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ABSTRACT
We present a reduction from graphical games to Markov random
fields so that pure Nash equilibria in the former can be found by
statistical inference on the latter. Our result, when combined with
the junction tree algorithm for statistical inference, yields a unified
proof of all previously known tractable cases of the NP-complete
problem of finding pure Nash equilibria in graphical games, but
also implies efficient algorithms for new classes, such as the games
with O(log n) treewidth. Furthermore, this important problem be-
comes susceptible to a wealth of sophisticated and empirically suc-
cessful techniques from Machine Learning.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]:General

General Terms
Algorithms, Economics, Theory

Keywords
Nash Equilibrium, Markov Random Fields, Treewidth

1. INTRODUCTION

Several recent results explore the complexity of finding mixed Nash
[9, 13, 10, 7, 8] and correlated [29] equilibria in games. Since
the description complexity ofn-person games is exponential inn,
much of this work focuses on succinct representations, of which
graphical gamesproposed by Kearns et al. [18] (agents affecting
each other’s utility along the links of a network) is perhaps the most
important.

The main advantage of mixed Nash and correlated equilibria
is that they are guaranteed to exist in any game; on the negative
side, they are rather unconvincing and fragile as models of behav-
ior and rationality, involving deliberate randomization by players,
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while their justification is based on the assumptions that all players
are risk neutral, and practice the same sophisticated, multi-staged
analysis based on common knowledge; these problems are inten-
sified when a large number of players is present. See, e.g., [28,
21] for extensive critical presentation of, and comparison between,
these and other concepts of rationality.

In contrast, thepure Nash equilibriumis a very primitive, intu-
itive, straightforward and relatively uncontroversial concept of ra-
tionality; on the negative side, it does not exist in all games, and
in fact telling if one exists is an NP-complete problem in graphi-
cal games [14] (the problem is, of course, computationally trivial
in normal form games).In this paper we present a new class of
algorithms for finding pure Nash equilibria in graphical games.

Besides economy of description, one of the motivations for the
introduction of graphical games is their intuitive affinity with graph-
ical statistical models; indeed, several algorithms for graphical
games (e.g., [24, 11, 27, 17]) do have the flavor of algorithms for
Bayes nets.Our main result is a mapping from any graphical game
to a Markov random field (MRF)such that finding a maximum a
posteriori configuration of the MRF (a central problem in MRF the-
ory [22]) answers the question of whether the graphical game has a
pure Nash equilibrium. Furthermore, the marginal probability dis-
tributions of the cliques of the MRF constitute a succinct descrip-
tion of all pure Nash equilibria of the graphical game (such descrip-
tion is necessary because there might be exponentially many pure
Nash equilibria). In view of the intuitive similarity between graph-
ical games and MRFs, our reduction is not, of course, completely
unexpected. However, it has to overcome a number of subtleties
and pay much attention to detail, while the proof that it works is
quite nontrivial.

Furthermore, by applying thejunction tree algorithm[23, 16]
(see Section 4) to the output of our reduction we show that for
large classes of graphical games we can compute in polynomial
time a succinct description of the set of pure Nash equilibria; these
include all previously known efficient algorithms [14]), as well as
a new one for graphical games withO(log n)-treewidth, bounded
neighborhood size and bounded cardinality strategy sets — a class
which we believe is a plausible model of networked markets. This
is the first polynomial algorithm for pure Nash equilibria that is not
based on some assumption about the cycle structure of the graph.

But perhaps what is even more interesting about our reduction is
that it brings to bear in the computation of pure Nash equilibria all
of the large and growing number of statistical inference algorithms
(belief propagation [30] and generalized belief propagation [34],
variational methods [33], Markov Chain Monte Carlo [26], simu-
lated annealing [19], survey propagation [6] etc.), many of which
are empirically very successful albeit without worst-case guaran-
tees; these opportunities are described in Section 4.4. Whether



these lead to experimentally competitive algorithms for Nash equi-
libria is an interesting research direction. Some initial experimental
results are described in Section 5.

Finally, we sketch how the same reduction can be used for the
computation ofapproximate mixedNash equilibria by using ideas
similar to [18]. The resulting algorithms run in time exponential
in the game description and the desired approximation —which is
not surprising given that even the2-strategies-per-player,4-sized
neighborhood case was shown to be PPAD-complete in [9]. On
the other hand, by further restricting the treewidth toO(log n), the
algorithm becomes polynomial in the game description and expo-
nential in the approximation guarantee. These possibilities are ex-
plored in Section 4.3

2. PRELIMINARIES

2.1 Games
In a gamewe haven players, 1, . . . , n. Each playerp, 1 ≤ p ≤ n,
has a finite set ofstrategiesor choices, Sp, with |Sp| ≥ 2, and a
payoff function up :

Qn
i=1 Si → N. The setS =

Qn
i=1 Si is

called set of strategy profilesand we denote the set
Q

i6=p Si by
S−p.

In order to specify a game withn players ands strategies each, we
neednsn numbers, an amount of information exponential in the
number of players. However, players often interact with a limited
number of other players, and this allows for much more succinct
representations:

Definition 2.1 A graphical gameG = 〈G, {Sp}, {up}〉 is defined
by:

• An undirected graphG = (V, E), whereV = {1, . . . , n} is
the set of players.

