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Abstract

We present a technique to test servers that interact with clients using the Sun RPC protocol. The
technique requires the user to provide two things: a list of RPC calls for the server being tested, and a
set of invariants that are required to hold over the RPC communications trace between a set of clients
and the server. The technique works by generating random sequences of RPC calls and checking that
the invariants holds over the traces. If an invariant is violated, the violating sequence of RPC calls is
reported to the user. We report the results of our testing a block server and a lock server.

1 Introduction

Testing network applications is complex and time-consuming, often even as laborious as writing the appli-
cation itself. The test suite must be large and varied, and it must exercise all the capabilities of the protocol
being implemented. Generating a sufficient test suite can therefore be a very daunting task.

A complication unique testing network applications is the fact that network traffic is often unpredictable,
so applications run non-deterministically. Bugs in non-deterministic systems can be very difficult to expose:
doing so essentially requires some luck during testing. In addition, once a bug is discovered, it can be
problematic to replicate, since the exact system state (including the wider area network traffic) is often not
known and/or not easily controlled. This issue calls for a rich testing suite, and one in which testing results
are logged.

We address the specific problem of testing servers that interact with clients using the Sun RPC protocol.
Our proposed solution is a system that automatically generates and performs tests on a such a server. Given
a specification of RPCs handled by the server, we generate tests that send random sequences of RPCs to the
server and generate a trace of the RPC activity between client and server. After obtaining the trace, a set of
user-specified invariants are verified. These invariants check for particular patterns in the traces. If any of
these invariants fail, the trace that failed the invariant is presented to the user.

2 Related Work

In the area of test generation for distributed systems, previous work has involved inspecting the code of
the program to guide in the generation of good tests cases [3, 6, 8, 5]. Random testing has been used
with differing degrees of success [7, 4]. Our approach aims to combine the benefits of random testing—
automation, and generation of tests that a tester might not have thought of—while allowing the user to
specify the general shape of tests, to avoid generating a larger number of meaningless inputs.

Much of the work on testing and verification of distributed systems focuses on testing internal correct-
ness properties of distributed programs. In this area, model checking [1] has enjoyed wide acceptance as an
effective testing technique. The disadvantage of model checking is that the system first has to be abstracted,
and in this abstraction, important details may be lost or mistakes made. The benefits of model checking
are that once an appropriate abstraction exists, the system can be exhaustively tested for a small model.
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Figure 1: Layout of the testing system.

Our approach is different: we do not require the user to abstract a system, and our tests are by no means
exhaustive. However, they test an actual system, not an abstraction.

3 Design

Our testing system is divided into three components. The first generates the test code. The second is the
driver which uses this code to perform the tests and generates a trace file. The third checks that the user-
specified invariants hold for the trace file. The layout of the system is shown in Figure 1.

3.1 Test Generation

Tests are generated by creating sequences of random RPC calls—one sequence for each client taking part
in the test. The user supplies a list of RPC signatures that the server accepts and may also specify a set of
possible values for each RPC argument. Each time the tester is run, the test generator selects calls from this
list and produces valid input values for each call. These complete RPC calls are packaged together into a
complete test which is used by the test driver to directly send the calls to the server.

A simple example of a test for a lock server is shown below.

client 1: ACQUIRE("lock_a")
client 2: ACQUIRE("lock_b")
client 1: ACQUIRE("lock_c")
client 1: RELEASE("lock_b")
client 2: RELEASE("lock_b")

Because the RPCs are generated completely randomly, the client calls may not correspond to “normal”
behavior. In the code above, for example, client 1 releases lock b, which it does not own. Our assumption
in this style of test generation is that a server should behave correctly regardless of any client behavior. This
type of random testing has two main benefits: it generates code that a tester may not think of, and it can (and
does) generate large numbers of such tests which exposes to a broad spectrum of possible usage patterns.

