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Abstract. This paper describes a technique that selects, from a large set of test
inputs, a small subset likely to reveal faults in the software under test. The tech-
nique takes a program or software component, plus a set of correct executions—
say, from observations of the software running properly, or from an existing test
suite that a user wishes to enhance. The technique first infers an operational model
of the software’s operation. Then, inputs whose operational pattern of execution
differs from the model in specific ways are suggestive of faults. These inputs are
further reduced by selecting only one input per operational pattern. The result is
a small portion of the original inputs, deemed by the technique as most likely to
reveal faults. Thus, the technique can also be seen as an error-detection technique.

The paper describes two additional techniques that complement test input se-
lection. One is a technique for automatically producing an oracle (a set of asser-
tions) for a test input from the operational model, thus transforming the test input
into a test case. The other is a classification-guided test input generation tech-
nique that also makes use of operational models and patterns. When generating
inputs, it filters out code sequences that are unlikely to contribute to legal inputs,
improving the efficiency of its search for fault-revealing inputs.

We have implemented these techniques in the Eclat tool, which generates unit
tests for Java classes. Eclat’s input is a set of classes to test and an example
program execution—say, a passing test suite. Eclat’s output is a set of JUnit test
cases, each containing a potentially fault-revealing input and a set of assertions at
least one of which fails. In our experiments, Eclat successfully generated inputs
that exposed fault-revealing behavior; we have used Eclat to reveal real errors in
programs. The inputs it selects as fault-revealing are an order of magnitude as
likely to reveal a fault as all generated inputs.

1 Introduction

Much of the skill in testing a software artifact lies in carefully constructing a small set
of test cases that reveals as many errors as possible. A test case has two components:
an input to the program or module, and anoracle, a procedure that determines whether
the program behaves as expected on the input. Many techniques can automatically gen-
erate candidate inputs for a program [10, 18, 17, 23, 8, 4, 19, 9, 12], but constructing an
oracle for each input remains a largely manual task (unless a formal specification of
the software exists, which is rare). Thus, a test engineer wishing to use automated input



generation techniques is often faced with the task of inspecting each resulting candidate
input, determining whether it is a useful addition to the test suite, and writing an oracle
for the input or somehow verifying that the output is correct. Doing so for even a few
dozen inputs—much less the thousands of inputs automated techniques can generate—
can be very costly in manual effort.

This paper presents three techniques that help the tester with the difficult task of
creating new test cases. The first technique is an input selection technique: it selects,
from a large set of test inputs, a small subset likely to reveal faults in the software under
test—inputs for which writing full-fledged test cases is worth the effort. The goal of the
technique is to focus the tester’s effort on inputs most likely to reveal faults. Thus, the
technique can also be viewed as an error-detection technique, and we have used it to
find real errors in practice.

The input selection technique works by comparing the program’s behavior on a
given input against an operational model of correct operation. The model is derived
from an example program execution, which can be an initial test suite or a set of pro-
gram runs. If the program violates the model when run on the input, the technique clas-
sifies the input as (1) likely to constitute an illegal input that the program is not required
to handle, (2) likely to produce normal operation of the program (despite violating the
model), or (3) likely to reveal a fault. A second component of the technique (called the
reducer) discards redundant inputs—inputs that lead to similar program behavior.

The other two techniques complement the input selection technique, by converting
its output (test inputs) into a test suite (consisting of full-fledged test cases), and by
providing a source of candidate test inputs for it to operate on.

Converting a test input into a test case requires the addition of an oracle, which
determines whether the test succeeds or fails. We use an oracle that checks the properties
in the operational model. Since the model was derived from correct executions, those
properties are suggestive of correct behavior. By construction, the selected inputs will
fail on these oracles. Together, the input selection and oracle generation techniques
produce a set of failing test cases. This is a great starting point for the tester, whose job
is to inspect each input, determine if its execution is in fact faulty, and determine if the
oracle captures the proper behavior of the input. The tester can accept, reject, or modify
each test input and test oracle.