• For every playerp ∈ V :

– A non-empty finite set ofstrategiesSp

– A payoff functionup :
Q

i∈N (p) Si → N
(whereN (p) = {p} ∪ {v ∈ V |(p, v) ∈ E})

A different perspective of graphical games, which will be useful
later, is through thehypergraphthey induce. We can imagine that
every gameG defines a hypergraph having as nodes the players and,
for every playerp, one hyperedge containingp’s neighborhood,
N (p); remove duplicate hyperedges if two or more players have
the same neighborhood. We denote this hypergraph byH(G) and
we define asprimal graph of the gamethe primal graph∗ ofH(G).

Consider a game withn players and strategy setsS1, . . . , Sn. For
every strategy profiles ∈ S, we denote bysp the strategy of player
p in this strategy profile and bys−p the(n− 1)-tuple of strategies
of all players butp. For everys′p ∈ Sp ands−p ∈ S−p we denote
by (s−p; s′p) the strategy profile in which playerp playss′p and all
the other players play according tos−p.

Definition 2.2 (Pure Nash Equilibrium)
A strategy profiles is apure Nash equilibriumif for every playerp
and strategytp ∈ Sp we haveup(s) ≥ up(s−p; tp).

∗The primal graphG′ = (V ′, E′) of a hypergraphH = (V, E)
hasV ′ = V and two nodesv1, v2 ∈ V ′ are connected iff there is a
hyperedgeh ∈ E such thatv1, v2 ∈ h.

Intuitively, a strategy profiles is a pure Nash equilibrium if none of
the players has a unilateral incentive to deviate: the player cannot
increase his/her payoff by deviating to another strategy if the other
players continue to play the strategies ins−p.

Definition 2.3 (Best Response Function)TheBest Response Func-
tion of playerp is a function BRup : S−p → 2Sp defined by:

BRup(s−p) ,
{sp|sp ∈ Sp and∀s′p ∈ Sp : up(s−p; sp) ≥ up(s−p; s′p)}

Intuitively, BRup(s−p) is the set of strategies inSp that maximize
p’s payoff if the other players plays−p.

Thus, a strategy profiles is a pure Nash equilibrium if, for every
playerp, sp ∈ BRup(s−p).

2.2 Markov Random Fields

MRFs: We describe informally the notion of an undirected graph-
ical model and we refer the reader to [22] for a more detailed de-
scription. Anundirected graphical modelor Markov random field
(MRF) over an undirected graphG = (V, E), |V | = n, is a prob-
ability distribution that factorizes according to functions defined
on a setC of cliques ofG. More precisely, associated with every
nodev ∈ V is a random variablexv taking values from a finite
setXv of values. Also, associated with every cliquec ∈ C is a
potential functionψc :

Q
v∈c Xv → R+ that depends only on

xc = {xv|v ∈ c}. Using this notation the probability distribution
defined onx = {xv|v ∈ V } is:

p(x) =
1

Z

Y
c∈C

ψc(xc) (1)

whereZ is a normalizing constant. We’ll refer toC as theset of
significant cliques of the MRF.

Inference problems.MRFs enable the formulation and solution of
important statistical inference problems:

1. Maximum-a-posteriori (MAP) estimationis the problem of
finding a configuration that is most likely under the distribu-
tionp(x), or, more formally,̂xMAP ∈ arg maxx∈Qv Xv p(x).

2. Computing the marginal probability distributionof a partic-
ular subset of the nodes or some subsets of the nodes simul-
taneously; usually the marginal probability distributions of
the cliques of setC.

3. Samplingthe distributionp(x).

A crucial observation about the normalizing constant Z:In or-
der to computeZ one has to sump(x) over all configurations
x ∈ X =

Q
v∈V Xv, a computation that would require exponential

time in the number of the nodes. However, this is not really needed
for the above inference problems. Indeed, computing a MAP con-
figuration does not change whether we includeZ in the compu-
tation or not. Also, sampling the distribution is usually based on
the ratio of probabilities of configurations (e.g. in the Metropolis-
Hastings sampling method) and soZ is canceled. Finally, comput-
ing marginal probability distributions involves summingp(x); this
can be done without including constantZ and the resulting func-
tion can be normalized after the completion of the algorithm; now,
since the marginal is usually computed on a subset of few nodes,
the time needed to normalize the computed function is much less



than that required to findZ. Thus, a very common practice in sta-
tistical inference is to assumeZ=1 for all computations.

2.3 The Junction Tree Algorithm

The junction tree algorithm is one of the most celebrated algorithms
for statistical inference and is used both for computing marginal
distributions and for computing maximum-a-posteriori configura-
tions. It is also in the core of numerous other algorithms for MRFs
and Bayesian Networks. For a quick description of the algorithm
we refer the reader to [33]; a detailed description can be found in
[16, 23]. Here we describe briefly some ingredients of the algo-
rithm. We need a definition:

Definition 2.4 A clique tree of a chordal graphG = (V, E) is
a treeT = (C, E), whereC is a subset of the set of all cliques of
graphG, that has the following properties:

• ∀ cliquec of G, ∃c′ ∈ C s.t. c ⊆ c′ (thus all maximal cliques
of G are nodes ofT )

• ∀c1, c2 ∈ C,∀c3 ∈ C in the unique path betweenc1 andc2,
c1 ∩ c2 ⊆ c3 (clique intersection property)

Thewidth of T is maxc∈C{|c|}.

