. The claim is obvious for i = r.
Assume Ti+1 = T |{vi+1, ..., vr}. Observe that L(ti)∩L(Ti+1) = Xi, so Xi is
the leaf set of the backbone Z of the merger of ti and Ti+1. As ti and Ti+1

are both correct, we know that there is no edge contraction in the merger,
so we need only show that there are no collisions.

The only possible collision is the following. Suppose e is an edge of Z,
and both vi and a subtree τ of Ti+1 are attached at e. Clearly, L(τ) ⊆
{vi+1, ..., vr} −Xi. We will derive a contradiction to this fact. In the true
tree T , e corresponds to a path P with endpoints, say, a and b. Let T0 denote
the subtree of T consisting of the internal nodes and edges of P along with
the subtrees attached at those nodes. Now, observe that (1) vi ∈ L(T0) and
L(τ) ⊂ L(T0). Furthermore, (2) we know L(T0)∩Xi = ∅, just because Z, ti
and Ti+1 are correct. Finally, we will prove below that (3) E(L(T0)) is path
connected.

By (3), let π be a simple path in E(L(T0)) from vi to a node in L(τ), and
let x be the first node of π which lies in L(τ); that is, we may assume that

π = (vj1 = vi, vj2 , ..., vjk
= x)

with vjl
/∈ L(τ) whenever l < k. By (2), we know that each vjl

is in
{v1, ..., vi}. We claim now that there must be an edge (vi, x) in E(C). For
suppose that j1 > ... > jp and jp+1 > jp. Then there must be an edge
(vjp−1 , vjp+1) in E(C) because v1, ..., vn is a perfect elimination ordering.
Hence, vjp can be removed from π without breaking the path. By induction
on k, then, there must be an edge (vi, x) in G as claimed. It follows that
x ∈ Xi, which is a contradiction. Thus, there are no collisions, and the claim
is proven. ¤

Lemma 3. E(L(T0)) is path-connected.

Proof. Let Ta denote the subtree of T rooted at a containing no internal
nodes of P . Define Tb similarly. Let v ∈ L(T0). Since E(C) is path con-
nected, let π be a simple path from v to a leaf of Ta, and let x be the last
node of E(C) along this path, so that L(x) and L(z) are edge-sharing for
some z /∈ L(Ta). Thus, if we take (a, c) to be a terminal edge of P , we can see
that L(x) must contain a node x′ which lies in L(Ta) and such that P (x, x′)
contains (a, c). Let y, y′ and (b, d) be the corresponding construction for Tb.

Suppose u, v ∈ L(T0). Since E(C) is connected, there is a simple path
(u = w1, w2, ..., wq = v) in E(C). Suppose w1, ..., wj , wj+s+1 ∈ L(T0) and
wi+1, ..., wi+s ∈ L(Ta). Then L(wj) and L(wj+s+1) must be edge-sharing
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at (a, c). We may, then, remove the excursion in L(Ta), obtaining the path
(w1, ..., wj , wj+s+1, ..., wq). Continuing in this manner, we remove from the
path all excursions out of L(T0). It follows that E(L(T0)) is path connected.

¤

2.3. Time complexity. Suppose that r is the largest radius of a leaf set
L(u) in a run of Algorithm 1, and let f be the length of the shortest edge
in the tree T . Then for every taxon v,

|SL(v)| ≤ 2
6r
f
−1 = κ(n, f, k)

Thus, the base method for tree reconstruction is only deployed against
SL(v)’s whose size is bounded by κ(n, f, k). By the fast convergence analy-
sis of our algorithm (section 3) it follows that for every tree our algorithm
will reconstruct the whole topology for r = O(log n). On the other hand, for
a typical tree (one drawn, for example, uniformly at random from the set of
leaf-labelled trees) the algorithm will get the correct tree for r = O(log log n),
so the base method will be applied on trees of size O(log n).