RPCs are specified in the same format as the .x file used by arpc’s rpcc program. This allows our test-
ing tool to use the arpc library to perform the tests and, if the server already used arpc, saves the programmer
time in writing the RPC specifications for our tool. The programmer may optionally specify arguments for
our tester to use when performing the RPC calls in the .x file. These value specifications are given in
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V alueSpec ::== test V alueList

V alueList ::== StringList

::== IntList

::== BoolList

StringList ::== String

::== String, StringList

String ::== "*"
::== "*NumRange*" [A string containing a varying integer

value inside it]
::== "?NumRange" [A varying length string containing

random text]
IntList ::== integer

::== NumRange

::== IntList, IntList

NumRange ::== [integer:integer]
BoolList ::== T

::== F
::== T,F

Figure 2: Language for specifying values that RPC arguments may take.

struct put_args {
opaque key<>; /* test "key[1:5]" */
opaque value<>; /* test "?[1:10]" */

};

Figure 3: An example of the two random string specifications. This example defines the arguments for a
PUT RPC call on a block server.

specially formatted comments on the same line as the argument in the .x file and may describe strings,
integers, or boolean values (extending the language to handle other types of values such as floating point
numbers is trivial). If more than one value is given, the tester randomly picks a value from that set when
generating RPCs. The format of these comments is given in Figure 2. Note that if value specifications are
not given, default values are used.

Two of the String specifications are worth explaining. In the first, a range of numerical values is given
in a NumRange. For this specification, our tester inserts a random value in the given range into the string.
In the second, a NumRange is preceded by a question mark. In this case, our tester generates a string of
random characters with a length in the specified range. Examples of both of these string specifications is
given in Figure 3. The possible values for the key argument are "key1" . . ."key5"; value is any string
of length between 1 and 10, inclusive.

3.2 Test Driver

After the tests have been generated, the test driver performs the sequence of RPC calls that were created. In
order to perform these calls, a set of clients are instantiated and connections opened to the server. As the
RPC calls are made, the communication between the server and the clients are logged—we refer to this as
the communications trace or simply the trace. This trace is later inspected to determine whether the results
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conform to the user-specified invariants. Below is an example trace for a lock server. The trace is simply a
log of all the RPC calls sent and received by each of the clients.

client-server: client 1 ACQUIRE("lock_a")
client-server: client 2 ACQUIRE("lock_b")
server-client: client 1 GRANT("lock_a")
client-server: client 1 ACQUIRE("lock_c")
server-client: client 2 GRANT("lock_b")
server-client: client 1 GRANT("lock_c")
client-server: client 1 RELEASE("lock_b")
client-server: client 2 RELEASE("lock_b")
server-client: client 1 GRANT("lock_c")

Clients wait a random amount of time after sending each RPC, and after a timeout expires, the test
terminates, with the resulting trace passed to the invariant checker (Section 3.3).

3.3 Invariant Checking

In order to verify the accuracy of a server’s behavior, user-specified trace pattern invariants are checked.
These invariants are written in the language specified in Figure 4. This language’s function is primarily
pattern matching, and it provides primitives useful for writing the desired guarantees.

As an example, consider checking a lock server. The lock server’s author may wish to check that the
server never gives a lock to more than one client at the same time. One way to express such an invariant
on the RPC trace file is to ensure that for a given lock l, after a LOCK GRANT RPC is sent by the server,
no other LOCK GRANT RPC is issued before a LOCK RELEASE RPC is received for l. This invariant
can be expressed using our language as shown in Figure 5. Another example invariant for a block server is
shown in Figure 6.

A description of the functionality of each of the language’s statements is given below. Note that in-
variants that are not found to be valid are ignored. If an invariant fails, the test associated with the trace is
assumed to have discovered a bug, and the offending trace is presented to the user.

match RPC A pattern matching statement. All match statements must be matched in the trace in order
for the invariant to be valid.

require RPC A pattern matching statement. If the invariant is valid (i.e., if all match statements are
matched), and a require statement does not match, the invariant fails.

require Conditional Ensures that the values of the variables bound during pattern matching obey the spec-
ified condition. The invariant fails if it (the invariant) is valid and the specified condition does not hold.

any Matches an arbitrary number of trace entries, similar to the regular expression pattern /*/. This state-
ment is only useful when it is followed by a match or require pattern. It does not match the pattern
given in the next match or require statement—such patterns must go with those statements.

any except RPC Similar to any, but causes the rule to be invalid if the given pattern is matched. To allow
an arbitrary number of constraints, multiple any except or any except fail statements may appear
before the next match or require statement.