Definition 2.5 A clique tree of a graphG = (V, E) is a clique
tree of some triangulation ofG.

Lemma 2.6 (e.g. [20])Every clique tree of a graphG is a tree de-
composition and vice versa. Thus, the treewidth of a graphG is
equal to the minimum width of all clique trees ofG minus 1.

Briefly, the junction tree algorithm starts from the graphG = (V, E)
of the MRF and triangulates it to get a chordal graphG′ = (V, E′).
Then it builds a clique treeT = (C, E) of G′ and it loads to every
node ofT a potential function as follows: it assigns the potential
function of every significant clique of the MRF to exactly one of
the nodes ofT that contain it and then for every node ofT it takes
the product of the potential functions that were assigned to it; if a
node ofT has no significant cliques assigned to it then its potential
function is taken identically equal to one. After doing so, it per-
forms calculations onT and computes by “message passing” the
marginal probability distributions of every cliquec ∈ C. The mar-
ginal distributions of the significant cliques of the MRF are derived
from the marginal distributions of the cliques of setC by summa-
tions. It is well-known that a simple variant of the same algorithm
can be used for computing maximum a posteriori configurations
(see for example discussion in [33]).

The single non-standard step of the algorithm is the triangulation of
G. Different triangulations lead to different clique trees. However,
the sizes of the cliques in the clique tree determine the running time
of the algorithm, which is proportional to

P
c∈C

Q
v∈c |Xv|. Note

that finding the triangulation that leads to the lightest clique tree
under this objective function is an NP-hard optimization problem
(see e.g. [3] and the references therein) and there are various algo-
rithms for building “good” clique-trees. For an overview of these
algorithms see for example [3, 5]. If|Xv| = χ, ∀v ∈ V , then the
running time of the algorithm isO(n ·χwidth(T )), which is at least
O(n · χtreewidth(G)+1).

3. THE REDUCTION
Given a graphical gameG = 〈G = (V, E), {Sp}, {up}〉 we con-
struct the following Markov random field:

1. The underlying graph of the MRF is the primal graphG′ =
(V ′, E′) ofH(G).

2. Associated with every nodep ∈ V ′ is a random variable with
state spaceXp = Sp, the strategy set of the corresponding
player.

3. For every playerp ∈ V ′, its neighborhood,N (p), is a clique
cp in G′. Note that there might be two playersp1 6= p2

with cp1 = cp2 . The set of significant cliques of the MRF is
C =

S
p∈V ′{cp}.

4. We assign to every playerp a functionfp :
Q

p′∈cp
Xp′ →

R+ that is defined as follows (callx(cp) the vector of the
random variables corresponding to the players of setcp):

fp (x(cp)) =

(
1, if x(cp)p ∈ BRup (x(cp)−p)

ε, otherwise

whereε < 1 is a small constant to be fixed later. Intuitively,
the functionfp (x(cp)) maps a selection of strategiesx(cp)
for the players of the setN (p) to 1 if the strategyx(cp)p of
playerp is a best response to the strategiesx(cp)−p of his
neighbors and to a small constantε otherwise.

5. We assign to every cliquec ∈ C a potential functionψc :Q
p∈c Xp → R+ defined as follows:

ψc (x(c)) =
Y

p∈V ′:cp=c

fp(x(c))

6. Since the Markov random field that we defined is parame-
terized on the choice ofε we will refer to it asMRF(G, ε).
Also, we will refer to the unnormalized (Z=1) probability
distribution defined on MRF(G, ε) aspε(x); i.e. pε(x) =Q

c∈C ψc(x(c)).

We claim that the construction has many useful properties. First,
for anyε < 1, finding a MAP configuration,̂xMAP , of MRF(G, ε)
answers the question of whether the graphical gameG has a pure
Nash equilibrium. This fact is stated by the following lemmas (call
X =

Q
v Xv).

Lemma 3.1
∀ε < 1 : (G has a pure Nash Equilibrium)

⇔ (maxx∈X {pε(x)} = 1)

PROOF. (⇒) We have:

x is a pure Nash equilibrium ofG
⇒ ∀p ∈ V ′ : x(cp)p ∈ BRup (x(cp)−p)

⇒ ∀p ∈ V ′ : fp(x(cp)) = 1

⇒ ∀c ∈ C : ψc(x(c)) = 1

⇒ pε(x) = 1

⇒ x ∈ arg max
x∈X

{pε(x)}
( since by definitionpε(x) ≤ 1, ∀x)

⇒ max
x∈X

pε(x) = 1



(⇐) We have:

G has no pure Nash equilibria⇒
@x ∈ X s.t.∀p ∈ V ′ : x(cp)p ∈ BRup (x(cp)−p) ⇒

@x ∈ X s.t.∀p ∈ V ′ : fp(x(cp)) = 1
ε<1⇒

@x ∈ X s.t.∀c ∈ C : ψc(x(c)) = 1 ⇒
@x ∈ X s.t.pε(x) = 1 ⇒

max
x∈X

pε(x) < 1

( since by definitionpε(x) ≤ 1,∀x)

Lemma 3.2
∀ε < 1: If pε(x̂) = 1 for somex̂, thenx̂ ∈ arg maxx∈X {pε(x)}
andx̂ is a pure Nash equilibrium ofG.

