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ABSTRACT
This work presents theoretical results and an efficient heuris-
tic algorithm for minimizing single – output exclusive – or
sum–of–products expressions, based on an iterative product
term transformation paradigm. Experimental results verify
the efficiency of the algorithm in terms of execution times
and product term count of the produced expression, when
compared to a state–of–the–art heuristic ESOP minimizer
for single–output benchmark and randomly generated func-
tions.
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1. INTRODUCTION
The problem of minimization of exclusive – or sum – of –

products (ESOP) expressions is an active research area, due
to advantages ESOP expressions possess relative to sum–
of–products (SOPs), such as excellent testability proper-
ties, and experimentally observed smaller expression sizes
[4]. Moreover, for an n-variable boolean function, the up-
per bound in the number of product terms of ESOPs is
29 · 2n−7, n > 6 [2] as opposed to 2n−1 for SOPs.

The problem of exact ESOP minimization, interesting in
its own respect, has not yet found an efficient solution for
more than six variables in the general case [7, 8, 1, 5, 6],
although there exist published works that provide results
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for up to twenty variables, when the number of the product
terms in the final expression is restricted [8, 3, 12, 11, 13].

From a practical viewpoint, the problem of heuristic ESOP
minimization seems more attractive and numerous heuristic
ESOP minimizers have been proposed and gradually refined
in the past decades [4, 9, 10, 11]. A comprehensive survey
of previous work is presented in [4].

In this work, a single–output ESOP minimization algo-
rithm is detailed. Given a boolean function f , an initial
expression is generated for it. This expression is gradually
minimized, by carefully selecting a number of product terms
in it and transforming them in a way such that the expres-
sion size is reduced. The novelty of this work lies in the
proposed product term transformation operations.

The structure of the paper is as follows. Section 2 presents
basic definitions. Section 3 analyzes the theoretical formu-
lation. Section 4 details the heuristic ESOP minimizer. Sec-
tion 5 contains the experimental results. Section 6 concludes
the paper.

2. DEFINITIONS
Let xj

i denote xi, xi, 1 for j = 0, 1, 2 respectively.

Definition 1. A subfunction f i, i = 0, 1, 2 of a boolean
function f(x1, x2, . . . , xn) is defined as

f0 = f(0, x2, . . . , xn)
f1 = f(1, x2, . . . , xn)
f2 = f0 ⊕ f1

(1)

where ⊕ means modulo–2 addition.

Definition 2. The weight w(f) of a boolean function f
is defined as the minimum number of product terms (cubes)
among all possible ESOP expressions of the function f .

Definition 3. An exact ESOP expression of a boolean
function f (or an exact cover for simplicity), is an ESOP
expression of f , with the number of product terms equal to
its weight.

Definition 4. The distance d(ci, cj) between two cubes
ci, cj is defined as the number of literals in which they differ.

We also recall here some basic formulas.

f = x1f
0 ⊕ x1f

1 Shannon expansion
f = f0 ⊕ x1f

2 positive Davio expansion
f = f1 ⊕ x1f

2 negative Davio expansion
(2)



3. THEORETICAL FORMULATION
Let an expression F of a given function f comprise the

non–zero cubes c1, . . . , cn:

F = c1 ⊕ c2 ⊕ · · · ⊕ cn (3)

If d(ci, cj) = 0 for some i, j then these cubes can be re-
moved from the cover. The following straightforward lemma
states that two cubes ci, cj can be replaced by a single cube
c if and only if d(ci, cj) = 1.

Lemma 1. If the distance d(ci, cj) between two cubes ci, cj

is greater than 1, then there does not exist cube c such as
cj ⊕ ci = c.

Theorem 1. All exact covers of a function f can be de-
rived from its subfunction f j iff subfunction f i is zero, with
j = 1, 0, 1 for i = 0, 1, 2 respectively.

Proof. From (2), when one subfunction f i of f is zero,
then the other two subfunctions are equal and f can be writ-
ten as:

f = xe
1f

j (4)

with e = 1, 0, 2 and j = 1, 0, 1 for i = 0, 1, 2 respectively.
Subfunction f j does not depend on variable x1. Multiply-

ing an ESOP g of f j by x1 in any polarity, does not increase
or decrease the number of product terms in g. From (4) we
conclude that w(f) = w(f j) hence the theorem is proved.