The third technique is a generation-guided test input generation technique that makes
use of operational-model-based classification to construct legal inputs. The input se-
lection technique requires a set of candidate inputs; this technique provides it, while
avoiding the generation of many illegal inputs.

We have implemented these techniques in the Eclat tool, which generates unit tests
for Java classes. Eclat’s input is a set of classes to test and an example program execu-
tion (say, a passing test suite). Eclat’s output is a set of JUnit test cases, each containing
a potentially fault-revealing input and a set of assertions at least one of which fails. Our
experiments show that Eclat reveals real errors in programs, and the inputs it selects are
an order of magnitude as likely to reveal a fault as all generated inputs. Eclat is publicly
available athttp://pag.csail.mit.edu/eclat/ .

The rest of the paper is structured as follows. Section 2 introduces the techniques
with an example use of Eclat, a tool that implements them. Section 3 describes the tech-



public class BoundedStack {
private int[] elems;
private int numElems;
private int max;

public BoundedStack() { ... }
public int getNumberOfElements() { ... }
public int[] getArray() { ... }
public int maxSize() { ... }
public boolean isFull() { ... }
public boolean isEmpty() { ... }
public boolean isMember(int k) { ... }
public void push(int k) { ... }
public int top() { ... }

public void pop() {
numElems --;

}

public boolean equals(BoundedStack s) {
if (s.maxSize() != max)

return false;
if (s.getNumberOfElements() != numElems)

return false;
int[] sElems = s.getArray();
for (int j=0; j<numElems; j++) {

if (elems[j] != sElems[j])
return false;

}
return true;

}
}

Fig. 1. ClassBoundedStack [22] (abbreviated). Methodspop andequals contain errors.

niques in detail. Section 4 describes the Eclat tool. Section 5 details our experimental
evaluation of the technique. Section 6 discusses related and future work, and Section 7
concludes.

2 Example: BoundedStack

We illustrate the test generation and selection technique by describing the operation
of the Eclat tool, when applied to a bounded stack implementation used previously in
the literature [22, 30, 9]. The bounded stack implementation (Figure 1) and testing code
were written in Java by two students, an “author” and a “tester.” The tester wrote a set
of axioms on which the author based the implementation. The tester also wrote two
small test suites by hand (one containing 8 tests, the other 12) using different method-
ologies [22]. The smaller test suite reveals no errors, and the larger suite reveals one
error (the methodpop incorrectly handles popping an empty stack).

Eclat takes two inputs: the class under test, and a set of correct uses, in the form of
an executable program that exercises the class. In this example, the set of correct uses
is the 8-test passing test suite.

Eclat’s output is a set of 3 new inputs—uses of the stack—that are classified as
fault-revealing by the tool because their behavior differs from the provided test suite.
Eclat can produce output in text, XML, or a JUnit test suite. Figure 2 shows the output



Eclat Report
Input 1 BoundedStack var8 = new BoundedStack();

var8.push(2);
int var9 = var8.getNumberOfElements();
var8.push(var9);

The last method invocation violated this property:

On exit:size(var8.elems[])− 1 6= var8.elems[var8.max− 1]

During execution of the last method invocation, a postcondition was violated. Since no preconditions were
violated, this suggests a fault.

Input 2 BoundedStack var8 = new BoundedStack();
var8.equals((BoundedStack)null);

The last method invocation signaled a
java.lang.NullPointerException .

There were no violations, but a throwable was signaled. Since the throwable is considered severe, this suggests
a fault.

Input 3 BoundedStack var8 = new BoundedStack();
var8.pop();

The last method invocation violated this property:

On exit:numElems ≥ 0

During execution of the last method invocation, a postcondition was violated. Since no preconditions were
violated, this suggests a fault.