PROOF. If pε(x̂) = 1 then x̂ ∈ arg maxx∈X pε(x) since
pε(x) ≤ 1 by definition (ε < 1). Also:

pε(x̂) = 1
ε<1⇔

∀c ∈ C : ψc(x̂(c)) = 1
ε<1⇔

∀p ∈ V ′ : fp(x̂(cp)) = 1 ⇔
∀p ∈ V ′ : x̂(cp)p ∈ BRup (x̂(cp)−p) ⇔

x̂ is a pure Nash equilibrium

Moreover, computing the unnormalized marginal distributions of
the significant cliques of MRF(G, 0) answers the question of
whether the graphical game has a pure Nash equilibrium and, at
the same time, the unnormalized marginal distributions constitute
a succinct description of all pure Nash equilibria of the graphical
game†. This is stated by the following lemmas.

Lemma 3.3 (G has a pure Nash Equilibrium)⇔
(∀ cliquec of MRF(G, 0), ∃x∗(c) s.t.p0,c(x

∗(c)) 6= 0),
wherep0,c(x(c)) is the unnormalized marginal probability distri-
bution of cliquec.

PROOF. The marginalization ofp0(x) with respect to a cliquec
of MRF(G, 0) is simply a summationp0,c(x(c)) =

P
xv,v /∈c p0(x).

It is easy to prove the claim as follows:
(⇒) If G has a pure Nash equilibriumx∗ thenp0(x

∗) = 1 (see
proof of Lemma 3.2). It follows thatp0,c(x

∗(c)) > 0 for every
cliquec of the MRF.
(⇐) Proof by contradiction:

G does not have a pure Nash equilibrium

⇒∀x, ∃p s.t.fp(x(cp)) = ε

ε=0⇒∀x, p0(x) = 0

⇒∀ cliquec, ∀x(c) : p0,c(x(c)) = 0

Lemma 3.4 If p0,c(x
∗(c)) 6= 0 for some cliquec of MRF(G, 0)

and somex∗(c), then∃ a pure Nash equilibriumx+ of G such that
x+(c) = x∗(c).
†A succinct descriptionof the set of all pure Nash equilibria (or
any other object)x is a stringy such that|y| is polynomial in the
description of the game andx = f(y) for some functionf com-
putable in time polynomial in|x|+ |y|.

PROOF. (By contradiction)

@ pure Nash equilibriumx+ of G such thatx+(c) = x∗(c)

⇒ ∀x with x(c) = x∗(c) : p0(x) = 0

⇒ p0,c(x
∗(c)) =

X
x:x(c)=x∗(c)

p0(x) = 0

Based on Lemmas 3.3 and 3.4 one can build a dynamic program-
ming algorithm that takes as input the marginal probability distri-
butions of the significant cliques of the MRF and outputs all pure
Nash equilibria in output polynomial time.

Also, a useful remark is the following. From the proofs of Lemmas
3.3 and 3.4 it follows that if a gameG does not have a pure Nash
equilibrium then in MRF(G, 0) functionp0(x) is identically zero.
In this case, of course,p0(x) cannot be a probability distribution of
a Markov Random Field. Since MRFs are defined in a distributed
fashion, i.e. by potential functions on subsets of the nodes, this is
an intrinsic problem in statistical inference, and statistical inference
algorithms are designed to handle this possibility.

4. ALGORITHMIC CONSEQUENCES
In view of this reduction, one can use all the algorithmic ma-

chinery developed for statistical inference in graphical models; any
statistical inference algorithm that computes marginal distributions,
maximum-a-posteriori configurations or samples distributions de-
fined on Markov random fields works for finding pure Nash equi-
libria. In this section we combine our reduction with one particular
algorithm for statistical inference, the junction tree algorithm ex-
plained in Subsection 2.3, to derive polynomial time algorithms for
checking the existence of pure Nash equilibria and for computing a
succinct description of all pure Nash equilibria for large classes of
graphical games.

We note that the algorithms we derive are essentially combinato-
rial and the following simple observation advocates this. Although
the Junction Tree Algorithm performs arithmetic calculations on
the potential functions, the only information we really need from
the values computed by the Junction Tree algorithm is whether they
are zero or positive. Since we start from non-negative entries in our
potential functions (the entries are either zeros or ones) and since
the Junction Tree algorithm performs no subtractions, one could
change the Junction Tree Algorithm arithmetic to account only for
whether an entry it computes along the execution is zero or posi-
tive. Doing so we need only 1 bit for every stored entry and there
are no arithmetic precision issues that we have to address. Thus,
our algorithms are essentially combinatorial and our claim that the
derived algorithms are polynomial time is valid.

4.1 Trees and Acyclic Hypergraphs
For a formal definition ofhypergraph acyclicitywe refer the

reader to [4]. Note that since every tree has an acyclic hypergraph
it is enough to state and prove our theorem for acyclic hypergraph
games. But first we need a definition:

Definition 4.1 A join tree for a hypergraph(P,H) is a treeT =
(V, E), whereV ≡ H, so that, for allv1, v2 ∈ V and for allu ∈ V
in the unique path betweenv1 andv2, v1 ∩ v2 ⊆ u.

Next we give a high-level description ofGraham’s algorithmadapted
from [4].