The following theorem provides a systematic way of de-
tecting all possible exact expressions of a function f with
w(f) = 2, given one of its exact expressions.

Theorem 2. Let two cubes ci, cj such as d(ci, cj) > 1
and g = ci ⊕ cj. Also suppose that the literals of variable x1

in cubes ci, cj are different. Then all exact expressions of
g can directly be obtained from subfunction pairs ga, gb of g
with w(ga) = w(gb) = 1.

Proof. Since d(ci, cj) > 1, by Lemma 1, w(g) = 2.
Function g can be written as:

g = xk
1ga ⊕ xl

1g
b

where k, l, a, b ∈ {0, 1, 2} are obtained from (2). Since k 6= l
and w(g) = 2, then w(ga) = w(gb) = 1.

It is observed that, by Theorem 2, function g can have
either only 1 cover, when one of its subfunctions has weight
equal to 2, or 3 distinct covers, when all three subfunctions
have weight equal to 1.

The following theorem constrains the weight of a function
g comprising three arbitrary cubes of (3) to w(g) = 3, under
the stated assumptions.

Theorem 3. ∀i, j ∈ {1, . . . , n} such as i 6= j, let

d(ci, cj) > 1

and ∀p1, p2 such as ci ⊕ cj = p1 ⊕ p2, let

d(ck, pl) > 1

for k ∈ {1, . . . , n} \ {i, j} and l ∈ {1, 2}.
Then ∀cm such as g = ci ⊕ cj ⊕ cm it holds:

w(g) = 3

Proof. Since function g comprises three non–zero cubes,
its weight cannot be zero. Moreover, w(g) ≤ 3 since ci ⊕
cj ⊕ ck is an expression of g. It remains to be proved that
w(g) 6= 1, 2.

Let G = xa
1GA ⊕ xb

1G
B ⊕ xc

1G
C be an expression of g,

where a, b, c ∈ {0, 1, 2} and subexpressions GA, GB , GC do
not depend on x1.

If a = b = c then G can be written as

G = xa
1(GA ⊕GB ⊕GC)

hence the weight of g is equal to w(GA ⊕ GB ⊕ GC), by
Theorem 1.

Let one of a, b, c be different, for example a 6= b = c. Then
G can be written as

G = xa
1GA ⊕ xb

1(G
B ⊕GC) (5)

Then (5) is of the form of (2) and GA, (GB ⊕ GC) are
expressions of subfunctions of g, for example gK = GA, gL =
GB ⊕GC .

Let us assume that w(g) = 2. Then the weights (w(gK),
w(gL)) can be either (1, 2) or (1, 1). In the case of (1, 2), in
order for w(g) = 2 to hold, GA must be equal to one of the
cubes C in the possible exact expressions of gL. Therefore
d(xa

1GA, xb
1C) = 1, a contradiction. In the case of (1, 1),

d(xb
1G

B , xb
1G

C) = 1, a contradiction.
Let us assume that w(g) = 1. Then the weights (w(gK),

w(gL)) can additionally be (1, 0), in which case d(xb
1G

B ,
xb

1G
C) = 0, a contradiction.

In the case where a, b, c are pairwise different, G can be
written as

G = xa
1(GA ⊕GC)⊕ xb

1(G
B ⊕GC)

Then the weights (w(gK), w(gL)) can additionally be (2, 2)
or (2, 1). The case of (2, 1) is similar to the case of (1, 2).
In the case of (2, 2) one cube C1 in one of the exact ex-
pressions of gK must be equal to one cube C2 in one of the

exact expressions of gL. Therefore, d(xa′
1 C1, x

b′
1 C2) < 2, a

contradiction.

The above theorem can be utilized to guarantee that no
three-cube expression in a particular cover can have weight
less than three if the preconditions are satisfied. The follow-
ing theorem provides a way to reconstruct all possible covers
of a function g with w(g) = 3. The proof of a generalization
of this is presented in [12].

Theorem 4. Let a function g with w(g) = 3. All ex-
act expressions of g can directly be obtained from the exact
expressions of its subfunctions.

4. ALGORITHM DESCRIPTION
Although the theoretical analysis provided in the previous

section may seem somewhat involved, the actual algorithm
is conceptually quite simple.