Fig. 2. Eclat’s XML output forBoundedStack (formatted for presentation). Inputs 2 and 3 ex-
pose errors in the code under test. Input 1 is a false report: it merely indicates a deficiency in the
original test suite.

in XML form. Each input is accompanied by an explanation of why the input suggests
a fault, including any violated properties. Each violated property was true during exe-
cution of the original test suite, but was violated by the new input.

Input 1 violates one property during the call ofvar8.push(var9) . The violated
property says that the last element of arrayelems is never equal to its index. This input
reveals no fault; Eclat has made a mistake. The input, however, does point out a stack
state not covered by the original test suite, so it may be a good addition to the test suite.

Execution of Input 2 violates no properties, but theequals method throws an ex-
ception. Eclat classifies the input as fault-revealing. Theequals method (Figure 1)
incorrectly handles anull argument. This fault went undetected in all previous analy-
ses of the class [22, 30, 9].

Input 3 is classified as fault-revealing because its execution violates the property
numElems ≥ 0. The variablenumElems becomes negative after a call ofpop on an
empty stack. Eclat has revealed another true error: thepop method always decrements
the top-of-stack pointer, even on an empty stack. This is a subtle error, because it silently
corrupts the stack’s state, and a fault only arises on a subsequent access to the stack. In



public void test_3_pop() throws Exception {

ubs.BoundedStack var8 = new ubs.BoundedStack();

// Check preconditions.
checkPreconditions_pop(var8);
checkObjectInvariants(var8);

var8.pop();

// Check postconditions.
checkPostconditions_pop(var8);
checkObjectInvariants(var8);

}

public static void checkPreconditions_pop(Object thiz) {

// Check: elems[max-1] >= 0
junit.framework.Assert.assertTrue(

eclat.Helper.intArray(thiz, "elems")[eclat.Helper.intField(thiz, "max")-1] >= 0);
}

public static void checkPostconditions_pop(Object thiz) {

// Check: elems[max-1] >= 0
junit.framework.Assert.assertTrue(

eclat.Helper.intArray(thiz, "elems")[eclat.Helper.intField(thiz, "max")-1] >= 0);
}

public static void checkObjectInvariants(Object thiz) {

// Check: max == elems.length
junit.framework.Assert.assertTrue(

eclat.Helper.intField(thiz, "max")
== eclat.Helper.intArray(thiz, "elems").length);

// Check: elems != null
junit.framework.Assert.assertTrue(

eclat.Helper.intArray(thiz, "elems") != null);

// Check: max == 2
junit.framework.Assert.assertTrue(

eclat.Helper.intField(thiz, "max") == 2);

// Check: numElems >= 0
junit.framework.Assert.assertTrue(

eclat.Helper.intField(thiz, "numElems") >= 0);
}

Fig. 3. JUnit test created by Eclat corresponding to Input 3 of Figure 2. When this JUnit test is
executed, the last assertion incheckObjectInvariants fails during the second call (at the end
of test 3 pop ). This test detects an error inBoundedStack ’s handling ofpop when applied to
an empty stack. Fields likethis.elems are accessed via reflection, through method calls like
eclat.Helper.intArray(this, "elems") . This allows the JUnit test suite to access non-
public members of the tested class.



particular, Input 3 itself has no user-observable fault; Eclat detects the corrupted stack
state before it leads to an observable fault. A more complicated input—for example, an
input that attempts to push an element when the stack pointer is negative and leads to
an out-of-bounds exception—would probably be harder to understand and less useful
for debugging.

Figure 3 shows a portion of Eclat’s JUnit output. The figure shows the JUnit test
created for Input 3, and its associated helper methods. Each test in the JUnit test suite
will fail upon execution, indicating the violated property.