any except fail RPC Similar any except, but if the given pattern matches, the rule fails (instead of be-
coming invalid). This statement is enforced—the invariant fails—even when there are subsequent
match statements that have not yet been satisfied.
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Invariants ::== Invariant { Statements }
::== Invariant { Statements } Invariants

Statements ::== Statement

::== Statement Statements

Statement ::== match RPC

::== require RPC

::== require Conditional

::== any
::== any except RPC

::== any except fail RPC

RPC ::== Type Client RPC NAME(Arguments)
RPC ::== Type Client RPC NAME(Arguments) = Retval

Type ::== send
::== recv

Client ::== Arg

Retval ::== Arg

Arguments ::== ε

::== ArgsList

ArgsList ::== Arg

::== Arg, ArgsList

Arg ::== Identifier

::== *
Conditional ::== Identifier == Identifier

::== Identifier != Identifier

::== Identifier <= Identifier

::== Identifier < Identifier

Figure 4: Language for specifying trace pattern invariants.

Invariant {
match send client LOCK GRANT(lock) [lock and client are variable names, bound

during checking]
any except fail send * LOCK GRANT(lock)
match recv client LOCK RELEASE(lock)

}

Figure 5: Lock server invariant.

Invariant {
match recv * BLOCK PUT(key, value)
any except recv * BLOCK PUT(key, *)
any except recv * BLOCK REMOVE(key)
match recv * BLOCK GET(key) = value2
require value == value2

}

Figure 6: Block server invariant.
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4 Implementation

Our tester is mainly implemented in C++, but also contains some Perl scripts. The C++ class hierarchy
begins with test suite at the top, which drives the testing. test suite contains pointers to multiple
test objects which are our randomly generated tests (see Section 3.1).

Each test object contains a list of randomly generated RPC call objects (Section 4.1) and a pointer
to a tester client. The tester client object is responsible to send and receive RPC calls to and
from the server (Section 4.2). As the RPC calls are sent/received by the tester client, those calls are
logged in a Trace object. Trace objects are generated for every test, and are used to run the invariant
checker (i.e., the invariants are defined over a Trace object) (Section 4.3).

In addition to the main tester application, our design also includes a utility that compiles .x files and
invariant definitions into functionality needed by the tester. Due to timing constraints, we will not be imple-
menting a compiler, but instead describe how the translation might occur. We have manually performed the
translation for the programs we are testing.

4.1 Test Generation

When the .x file for a given protocol is compiled, a C++ file is generated that contains functionality necessary
to generate tests for that protocol. First, the .x file is parsed and a list of RPCs and arguments for each call
is determined, along with possible values for each argument. With this information, four functions are
generated for each call:

void *get args(svccb sbp) If sbp is NULL, this function randomly generates valid arguments and returns
a pointer to them in a memory block ready to be passed to the server as the arguments to the RPC
call. If sbp is not NULL, it demarshalls the arguments contained in the svccb structure and returns a
pointer to the resulting structure.

void print args(FILE *f, void *arg) Writes a formatted string of the arguments in the structure pointed to
by arg to the file f.

void *get reply() Allocates enough memory to hold a reply to the associated call and fills it with the default
reply values.

void print reply(FILE *f, void *rep) Writes a formatted string of the reply in the structure pointed to by
rep to the file f.

Function pointers to each of the above functions for a given RPC call are bundled into a RPC call defn
object. An array containing one of these objects for each call is created and included in a RPC proto defn
object.

Test generation occurs when a test suite object is instantiated. The test suite constructor is
passed the number of tests to create, the protocol definition, and a random seed. The random number
generator is seeded and the appropriate number of test classes are created. The test constructor is given
the number of RPC calls to generate and the protocol definition and generates a RPC call object for each
call. The RPC call constructor takes in the protocol definition. It randomly selects a valid RPC call id and
calls the get args and get reply functions contained in the corresponding RPC call defn object to
obtain the input and output pointers that will be given to the server. Once each RPC call in each test and
each test in the test suite has been created, test generation is complete and the actual testing is ready to be
executed.
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4.2 Driver

The top-level driver is a Perl script that takes as input the number of tests to be run, as well as test-generation
parameters such as the length of each client’s RPC call sequence, the number of clients per test, etc. The
script runs the number of tests requested, instantiating a new server and a new set of clients for each test.