An initial cover F is generated from a given boolean func-
tion f . The goal is to gradually minimize F by iteratively
selecting a number of cubes of it and transform them appro-
priately.

There are numerous alternatives for generating an ini-
tial cover. A straightforward example is the minterm cover,
which is the exclusive–or sum of the minterms of f , or the



Algorithm 1: Minimizer (f, quality)

begin
F=Generate Pseudo–Kronecker Cover (f);
loop=quality;
while loop > 0 do

s=Size (F);
Eliminate Distance 01 Cubes (F);
Perform All 2to2 (F);
Shuffle (F);
if s = Size(F ) then

loop=loop-1;
else

loop=quality;
endif

endw
end

pseudo–Kronecker cover that is selected for the proposed
algorithm.

The pseudo–Kronecker cover of a function f can be ob-
tained recursively by the pseudo–Kronecker covers of its
subfunctions f1, f0, f2, by simply selecting two of the sub-
functions with the minimum (pseudo–Kronecker) size and
forming a cover for f according to (2). Pseudo–Kronecker
covers, also adopted in [4], are experimentally observed to
have cover sizes not much larger than the weight w(f) of f .

The cover is maintained as a list of cubes. Each cube is
maintained within a 64–bit vector. Every two bits represent
the three possible states of a single boolean variable, thus
limiting the applicability of the current implementation to
functions that depend on at most 32 variables.

For a fixed number of repetitions, perform the following
steps: Scan F for all distance–0 or distance–1 cubes and
either remove them or replace them with a single cube re-
spectively.

Subsequently, select two cubes ci, cj and obtain all alter-
native expressions for them, according to Theorem 2. For
each of these expressions c1 ⊕ c2, examine whether c1, c2

have distance less than 2 with a cube c of the rest cover, for
example d(c1, c) = 1. If such a cube is found, replace ci, cj

with c1, c2 and then c1, c with the single cube c′ = c1 ⊕ c.
After all 2 → 2 reductions have been performed, perform

a shuffling of the cover. This is realized in two substeps.
First, the cubes in F are randomly permuted. Afterwards,
the cover is partitioned in groups of three cubes, possibly
ignoring one or two cubes.

All exact expressions of each group are obtained, and one
of them is randomly selected to replace the original three
cubes of the group in the cover. By the 2 → 2 step and The-
orem 3, the function represented by each group has weight
equal to three.

The process is repeated for a fixed number of repetitions
during which the size of the cover has not diminished. The
core of the algorithm is depicted in Algorithm 1. The algo-
rithms to obtain all 2 → 2 and 3 → 3 transformations are
presented in Algorithm 2 and Algorithm 3 respectively.

5. EXPERIMENTAL RESULTS
The performance of the algorithm was measured for a

number of benchmark functions, decomposed to single – out-

Algorithm 2: Find 2to2 (c1, c2)

begin
Fix an ordering x1, x2, . . . , xn of the variables in
c1, c2 such as x1, . . . , xk appear in same literal form
(k ≥ 0);
Form P = common part of c1, c2;
Form g = c′1 ⊕ c′2, where c′1, c

′
2 are equal to c1, c2

with P removed;
Find g1, g0, g2 according to (1);
Find w(g1), w(g0), w(g2) according to Lemma 1;
if max(w(g1), w(g0), w(g2)) = 2 then

return [(c1 ⊕ c2)];
endif
return [(Pxk+1g

1 ⊕ P x̄k+1g
0),

(Pxk+1g
2 ⊕ Pg0),

(P x̄k+1g
2 ⊕ Pg1)];

end

put functions where applicable, as well as on randomly gen-
erated functions, under an AMD Athlon XP 1.8GHz based
system with 256MB of RAM.

The results were compared to a publicly available imple-
mentation of Exorcism4 [4], in terms of algorithm execution
times and resulting cover size and are depicted in Tables 1
and 2.

In table 1, execution times of Exorcism4 are omitted for
the benchmark functions for which its solution was worse
than that of the proposed algorithm. In these cases, [4] did
not manage to reduce the size of the cover further after ex-
ecuting for one minute. For the random functions case, sets
of 25 n–variable functions were generated, for n = 5, . . . , 9.