In summary, Eclat creates 3 inputs that quickly lead a user to discover two errors,
and provides a JUnit test suite that exhibits the faulty behavior. Behind the curtains,
Eclat generates and analyzes 806 distinct inputs. Some are discarded because they vi-
olate no properties and throw no exceptions (and thus suggest no faults). Some are
discarded because they violate properties but are determined to constitute illegal uses
of the class instead of faults. Some are discarded because they violate properties but
are considered a new but non-faulty use of the class. Finally, some inputs are discarded
because they behave similarly to already-chosen inputs: 5 of the inputs expose the pop-
on-empty-stack fault (for example, one input pushes two items and then pops three
times) but only one is selected.

3 Selection and Generation via Classification

This section describes the technique for selecting test inputs likely to reveal faults (Sec-
tions 3.1–3.3), the use of an operational model to create test cases from test inputs
(Section 3.4), and the technique for generating candidate inputs (Section 3.5). We de-
scribe the techniques in the context of unit testing in an object-oriented programming
language. The techniques can also be applied to non-object-oriented programs and to
components larger than methods and constructors (see Section 3.6).

Figure 4 shows the input selection technique. The technique requires three things:
(1) the program under test, (2) a set of correct executions of the program (for instance,
an existing passing test suite for the program that a user wishes to enhance), and (3) a
source of candidate inputs (each candidate may be an illegal input, or cause the program
to behave normally, or reveal a fault).

The selection technique has three steps.

– Model generation.Observe the program’s behavior on the provided correct execu-
tions, and create anoperational modelof correct behavior (Section 3.1).

– Classification.Classify each candidate as (1)illegal, (2) normal operation, or (3)
fault-revealing. Do this by executing each candidate and comparing the program’s
behavior against the operational model (Section 3.2).

– Reduction. Partition thefault-revealingcandidates based on theirviolation pat-
tern: the set of violated properties. Report one candidate from each partition (Sec-
tion 3.3).

3.1 Model Generation

The first step is to generate an operational model of the program. An operational model
consists of properties that hold at the boundary of the program’s components (e.g., on a
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Fig. 4. The input selection technique. Implicit in the diagram is the program under test. Rectan-
gles with rounded corners represent steps in the technique, and rectangles with square corners
represent artifacts.

public method’s entry and exit). Our techniques impose no constraints on the program
behavior captured by a model, but they require that every property can be evaluated at
runtime.

The Eclat implementation uses operational abstractions generated by the Daikon
invariant detector [11]. There are other techniques for generating models of program
behavior based on an example use of the program [14, 26, 1, 16]. The models that these
techniques generate vary in the kinds of properties they express, from legal sequences
of method calls [26] to algebraic specifications of method behavior [16].

Figure 5 shows a simple operational model forBoundedStack . In this model, prop-
erties are observations about the state of the stack at various program points.

3.2 The Classifier

The classifier takes a candidate input and labels itillegal, normal operation, or fault-
revealing. The classifier takes three arguments: a candidate input, the program under
test, and an operational model. The classifier runs the program on the candidate input
and records which model properties are violated during execution.

A violation means that the candidate input’s behavior deviated from previous be-
havior of the program. Since the previously-seen behavior may be incomplete, such a
violation does not necessarily imply faulty behavior. Depending on its violation pattern
(the set of violated properties), the classifier labels a candidate input asillegal, normal
operation, or fault-revealing. Figure 6 shows the decision table.

Executing an input can result in two kinds of violations: entry or exit violations.
Entry violations suggest illegal program inputs, and exit violations suggest improper
program behavior. The four possible categories of entry/exit violations are:

– No entry or exit violations. This category means that according to the operational
model, the program received legal inputs and behaved properly. The technique la-
bels the inputnormal operation.



Object invariants (hold on entry and exit of all public methods)
max = elems.length
elems 6= null

max = 2
numElems ≥ 0

Properties that hold on entry topop
elems[max− 1] ≥ 0

Properties that hold on exit frompop
elems[max− 1] ≥ 0

Properties that hold on entry topush
numElems ∈ {0, 1}

Properties that hold on exit frompush
numElems ∈ {1, 2}
size(elems[])− 1 6= elems[max− 1]

Fig. 5. Part of an operational model forBoundedStack with respect to an 8-element test suite,
generated by the Daikon [11] tool. An operational model reflects particulars of the test suite used
to derive it; for example, the last property states that the last element in arrayelems is never
equal to its index.