Each test is identified by the random seed used to create it. The default operation of the script is to create
tests with seeds 0, 1, 2, ... up to the number of tests specified by the user. For a test i, the top-level driver
performs the following steps.

1. Start a new instance of the server on any unused port number.

2. Call the test program with seed i. The test program is written in C++ and uses libasync,
an asynchronous socket library [2]. The test program creates a test sequence to be performed by
multiple clients, connects to the server, performs the RPC calls, and after waiting a predetermined
amount of time for remaining server responses, disconnects from the server and checks the invariant
on the trace generated by the client-server communication.

3. If test returns 0, the test is successful. Otherwise, the test has failed. Terminate the top-level driver
loop and show the user the output generate by the test program (reason for failure).

At step 1 above, a new instance of the server is created. The reason for this creation is that the driver
cannot easily reset the entire server state—most servers lack an explicit method to do this. In general, we
cannot undo the effects of the RPC calls previously made, and the server is likely to end up in a peculiar
state after the random RPCs. (A lock server, for example, may have granted all of the locks that another set
of tests may request and not receive.) For clarity’s sake, each test stands on its own, starting from a fresh
server state.

4.2.1 Reproducibility

As we experimented, we observed that some aspects of the testing are beyond our control. In particular, we
cannot control the time at which the server receives the RPC calls we specify because we cannot control the
network traffic or libasync. The effect of this is such that it is difficult to exactly reproduce the results of a
given test.

Even though it is difficult to reproduce a particular test, repeated instances of different tests consistently
yield some of the same results. If incorrect behavior is exhibited by a certain test once, a different test is
likely to uncover the fault later.

4.3 Invariant Checker

To check an invariant specified in the language shown in Figure 4, we begin by tracking a current position
in the Trace object. The pattern matching statements—match and require—apply only to the current Trace
entry. The any* statements—any, any except, or any except fail—allow the pattern matching statements
to match trace entries beyond the current one. That is, if a pattern matching statement does not match
the current trace entry, and an any* statement appears before it, the next trace entry is checked. Note
that invariants which do not begin with an any statement have one implicitly prepended. Note also that
before the pattern matching statement is checked, the pattern specified by an any except or any except fail
statement—the except pattern—is checked. If an except pattern is found to match, the invariant is ruled
either invalid (in the case of an any except statement) or the invariant fails (in the case of an any except fail
statement).
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Figure 7: Timing diagram of a bug found in the lock server tested. Note that all RPC calls are performing
on the same lock. At time T, both Client 1 and Client 2 have the lock.

In order for an invariant to be valid, all of the match statements that appear in it must match some
distinct location in the trace. If a rule is valid, each require statement must also match or the rule fails. The
require Conditional statement imposes conditions on variables that are bound during the pattern matching
process. If any of those conditions are not true, the invariant fails. As well, if any of the require RPC
statements do not match, but all the match statements do, the rule fails.

5 Experiments

5.1 Subject Programs

To validate our ideas, we used our tool to test a lock server and a block server. Both servers were imple-
mented to support several programming assignments for a graduate distributed systems course at MIT. The
servers were written by the professor.

From the lock server, a client can REQUEST a lock, or RELEASE a lock that it holds. A server can
GRANT a lock that a client requested, or it can REVOKE a client’s currently held lock. Figure 5 shows the
trace invariant property that our tool checked: only one LOCK GRANTRPC for a given the same lock should
appear before a LOCK RELEASE on that lock.

The block server maintains a mapping of keys to values; a client may PUT a value with a specific key
onto the server, GET a value with a given key back, or REMOVE a key from the server. The server does not
send any RPCs to the client. Figure 6 shows the invariant we checked for the block server. It verifies that if
value is PUT on the server at some key, a later GET on that key retrieves the same value.

5.2 Setup

We evaluated our tool on each server using a wide variety of parameter values from 2-10 clients, 5-100 RPC
calls per client, and 1-10000 tests per run. RPC calls were delivered to the server as quickly as possible.
The tester ran successfully for both the lock and block servers.