Algorithm 4.1 (Graham’s algorithm )
On inputG = (P,H), whereH = {h1, h2, . . . , h|H|}, Graham’s
algorithm applies the following two operations toG repeatedly un-
til neither can be applied:

(a) If a noden ∈ P appears in exactly one hyperedgehi ∈ H
then deleten fromhi

(b) Delete a hyperedgehi if there is another hyperedgehj , j 6=
i, such thathi ⊆ hj .

We say that Graham’s algorithm succeeds onG = (P,H) if it
terminates with an empty set of hyperedges.

The above concepts are related by the following important theorem
from [4]:

Theorem 4.2 If R = (P,H) is a hypergraph then:

(R is acyclic) ⇔ (R has a join tree)

⇔ (Graham’s algorithm succeeds on inputR)

We can now prove our claim:

Theorem 4.3 Deciding whether a graphical game has a pure Nash
equilibrium is in P when the hypergraph of the game is acyclic.
Moreover, computing a succinct description of all pure Nash equi-
libria can be done in polynomial time.

PROOF. On inputG = 〈G = (V, E), Sp, up〉, the algorithm
proceeds in the following steps:

1. Apply Graham’s algorithm onH(G) to check whether it is
acyclic; if so, Graham’s algorithm returns a join treeT =
(C, E) for H(G) ([4]). It is easy to see thatT is a clique tree
for the primal graphG′ of the game.

2. ReduceG to MRF(G,0) as described in Section 3. The graph
of the MRF is the primal graph of the game and soT is a
clique tree for the graph of MRF(G,0).

3. Run the junction tree algorithm onT to compute the mar-
ginal probability distributions of the significant cliques of
MRF(G,0).

4. The marginal probability distributions answer the question
of whetherG has a pure Nash equilibrium and also constitute
a succinct description of all pure Nash equilibria ofG (see
Section 3)

Correctness: The correctnessof the algorithm follows from the
correctness of the reduction and the correctness of Graham’s algo-
rithm and the junction tree algorithm. Note, also, that since the
Junction Tree algorithm maintainssupportiveness[23] it won’t be
affected by any “divisions by zero”.
Time Complexity: Graham’s algorithm finds the join tree ofH(G)
in time polynomial in the size of the hypergraph and thus in the
number of players. ReducingG to MRF(G,0) also takes polynomial
time. It remains to bound the running time of the message-passing
phase of the junction tree algorithm. This phase is executed on the
clique tree, which is precisely the join tree that Graham’s algorithm
returned, and it involves the exchange of as many messages as twice
the number of edges of the clique tree, so at most2n−2 messages,
wheren is the number of players (note that the number of nodes of
the clique tree is at most equal to the number of players). Now, the
time needed to compute a message that is being sent over an edge
of the clique tree is polynomial in the size of the tables (potential

functions) that are stored at the endpoints of that edge. However,
the clique in every node of the clique tree corresponds to the neigh-
borhood of a player and so its table has the same size as the table
describing the utility function of that player. Thus, the complexity
of every message is polynomial in the input complexity. It is, thus,
obvious that the described algorithm runs in time polynomial in the
description of the graphical game.

4.2 Bounded Treewidth and Hypertreewidth
It is not very hard to extend the results of Section 4.1 for tree

games and acyclic hypergraph games to broader classes of graphi-
cal games, those of bounded treewidth and bounded hypertree width
respectively.

For quick reference, we define here the notion of ahypertree de-
compositionandhypertree-widthof a hypergraph. For more details
on the properties of hypertree-width and its relation to other notions
of hypergraph acyclicity we refer the reader to [15].

Definition 4.4 ([15]) LetR = (N ,H) be a hypergraph. Ahyper-
tree decompositionof R is a triplet〈T, χ, λ〉, whereT = (V, E)
is a rooted tree andχ, λ are labelling functions associating each
vertexv ∈ V with two setsχ(v) ⊆ N andλ(v) ⊆ H, so that:

1. ∀h ∈ H, ∃v ∈ V : h ⊆ χ(v)

2. ∀n ∈ N , the set{v ∈ V |n ∈ χ(v)} induces a connected
subgraph ofT

3. ∀v ∈ V, χ(v) ⊆ Sh∈λ(v) h

4. ∀v ∈ V, χ(Tv)∩Sh∈λ(v) h ⊆ χ(v), whereTv is the subtree
of T rooted atv andχ(Tv) =

S
v′∈vert(Tv) χ(v′)

Thewidth of (T, χ, λ) is maxv∈V {|λ(v)|}.
The hypertree widthof a hypergraphR, hw(R), is the minimum
width over all its hypertree decompositions.

We can now state our claims. The proof of Theorem 4.6 uses
Lemma 4.5. Theorem 4.7 was also proven independently in [14]
using different techniques.

Lemma 4.5 If the graphG = (V, E) of a graphical gameG has
treewidth bounded byk then its primal graph has treewidth bounded
by(k +1) ·maxp∈V |N (p)|−1. Moreover, given a tree decompo-
sition ofG of widthk we can compute in polynomial time a clique
tree for the primal graph ofG of width(k + 1) ·maxp∈V |N (p)|.