Entry Exit
violations?violations? Classification

no no normal operation
no yes fault-revealing
yes no (new)normal operation
yes yes illegal

Fig. 6. Decision table for classifying a candidate input, based on the model violations that result
from its execution.

– No entry violations, some exit violations.According to the model, a legal pro-
gram input led to improper program behavior. The technique labels the inputfault-
revealing.

– Some entry violations, no exit violations.The program behaved properly on an
illegal input. Since the program behaved properly, the technique labels the input
normal operation. The program’s satisfaction of the exit properties means that it is
normal behavior; violation of the entry properties man that it is new behavior not
seen in the example correct execution from which the model was generated.

– Some entry and some exit violations.The program behaved improperly on an
illegal input. The technique labels the inputillegal.



BoundedStack var0 = new BoundedStack();
var0.pop();
BoundedStack var0 = new BoundedStack();
var0.push(3);
var0.pop();
int var1 = var0.top();
var0.pop();

Fig. 7. Two Eclat-generated inputs that reveal the same error in thepop method. Both inputs
violate the single propertynumElems ≥ 0 on exit from the lastpop .

3.3 The Reducer

Section 3.2 described how an input’s violation pattern leads to its classification. Vio-
lation patterns also induce a partition on all inputs, with two inputs belonging to the
same partition if they violate the same properties. Inputs exhibiting the same pattern of
violations are likely to be manifestations of the same faulty program behavior. Consider
Figure 7, which contains two fault-revealing inputs. Both inputs violate the same set of
properties—namely, the single propertynumElems ≥ 0—and they uncover the same
error in methodpop . Presenting only one input will save the user the time to inspect a
redundant input.

3.4 Oracle Generation: From Test Input to Test Case

A test engineer’s goal is to find errors and to write tests that may find errors in the
future. A test consists of an input and an oracle, so providing test inputs, even ones that
are likely to be fault-revealing, leaves the test engineer responsible for determining both
how the program ought to behave on the input, and how to verify that behavior. This
section describes a technique that automatically converts a test input into a test case by
proposing an oracle. The human remains the final arbiter of the test suite and should
check and/or modify each test case, but the effort can be greatly eased by providing
complete test cases rather than partial ones.

The oracle generation technique uses the model described in Section 3.1. Since the
properties can be evaluated at run time, they can be converted into assertions and used
as test oracles. These oracles check for deviation from previously-observed behavior.
In addition to checking behavior, the properties serve as a human-readable explanation
of what is being checked, which is important in a test case. Figure 3 shows an example
of a test case output by our implementation.

3.5 Classifier-Guided Input Generation

We have presented a technique that selects from a set of candidate inputs a subset likely
to reveal faults, and a technique that converts an input into a test case. This section
describes a similar methodology to avoid generating illegal inputs in a bottom-up input
generation strategy. First we present an unguided strategy for generating inputs, and
then we present an enhancement to the strategy that makes use of the classifier from
Section 3.2.



We describe input generation in the context of inputs like those in Figure 7, where
an input is a sequence of method calls. The last method call is the tested call, with all
previous method calls setting up state for the tested call. For example, the second input
in Figure 7 has five method calls; the first four are setup, and the fourth one tests the
methodpop via the method callvar0.pop() .

Unguided Bottom-up Generation. The unguided bottom-up generation strategy main-
tains a growing pool of values used to construct new inputs. Every value in the pool is
accompanied by a code snippet (usually a sequence of method calls) that can be run to
construct the value. Each code snippet can be viewed as a test input.