5.3 Results

The block server passes all the tests. The lock server, on the other hand, violates its invariant. Figure 5
shows the bug that our tester found. Below is a trace from a test which fails the invariant.

Final Trace:
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CLIENT-SERVER client_id=0, acquire("lock5") reply: (true)
CLIENT-SERVER client_id=0, release("lock5") reply: (true)
CLIENT-SERVER client_id=1, acquire("lock5") reply: (true)
SERVER-CLIENT client_id=0, grant("lock5") reply: (true)
SERVER-CLIENT client_id=1, grant("lock5") reply: (true)
CLIENT-SERVER client_id=0, acquire(‘‘lock5’’) reply: (true)
SERVER-CLIENT client_id=1, revoke(‘‘lock5’’) reply: (true)
TEST FAILED: invariant did not hold.

In this test, clients 0 and 1 both receive a grant from the lock server, resulting in both clients holding the
lock, and violating a lock server’s crucial guarantee that a client’s ownership of a lock is unique.

Unfortunately, this bug cannot be reproduced each time the same RPC calls are made (see Section 4.2.1)
—the test above causes no invariant violation on a second try. However, the bug is rediscovered on some
similar test case each time we run our tool. On average, our tool catches the bug after 80 tests (average
computed over 10 runs of our tool running with two clients).

We located the source of the faulty behavior by running the tool on successively smaller examples—
decreasing the number of clients and RPC calls per tests—until we reproduced the fault using two clients
and five RPC calls per client. At this point, we looked at the lock server’s code to analyze the cause of the
fault.

The bug in the lock server turns out to be a subtle timing bug that arises when a client sends an un-
expected RPC call to the server. Figure 7 shows a timing diagram of the events that lead to two clients
being granted the same lock. Client 1 requests a lock, and the server sends back a grant RPC. While the
grant is in transit, client 1 releases the same lock, client 2 requests it, and client 1 requests it again. For this
sequence of RPC calls, the server will send a grant of the same lock to client 2, without checking first that
its previous grant of the lock (to client 1) was received and acknowledged. So at time T both clients have
the lock.

The bug went undetected through heavy use of the lock server (by dozens of students) because the
clients interacting with the server never happened to make this sequence of calls. Moreover, the precise
timing of events is crucial, so it would have been difficult to write a manual test that detects the fault. This
bug illustrates the potential power of random testing.

There is a simple fix for this bug: before sending a grant of a lock, the server can check that there is
no grant in transit for the same lock. This is easy to check, since a client that receives a grant sends back
an acknowledgment to the server by replying to the grant RPC call. The server shouldn’t send a grant or
respond to a release RPC unless its last grant of the same lock has been acknowledged.

6 Conclusion

Random testing is not a widely adopted testing practice. This is due in part to the lack of tools that automate
the process. Our solution aims to reduce the work of the tester as much as possible by automating both
the generating and evaluation of tests, and by providing a simple, intuitive language in which to express
correctness properties.

Our technique has two main limitations. The user of our tool may want to check properties that are
not easily (or at all) expressible with our invariant language. In our tool, invariants must be expressed over
linear traces of client-server communication, at the level of granularity provided by the RPC interface. The
linear nature of the traces, and their level of granularity, may be insufficient for some correctness properties.
The second drawback is the lack of control the user has over test generation. The user can only specify the
values that are used as arguments of the RPC calls; the specific sequences of calls are beyond their control.
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On the other hand, these limitations provide a user with a great advantage: automation. The user need
not write any code to generate tests or to test the invariant. If the invariant is expressible using our language
very little is required from the user—the tool can produce thousands of tests within seconds. As well,
our experiments indicate that our language quite naturally expresses interesting and relevant properties of
servers.

A second benefit of our approach is that the user chooses how much or how little to specify. Our tool
works just as effectively with a partial specifications as it does with a complete specification. In the extreme,
the tool is useful even if no specification is present by checking that the server does not crash under long or
bizarre sequences of RPC calls from the clients.

Random testing is a blunt, yet highly effective tool that complements more manual, precise approaches
to testing. The key to using random testing effectively is to keep it simple; more constraints on the testing
might easily rob a user of its benefits. These benefits come from generating myriads of simple, cheap tests
that reveal bugs not easily envisioned through other testing methodologies.
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