PROOF. (sketch) LetT = (C, E) be a tree decomposition of
the game graphG = (V, E), whereC ⊆ 2V , and suppose that
k = maxc∈C |c| − 1 is the width of the decomposition. We show
how to construct a tree decompositionT ′ of the primal graph ofG
of width at most(k+1) ·maxp∈V |N (p)|−1. T ′ is isomorphic to
T and letσ denote the one-to-one correspondence between vertices
of T andT ′. Then for allc ∈ C we setσ(c) =

S
p∈cN (p), i.e.

every vertex ofT ′ contains the union of the neighborhoods of all
players of the corresponding vertex ofT . It is not difficult to see
thatT ′ is a tree decomposition of the primal graphG′ = (V, E′) of
the game. Indeed, for every edge(u, v) ∈ E′ there is a vertex ofT ′

that contains bothu, v: if (u, v) is an edge inG′ then playersu, v
must belong in the neighborhood of some playerp (maybep ≡ u or
p ≡ v); but there is at least one vertex ofT that containsp and, thus,
the corresponding vertex ofT ′ must contain all its neighborhood
and, so,u, v as well. Moreover, for every playerp ∈ V the vertices
of T ′ that containp form a connected subtree ofT ′: sinceT is a



tree decomposition ofG, it is easy to see that the vertices ofT that
contain playerp or a neighboring player ofp in G form a connected
component inT ; but, in T ′, p appears in exactly those vertices
whose corresponding vertex inT contains eitherp or a neighbor of
p in G, and, so, the nodes in whichp appears must form a connected
component inT ′. Finally, sincek + 1 = maxc∈C |c|, every vertex
of T ′ contains at most(k+1) ·maxp∈V |N (p)| vertices. GivenT ,
the construction ofT ′ can be done in polynomial time.

Theorem 4.6 Deciding whether a graphical game has a pure Nash
equilibrium and computing (a succinct description of) all pure Nash
equilibria is in P for all classes of games with bounded treewidth.

PROOF. For a fixed constantk the algorithm performs the fol-
lowing steps on inputG = 〈G = (V, E), {Sp},{up}〉:

1. Check whetherG has treewidth bounded byk and, if so, find
a tree decomposition ofG of width at mostk. For details on
how to perform this step in polynomial time see for example
[2, 20].

2. From the tree decomposition ofG get —using Lemma 4.5—
a clique treeT ′ of the primal graph ofG that has width at
most(k + 1) ·maxp∈V |N (p)|.

3. ReduceG to MRF(G,0) as described in Section 3. The graph
of the MRF is the primal graph of the game and soT ′ is a
clique tree for the graph of MRF(G,0).

4. Run the Junction Tree Algorithm onT ′ to compute the mar-
ginal probability distributions of the significant cliques of
MRF(G,0). The marginal probability distributions answer
the question of whetherG has a pure Nash equilibrium and
also constitute a succinct description of all pure Nash equi-
libria of G.

The correctnessof the algorithm follows easily from the correct-
ness of every intermediate step. Therunning timeof the algorithm
is polynomial. This is easily proven using the same rationale as
in the proof of Theorem 4.3. However, in this case the cliques
contained in the nodes of the clique tree have size that is at most
(k + 1) · maxp∈V |N (p)|, i.e. at mostk + 1 times the size of
the biggest neighborhood of the game. Since the biggest table of
the input has dimensionmaxp∈V |N (p)| and the biggest table in
the clique tree has dimensionk + 1 timesmaxp∈V |N (p)|, where
k is fixed, it follows that the tables of the clique tree have size
polynomial in the input complexity. Thus, the algorithm runs in
polynomial time.

Theorem 4.7 Deciding whether a graphical game has a pure Nash
equilibrium and computing (a succinct description of) all pure Nash
equilibria is in P for all classes of games with bounded hyper-
treewidth.

PROOF. The proof is based on the following graph-theoretic
lemma.

Lemma 4.8 If a graphical gameG = 〈G = (V, E), {Sp}, {up}〉
has hypertree width bounded byk then its primal graph has treewidth
bounded byk · maxp∈V |N (p)| − 1. Moreover, given a hyper-
tree decomposition(T, χ, λ) of H(G) we can compute in poly-
nomial time a clique tree for the primal graph ofG of width k ·
maxp∈V |N (p)|, wherek is the width of(T, χ, λ).

PROOF. Given a hypertree decomposition(T, χ, λ) of H(G),
takeT ′ to be a tree isomorphic toT after removing directions from
the edges and letσ denote the one-to-one correspondence between
vertices ofT andT ′. Then for allv ∈ vert(T ) we setσ(v) =
χ(v). It is easy to see thatT ′ is a clique tree for the primal graph
of G, using properties 1 and 2 of the hypertree decomposition (see
Definition 4.4). Moreover, from property 3 it follows that for every
nodev of T : χ(v) ⊆ S

h∈λ(v) h. Thus, for every nodev of T :
|χ(v)| ≤ k ·maxp∈V |N (p)|, wherek is the width of the hypertree
decomposition(T, χ, λ). Thus, the clique treeT ′ has width at most
k · maxp∈V |N (p)|. The construction can obviously be done in
polynomial time.

For a fixed constantk the algorithm performs the following steps
on inputG = 〈G = (V, E), {Sp}, {up}〉:

1. Check whetherH(G) has hypertree width bounded byk;
if so find a hypertree decomposition(T, χ, λ) of H(G) of
width at mostk. For details on how to perform this step in
polynomial time see [15].

2. From the hypertree decomposition(T, χ, λ), get —using
Lemma 4.8— a clique treeT ′ of the primal graph ofG that
has width at mostk ·maxp∈V |N (p)|.