The quality of the solutions is observed to match and in
some cases, surpass [4]. Execution times are of the order of
tens of milliseconds in most cases and are also comparable
with [4]. It is noted that there exist functions where Ex-
orcism4 converges faster that the proposed algorithm, since
the latter lacks the excellent bail-out heuristics of [4].

6. CONCLUDING REMARKS
In this work, a single–output heuristic ESOP minimiza-

tion algorithm was presented, based on novel cube trans-
formations. By experimental results on random and bench-

Function Solution Size Execution Time (ms)
Name Proposed [4] Proposed [4]

9sym 51 52 481
clip:1 16 16 29 105
clip:2 18 18 30 91
clip:3 21 21 32 43
clip:4 27 27 67 65
clip:5 15 15 31 41
t481 13 13 34 46
life 46 47 4962
xor5 5 5 30 34
ryy6 40 40 29 30

Table 1: Solution Size and Execution Times on
Benchmark Functions



Algorithm 3: Find 3to3 (c1, c2, c3)

begin
Fix an ordering x1, . . . , xn of the variables in
c1, c2, c3 such as x1, . . . , xk appear in same literal
form (k ≥ 0);
Form P = common part of c1, c2, c3;
Form g = c′1 ⊕ c′2 ⊕ c′3, where c′1, c

′
2, c

′
3 are equal to

c1, c2, c3 with P removed;
ResultList = [];
Find g1, g0, g2 according to (1);
Find w(g1), w(g0), w(g2) according to Lemma 1 and
Theorem 3;
Find all exact expressions of g1 if w(g1) < 3;
Find all exact expressions of g0 if w(g0) < 3;
Find all exact expressions of g2 if w(g2) < 3;
Choose all function pairs (gA, gB), such as
(w(gA), w(gB)) is equal to (2, 2) or (2, 1) only;
for each such pair do

Let the corresponding literals according to (2)
be xa

k+1, x
b
k+1, such as g = xa

k+1g
A ⊕ xb

k+1g
B ,

and xc
k+1 be the third form of the literal;

if (w(gA), w(gB)) = (2, 2) then
for all expressions (cA1 ⊕ cA2) of gA do

for all expressions (cB1 ⊕ cB2) of gB do
if cA1 = cB1 then

ResultList = ResultList+
(Pxa

k+1cA2 ⊕ Pxb
k+1cB2

⊕ Pxc
x+1cA1);

else if cA1 = cB2 then
ResultList = ResultList+
(Pxa

k+1cA2 ⊕ Pxb
k+1cB1

⊕ Pxc
x+1cA1);

else if cA2 = cB1 then
ResultList = ResultList+
(Pxa

k+1cA1 ⊕ Pxb
k+1cB2 ⊕

Pxc
x+1cA2);

else if cA2 = cB2 then
ResultList = ResultList+
(Pxa

k+1cA1 ⊕ Pxb
k+1cB1 ⊕

Pxc
x+1cA2);

endfor
endfor

else
for all expressions (cA1 ⊕ cA2) of gA do

ResultList = ResultList+
(Pxa

k+1cA1 ⊕ Pxa
k+1cA2 ⊕ Pxb

k+1g
B);

if d(cA1, g
B) = 1 then

c′ = cA1 ⊕ gB ;
ResultList = ResultList+
(Pxa

k+1cA2 ⊕ Pxb
k+1c

′ ⊕ Pxc
k+1cA1);

else if d(cA2, g
B) = 1 then

c′ = cA2 ⊕ gB ;
ResultList = ResultList+
(Pxa

k+1cA1 ⊕ Pxb
k+1c

′ ⊕ Pxc
k+1cA2);

endfor
endif

endfor
return ResultList;

end

Average Average Average
n Initial Cover Proposed Exorcism4

5 5.72 5.08 5.08
6 10.76 8.60 8.64
7 18.88 13.88 14.00
8 37.16 25.40 25.76
9 77.20 51.16 51.56

Table 2: Solution Size for Random Functions

mark functions, the quality of the resulting cover matches
and, in some cases, surpasses the state of the art in heuristic
ESOP minimization. Moreover, algorithm execution times
are of the order of tenths of milliseconds in most cases and
also compare favorably with previous published work. Fu-
ture work will focus on the generalization of the algorithm
to multiple–output and incompletely specified boolean func-
tions.
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