Computing E(S) requires no more than O(n2κ4) time, using, for example,
a quartet based method. Moreover, at each iteration, at most 2κ many
SL(v)’s are modified. A perfect elimination order of a chordal graph on n
vertices can be computed in O(n2) time, and computing the strict consensus
merger of two trees takes O(n) time. So every call of Algorithms 3 and 4
takes at most

n2 · κ4 + 2κ · κ4 + O(n2) + n ·O(n) = O(n2κ5)

Now, since there are at most n2 iterations in Algorithm 1, the total running
time is O(n4κ5), in the typical case is Õ(n4).

Finally, we note that, for simplicity of presentation, the described algo-
rithms are not optimized. Using hash tables to store the results of Algorithm
2 and the partial T |SL(v) trees, each quartet is evaluated once along the
coarse of the algorithm, and T |SL(v) trees are built at each step on top of
partially reconstructed topologies; it is not hard to show that the running
time is O(n4) in the worst case.

3. Log-length sequences

In this section, we will prove that our method reconstructs almost all n-
leaf trees provided that the sequence length k is O(poly(log(n))) under the
Cavender-Farris-Neyman 2-state model of evolution [2, 6, 11]. More specifi-
cally, we argue that our method achieves the same performance guarantees
as does the Dyadic Closure Method of [4]. A key notion in the analysis is the
depth of a tree T , defined as follows: for an edge e of T , let T1 and T2 be the
rooted subtrees obtained by deleting e, and let di(e) denote the topological
distance from the root of Ti to its nearest leaf in Ti; subsequently, we define

depth(T ) = max
e
{max(d1(e), d2(e))}
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letting e range over the set of internal edges of T . A quartet {i, j, k, l} is
called short if T |{i, j, k, l} consists of a single edge connected to four disjoint
paths of topological length no more than depth(T ) + 1. Let Qshort denote
the set of short quartets of T . Given a set of quartets Q, we let Q∗ denote
the set of the quartet topologies induced by T .

Given sequences x, y of length k, let hxy = H(x, y)/k where H(x, y) is
the Hamming distance of the sequences. Let Exy = E[hxy]

Let Qw denote the set of quartet topologies q such that hij ≤ w for all
i, j ∈ q. In [4], it is proved that if Q∗

short ⊆ Qw and Qw is consistent,
then cl(Qw) = Q(T ) where cl(Q) is the dyadic closure of a set of quartet
topologies. But observe that if Q∗

short ⊆ Qw ⊆ Q6w ⊆ Q(T ) for some w,
then Algorithm 1 correctly reconstructs T . Let E denote this event, and
further, define the following events: A for Q∗

short ⊆ Qw; B for Q6w ⊆ Q(T );
and C for “Qw contains all quartets containing pairs i, j such that Eij < b,
and Q6w does not contain any pairs i, j such that Eij > 13b.” If i, j lie in a
short quartet, then Eij ≤ 1−e−2g(2depth(T )+3)

2 = b. We take w = 2b.
It’s easy to see that

P[E] = P[A ∩B] ≥ P[A ∩B ∩ C] =

= P[C] · P[A|C] · P[B|A, C] = P[C] · P[B|C]

We will bound probability P[B|C] first. Suppose q = {u, v, w, z} ∈ (
n
4

)
s.t.

∀i, j ∈ q : Eij ≤ 13b. Then, the quartet split of q is found with probability
at least 1− δ1 if:

(I) (1− 26b)
(
1 + 2ε

1−ε

)
<

(
1− 2ε

1−ε

)
⇔ ε < 13b

2−13b

(II) 1
ε = mini,j∈{u,v,w,z}

{
c(i,j)

α(k,δ1)

}
> 1

If k >
8 ln 12

δ1
(2−13b)2

(1−26b)2(13b)2
, by the Azuma-Hoeffding inequality it follows that the

probability that event I ∩ II does not hold is at most 6 exp {− (1−26b)2k
8 } so

P[I ∩ II] ≥ 1− exp {− (1−26b)2k
8 }. Now, we can lower bound the probability

of estimating quartet q correctly as follows:

P[q is estimated correctly] ≥ 1−δ1−P[II ∩ I] ≥ 1−δ1−exp
{
−(1− 26b)2k

8

}

Since the quartets are at most
(
n
4

)
we can bound the probability of P[B|C]

roughly as follows:

P[B|C] ≥ 1−
(

n

4

)
δ1 −

(
n

4

)
exp

{
−(1− 26b)2k

8

}

It remains to bound P[C]. Define Sr = {{i, j} |hij < 1
2 − r}. Then, if i, j

are such that Eij ≥ 1
2 − 13b, then

P[{i, j} ∈ S12b] = P[hij <
1
2
− 12b] ≤
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≤ P[hij −Eij <
1
2
− 12b− Eij ] ≤ P[hij −Eij ≤ −b] ≤ e−b2k/2

by the Azuma-Hoeffding inequality. A similar analysis shows that if Eij <
1
2−3b, then P[{i, j} /∈ S2b] ≤ e−b2k/2. Thus, P[C] ≥ 1−(

n
2

)
e−b2k/2, and P[E]

is not less than

1−
(

n

4

)
δ1 −

(
n

4

)
exp

(
−(1− 26b)2

8
k

)
−

(
n

2

)
e−b2k/2

We have, therefore, proved

Lemma 4. Suppose k sites evolve on binary tree T according to the Cavender-
Farris-Neyman model, such that f ≤ D(e) ≤ g for each edge e of T . Then
Algorithm 1 reconstructs T with probability 1− o(1) whenever

k >
c · ln δ1

(1− 26b)2b2
=

c′ · log n

(1− 26b)2b2

and δ1 is chosen δ1 < n−5

where b = 1−e−2g(2depth(T )+3)

2 .

In [4], it is also proven that a random n-leaf binary tree T has

depth(T ) ≤ (2 + o(1)) log log 2n

with probability 1− o(1). Thus,

Theorem 4. Under the Cavender-Farris-Neyman model, Algorithm 2 cor-
rectly reconstructs almost all trees on n leaves with sequences of length
k = O(poly(log n)).

4. Experiments

Our methodology was as follows. We used the r8s package to produce
edge-weighted, rooted trees, scaling the mutation probabilities recovered
from the edge weights by the formula d(e) = −1

2 log(1 − 2p(e)). For each
run of a given tree topology, a root sequence was selected uniformly at
random. Sequences were evolved at the leaves according to edge mutation
probabilities. We examined topologies with n leaves, for n = 10, 20, 30, 50
and 100, and for each n, sequence lengths k = 10, 40, 160 and 2560.

For each topology T and sequence length k, we evaluated our method
against NJ and maximum parsimony (MP) routines (both drawn from the
PAUP package).To evaluate the performance of NJ and MP, we simply com-
puted the Robinson-Foulds (RF) distance between the model tree and that
produced by the program. RF distance simply counts the number of both
mottied and erroneous bipartitions. Notice, however, that RF distance is
not immediately relevant to our method’s product; therefore, we compute,
for each subtree T ′, the RF distance between T ′ and T |L(T ′).

On the whole, the performance of our method seems to be similar to that
of NJ and MP, in the simple terms of RF distance. (The reader is referred to
the preliminary table below.) One must note, however, that for NJ and MP,
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RF distance indicates a number of erroneous edges–that is, false assertions.
By contrast, for our method, RF distance is, essentially, a count of omitted
edges (although a small number of errors remained in some simulations);
our method makes few or no false claims. This is a significant advantage
immediately, for the product inference can be trusted as a claim about the
ancestry of the given taxa. Furthermore, and perhaps most compellingly,
the product subtrees can be handed up to other methods for further analysis.
For example, the methods of [10] can be used to infer sequences at ancestral
nodes, permitting deeper reconstructions with assurance of quality.
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Results of our method applied to n taxa
with sequences of length k.

k
n 10 40 160 640 2560
10 5(0) 1(2) 1(2) 1(2) 1(2)

20 11(0) 3(2) 3(2) 3(2) 3(2)

30 16(1,2) 6(12, 22) 4(1,2) 4(1,2) 4(1,2)

50 29(2.52) 10(12, 32) 7(15) 2(12) 7(0)
MP 6.5
NJ 7.5
100 81(13) 13(23, 33, 42) 7(15) 2(12) 7(0)
MP 50
NJ 70 21.5

Figure 1: i(jk) indicates that that our method produced i trees, k of which
had RF distance j. Some results of MP and NJ are given on the same

model tree are given.