New values are created by combining existing values through method calls. For ex-
ample, given stack values and integer valuei, the method calls.isMember( i) creates
a new boolean value. Methods that returnvoid are treated as producing a new value
for the receiver. For example, method calls.push( i) creates a new stack value.

Bottom-up input generation proceeds in rounds. The pool is initialized with a set of
initial values (for example, in Java, a few primitive values andnull ). In each round,
new values are created by calling methods and constructors with values from the pool.
Each new value is added to the pool and its code is emitted as a test input. The process
is repeated any number of times.

Combining Generation and Classification.The unguided generation strategy is likely
to produce both interesting inputs and a large number of illegal inputs, since there are no
constraints on the arguments passed to method calls. The guided generation technique
takes advantage of the classifier to guide the generation process.

As before, input generation proceeds in rounds. For each round:

1. Construct a new set of candidate values (and corresponding inputs) from the exist-
ing pool.

2. Classify the new candidate inputs with the classifier.
3. Discard inputs labeledillegal, add the values represented by the candidates labeled

normal operationto the pool, and emit inputs labeledfault-revealing(but do not
add them to the pool).

Figure 8 illustrates the process (it also adds the oracle generation technique dis-
cussed in Section 3.4, to give a complete view of the multiple techniques in a single
framework). In the classifier-guided technique, a set of candidate inputs is no longer
a required input—it has been replaced by an input generator that uses the classifier to
avoid creating illegal inputs.

This enhancement removesillegal andfault-revealinginputs from the pool as soon
as they are discovered, preventing these inputs from being used as building blocks to
new method calls (any input that makes such a call would also be classifiedillegal, and
is therefore useless to construct).

3.6 Discussion

Applicability. We have presented our test selection technique in the context of an
object-oriented programming language. The technique is also applicable in other pro-



generator
model

classifier

input
generator

reducer

inputs
candidate

inputs
fault−rev.

test
cases

illegal
inputs

normal
inputs

fault−rev.
inputs

reduced

execution
correct

generator
oracle

model

Fig. 8. The input selection technique of Figure 4, augmented with an input generator that uses
the classifier to avoid creating illegal inputs, and with an oracle generator that produces test cases
from test inputs. This diagram shows all the paper’s techniques in a single integrated framework.

gramming contexts, as long as an operational model can be obtained, the model can be
evaluated in the context of new program executions, and the model can be partitioned
into entry and exit properties (preconditions and postconditions).

The technique reveals faults that are violations of the model properties. Eclat uses
the Daikon invariant detector to infer a model. Daikon infers many kinds of properties
about data structures, including heap-based ones, but does not infer, for instance, tem-
poral properties of a program. Thus, one would not expect Eclat to be particularly good
at finding faults that have to do with temporal properties.

Integration with manually-written specifications. Our research addresses a test-
ing situation in which the tester has no access to a formal specification, but has a set of
correct program executions from which an operational model can be derived. Increas-
ingly, programmers write partial specifications to capture important properties of their
software; safety-critical systems, for instance, sometimes contain at least a partial spec-
ification of the critical parts of the system. These specifications can be used to generate
and classify test inputs. Partial specifications can erroneously classify inputs; for exam-
ple, an illegal input may be labeled legal because the partially-specified precondition
is not strong enough. Our classification technique permits use of manually-written or
mechanically-derived properties, or both. The operational model can be complemented
with manually-written specifications that capture important properties not mechanically
derived. Conversely, partial specifications can be complemented with inferred proper-
ties to improve the input generation and classification process.



Number of rounds 4
Goal number of new invocations per method per round 100
Failed tries after which generation attempts stop for a given method100
Time limit (generation stops after limit is exceeded) no limit

Fig. 9. Eclat’s default parameters for generating test inputs.