3. run algorithm of Theorem 4.6 from step 3;

Thecorrectnessand thetime complexityof the algorithm are ana-
lyzed in the same way as in the proof of Theorem 4.6.¤

4.3 Games ofO(log n)-Treewidth
In this section we go one step further in our study of graphi-

cal games and study games withO(log n) treewidth. For these
games we derive polynomial time algorithms for pure Nash equi-
libria under the assumption that the degree of the graph is bounded
(notice that this is necessary for the description of the problem to
be polynomial in the number of players) and that the number of
strategies available to each player is also bounded. Given that NP-
completeness of computing pure Nash equilibria holds even when
restricted to the class of graphical games with bipartite graphs of
degree at most 3 and strategy sets of cardinality at most 3 [14], our
result is tight. Moreover, it is the first positive result for computing
pure Nash equilibria that is not based on some assumption about
the cyclic structure of the graph.

Theorem 4.9 Deciding whether a graphical game has a pure Nash
equilibrium is in P for all classes of games withO(log n) treewidth,
bounded number of strategies, and bounded neighborhood size.
Moreover, computing a succinct description of all pure Nash equi-
libria can be done in polynomial time.

PROOF. The algorithm is similar in spirit to the ones presented
so far, but differs in the construction of the clique tree on which the
Junction Tree algorithm performs. This task is somewhat involved
and is described here. Supposek = k(n); by slightly modifying
the algorithm presented by Becker and Geiger [3], we get an al-
gorithm that runs in timepoly(n) · 24.67·k, on input a graphG of
n nodes, and either outputs a tree decomposition ofG of width at
most3.67k or outputs that the treewidth ofG is larger thank‡.
For k = c log n, wherec is a fixed constant, we get an algorithm
that runs in time polynomial inn and either returns a tree decom-
position of the input graphG of width at most3.67c log n or out-
puts that the treewidth ofG is larger thanc log n. Now, suppose
‡Alternatively we could use Reed’s approximation algorithm [31]
for treewidth or other approximation algorithms.



G = 〈G, {Sp}, {up}〉 is a game drawn from a family of games
with treewidth at mostc log n. Applied toG, the algorithm returns
a tree decomposition ofG of width at most3.67·c·log n. Given this
tree decomposition, from Lemma 4.5, we can construct in polyno-
mial time a clique tree for the primal graph ofG, which is the graph
of the MRF, of widthw = (3.67 · c · log n + 1) ·maxp∈V |N (p)|.
Now, if we assume bounded cardinality strategy sets, it follows that
the sizes of the tables (potential functions) that will be stored in the
clique tree before the execution of the junction tree algorithm and,
thus, all the messages exchanged during the execution have size

O
�
nO(max |N (p)|)

�
. If, moreover, we assume bounded neighbor-

hood size they are polynomial in the number of players. So all the
computation takes polynomial time.

We can get rid of the bounded neighborhood requirement by push-
ing theO(log n)-treewidth requirement to the primal graph of the
game as stated by the following theorem. This way we can in some
cases accommodate neighborhoods of size up toO(log n) which
might be helpful in some applications.

Theorem 4.10 Deciding whether a graphical game has a pure Nash
equilibrium is in P for all classes of games with primal graphs of
treewidthO(log n) and bounded cardinality strategy sets. More-
over, computing a succinct description of all pure Nash equilibria
can be done in polynomial time.

PROOF. The algorithm is similar in spirit to the one presented in
the proof of Theorem 4.9. Again, we use the modified -as described
in the proof of Theorem 4.9- algorithm of Becker and Geiger for
k = c log n, wherec is a fixed constant, but we apply it directly
on the graphG of the MRF. The algorithm runs in polynomial time
and ifG has treewidth bounded byc log n, it returns a tree decom-
position ofG of width at most3.67c log n. So the biggest table
in the clique tree will be of dimension3.67c log n. Thus, assum-
ing bounded cardinality strategy sets, the sizes of the tables (po-
tential functions) that we store at the nodes of the clique tree are
polynomial in the number of players so all the computation takes
polynomial time.

Let us also note that, by combining our results for finding pure
Nash equilibria with a reduction, implicit in [18], of the problem of
finding approximate mixed Nash equilibria (definition omitted, see
e.g. [9]) to the problem of finding pure Nash equilibria, we obtain
the following result:

Theorem 4.11 An ε-approximate mixed Nash equilibrium of any
graphical game withO(log n) treewidth, bounded neighborhood
size and bounded number of strategies per player can be found in
time polynomial inn and1/ε.

One final remark: Our pure Nash equilibrium algorithms try to
reconcile two things. On the one hand, the running time of the
junction tree algorithm crucially depends on the width of the clique
tree compared to the size of the largest neighborhood of the game.
On the other hand, computing the optimal clique tree is an NP-
hard problem. To circumvent this intrinsic difficulty, notice that
we do not really need to find the optimal clique tree, but only a
constant factor approximation of the optimal. Indeed, the running
time of the junction tree algorithm is polynomial inn · sw, where
s is the number of strategies and w is the width of the clique tree
the algorithm runs on. Therefore, the running time on a constant
factor approximation of the optimal clique tree is polynomial in
the running time on the optimal clique tree — and the algorithm
for computing the constant factor approximation to the treewidth is

sufficiently fast if it runs in time polynomial inn · 2w, wherew is
the achieved treewidth.