4 Implementation: Eclat

We have implemented our input generation, input selection, and oracle generation tech-
niques in Eclat, a tool that automatically creates unit tests for Java classes. Eclat can pro-
duce output in text, XML, or a JUnit test suite. Eclat can be used through a command-
line interface or as an Eclipse plugin. Eclat is publicly available athttp://pag.

csail.mit.edu/eclat/ .
Eclat takes as input a set of classes to test and a program or test suiteP that uses

the classes. Eclat performs the following steps.
Deriving an operational model.Eclat uses the Daikon dynamic invariant detector

[11] to derive a model of the classes’ behavior onP ; an example of Daikon’s output
appeared in Figure 5.

Compiling for runtime property checking. We have implemented a run-time-
check instrumenter (distributed as part of Daikon athttp://pag.csail.mit.edu/

daikon/ ). The instrumenter takes the source files of the tested classes and the oper-
ational model derived by Daikon. It transforms the sources to check model properties
during execution. Instrumentation is transparent: a violation does not alter the behavior
of the class. Violated properties are recorded in a log.

Generating candidate inputs.Eclat generates candidate inputs using the classifier-
guided, bottom-up generation strategy outlined in Section 3.5. Each round, new inputs
are created by calling methods of the tested classes, selecting parameters at random
from the pool. For each round, Eclat attempts to create a fixed number of new inputs
for a given method using existing values from the pool. After a fixed number of failed
attempts, it moves on to the next method. Figure 9 gives Eclat’s default parameters.
Section 5.6 evaluates Eclat’s behavior when varying these parameters.

5 Evaluation

We have run a series of experiments to quantify the effectiveness of our test input gen-
eration and selection techniques. Section 5.1 introduces the programs and experimen-
tal methodology. Section 5.2 evaluates how well Eclat’s selected inputs reveal faults.
Section 5.3 measures Eclat’s effectiveness when supplied small initial test suites. Sec-
tions 5.4–5.6 evaluate the classifier, the reducer, and the classifier-guided input genera-
tor individually.

5.1 Subject Programs and Methodology

Figure 10 lists our subject programs. The programs encompass 64 distinct interfaces,
and a total of 631 implementations of those interfaces in 75,000 non-comment non-



suites perindependentclasses per public NCNB
Program versions version componentscomponentmethods LOC
BoundedStack 1 2 1 1 11 88
DSAA 1 1 9 1.5 110 640
JMLSamples 1 1 25 1.9 221 1392
utilMDE 1 2 1 1 69 1832
RatPoly 97 1 1 4 17 512
Directions 80 2 1 6 42 342

Fig. 10.Subject programs. For programs with multiple versions, numbers are average per version.
NCNB LOC means non-comment, non-blank lines of code. These numbers do not include testing
code.

blank lines of code. All subject programs implement modestly-sized libraries designed
to support larger programs; thus, unit testing is appropriate for them. All errors are real
errors inadvertently introduced by the author(s) of the program.

– BoundedStack is the stack implementation discussed in Section 2. We report sep-
arately the results of running Eclat with the 8-test suite, and with the 12-test suite
(with the one fault-revealing test removed).

– DSAA is a collection of data structures from an introductory textbook [25]. The
author of the classes wrote a small set of example uses of the class: they are not
exhaustive tests.

– JMLSamples is a collection of 25 classes that illustrate the use of the JML specifi-
cation language. It is part of the JML distribution (www.jmlspecs.org ). The test
suites and specifications were written by the authors of the classes.

– utilMDE is a utility package that augments thejava.util package. We report two
results: one running Eclat with the test suite written by the authors of utilMDE, and
the other via the unit tests of an unrelated program (Daikon [11]) that uses part of
the utilMDE package.

– RatPoly is a set of student solutions to an assignment in MIT class 6.170, Labora-
tory in Software Engineering. The RatPoly library implements the core of a graph-
ing calculator for polynomials over rational numbers. The course staff provided a
test suite to the students as part of the assignment.