There are various approximation algorithms for treewidth that
have this property. The one given in [3] runs in time proportional
to poly(n) · 24.67·k, wherek is the treewidth, and returns a clique
tree of width at most3.67 · k; similarly for Reed’s algorithm [31],
Robertson and Seymour’s algorithm [32] and other algorithms [5].
Interestingly, it turns outall algorithms presented in this section
can be derived as special cases of this scheme. Details are deferred
to the full paper.

4.4 Heuristics
Our definition of MRF(G, ε) ensures that for some smallε(G) <

1 most of the probability mass is concentrated on the set of pure
Nash equilibria ofG, if such equilibria exist. More generally, the
probability of a configuration decays exponentially in the number
of unsatisfied players. This observation suggests quite naturally the
use of sampling techniques to find pure Nash equilibria of games
or approximations to pure Nash equilibria, i.e. configurations with
as many satisfied players as possible. Markov Chain Monte Carlo
methods and Simulated Annealing (see e.g. [12]) can be easily
applied for computing pure Nash equilibria under our reduction.

Survey propagationis an algorithm originating in statistical in-
ference that appears to be very effective in solving randomk-SAT
instances and other constraint satisfaction problems (see, e.g. [6]).
Survey propagation performs better than belief propagation fork-
SAT instances near the SAT/UNSAT threshold (see e.g. [1] for the
later). In [25] survey propagation is extended to a family of survey
propagation algorithms (parameterized by a real numberρ ∈ [0, 1])
that has at one extreme (ρ = 0) belief propagation and on the other
extreme (ρ = 1) survey propagation. We believe that survey prop-
agation algorithms for pure Nash equilibria will be very useful for
solving hard instances of graphical games. The effectiveness of all
these schemes must be determined experimentally. Some experi-
mental results are presented in the next section.

5. EXPERIMENTS

The following algorithms for solving graphical games were imple-
mented: the Junction Tree Algorithm of Section 4, a Loopy Be-
lief Propagation Algorithm [30] and a Markov Chain Monte Carlo,
all based on our reduction. The Markov Chain Monte Carlo is a
Metropolis-Hastings algorithm with the naive proposal distribution.
The test cases were random graphical games constructed as fol-
lows: the graphs of the games were drawn from the familyG(n, p)
of random graphs, for different values ofn -number of players-
andp -densities of the games; the payoff tables were then popu-
lated with random values from[0, 1].

The Junction Tree Algorithm is exact; it was, therefore, only
meaningful to measure the dependence of its running time on the
density of the game-graph. Figure 1 shows the running time of the
junction tree algorithm on 15-player games for different densities,
where for each density we considered100 test cases. The exponen-
tial dependence of the running time on the density of the game is
apparent. This was expected since the running time is exponential
in the treewidth.

On the other hand, the Loopy Belief Propagation and the MCMC
algorithms are not exact, so their output on the test cases was com-
pared to that of the exact algorithm. In all our experiments and
regardless of the number of players, the Belief Propagation Algo-
rithm and the MCMC were let run for only a few iterations. Note,
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Figure 1: The running time of the Junction Tree algorithm for
different densities of 15 player games.

however, that the search space increases exponentially with the
number of players; this explains the divergence of the two curves
of Figure 2, in which we present the performance of the MCMC
algorithm for values ofn ranging from5 to 20 and for graphical
games of density0.5 —for every value ofn we considered100
test cases and we present the average of the results. The output of
the MCMC algorithm is comparable to that of the exact algorithm,
although the MCMC run in time linear in the number of players
whereas the exact algorithm in time exponential. Note also that for
the value of the density that we considered, the graphs of the games
are dense and we are departing from the regime where pure Nash
equilibria can be computed efficiently (see e.g. Figure 1).

5 10 15 20
4

6

8

10

12

14

16

18

20

# Players

 # Players 
 Satisfied      

MCMC 

Exact 

Figure 2: The performance of the MCMC algorithm for differ-
ent game sizes and density0.5. The performance is measured
in terms of the number of players that are satisfied, i.e. play a
strategy that is a best response to the strategies of their neigh-
bors.

In Figure 3 we present how the performance of the MCMC al-
gorithm scales with the density of the game. We observe that, for
low game densities, which result in games with small treewidth, the
MCMC algorithm is very efficient; as density increases the perfor-
mance diverges from the optimal value.
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Figure 3: The performance of the MCMC algorithm for differ-
ent densities of 15 player games.

Finally, in Figure 4 we present the performance of Loopy Belief
Propagation on a test set of15-player games with densities vary-
ing from 0.1 to 0.9. Belief Propagation was set to compute the
maximum-a-posteriori configuration and was let run for only a few
iterations. The result was examined to find how many players of
the game are satisfied, i.e. how many players play a strategy that is
a best response to the strategies of their neighbors, and was com-
pared to the optimal value as in Figures 2, 3. We observe that as
the density increases and the primal graph of the game becomes
rich in cycles the performance of loopy belief propagation deterio-
rates significantly. Even for small density values, the performance
is seriously affected by the small cycles introduced when making a
clique out of every neighborhood of the game (recall that the graph
of the MRF is the primal graph of the game). We believe that gen-
eralized belief propagation [34] —if set appropriately— will not be
affected by these small cycles introduced by the reduction and will
perform significantly better.
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