– Directions is a different set of student solutions in MIT class 6.170, written by the
same students who wrote the RatPoly solutions. The Directions library is used by
a MapQuest-like program that outputs directions for traveling from one location
to another along Boston-area streets. For this assignment, students wrote their own
test suites. We report separately the results of running Eclat with the student-written
suite, and with the suite used by the staff to grade the assignment, which was not
provided to the students.

Eclat assumes a correct set of executions. Before running Eclat on BoundedStack
and its 12-test suite, which contains one failing test, we removed the failing test.

For RatPoly, we discarded submissions that did not pass the staff test suite, which
was provided as part of the assignment. For both RatPoly and Directions, we also dis-
carded submissions for which Eclat generated more than 10 times the average number



of fault-revealing inputs. These were solutions so faulty that finding fault-revealing in-
puts was not challenging, making input selection techniques unnecessary. The numbers
in Figure 10 count only versions we kept.

Measurements.We organized our subject programs into nine experiments, each
corresponding to using Eclat with a particular subject program and test suite. For a given
experiment, we ran Eclat separately on each independent component (for example, we
ran Eclat separately on DSAA’s nine components: a binary tree, a disjoint set, a treap,
an array-backed stack, a list-backed stack, a queue, a red-black tree, a linked list, and
a binary heap). Thus, each experiment consisted of potentially many runs of Eclat: one
per 〈 component, version〉 pair. For each experiment, we report results that are the
average over all runs.

When computing average results for all experiments, we give the same weight to
each experiment, regardless of the number of versions or runs of Eclat that the program
represents. We do this to avoid over-representing experiments with multiple versions or
components.

We wrote formal specifications for all the subject programs (except for JMLSamples,
which already had formal specifications written by its authors). We use the specifica-
tions to evaluate the classification technique, with the specification representing an ideal
classifier. Of course, in the presence of a formal specification our classification tech-
nique is not necessary: the specification indicates whether an input is illegal, normal, or
fault-revealing. Our techniques are intended for use when formal specifications are not
available, as was the case for most of the programs.

Comparison with other tools.JCrasher [9], Jtest [19], and Jov [30] have the same
goals as Eclat: to generate random candidate inputs and select potentially fault-revealing
ones. We report results from running JCrasher. We tried the other tools, but Jov and Jtest
were unusable in many instances (Jov sometimes exited abnormally, and Jtest some-
times failed to terminate).

5.2 Evaluating Eclat’s output

Figure 11 shows how many inputs per run Eclat generated, how many it selected, and
how many of those revealed faults. The figure also shows JCrasher’s results on the sub-
ject programs. The results for JCrasher are the same for experiments that use the same
programs with different test suites because JCrasher does not make use of the test suite.
We also executed all the inputs against the formal specifications (usingjmlc [6]). We
considered an input fault-revealing if it satisfied all preconditions of the tested method,
and the method invocation caused a postcondition violation.

On average, Eclat selected 5.0 inputs per run, and 30% of those revealed a fault. By
comparison, JCrasher selected 1.13 inputs per run, and 0.92% of those revealed a fault.

The inputs that Eclat selects are an order of magnitude as likely to reveal faults as the
original candidate inputs (30% vs. 2.3%). Figure 12 shows another view of the results:
it gives the true label of the generated and selected inputs, i.e., the label assigned by the
formal specification. Selection is effective at improving a set of inputs by increasing the
ratio of fault-revealing to non-fault-revealing ones.



Generated inputs Selected inputs JCrasher inputs
inputs revealpreci- inputs revealpreci- inputs revealpreci-

Program generatedfaults sion selectedfaults sion selectedfaults sion
BoundedStack(8-test suite) 806 13 1.6% 3 2 67% 0 0 —
BoundedStack(12-test suite) 1411 22 1.6% 1 1 100% 0 0 —
DSAA 806 0 0% 1.3 0 0% 0.89 0 0%
JMLSamples 396 0.50 0.13% 0.72 0.061 8.4% 0.12 0 0%
utilMDE (test suite) 1787 92 5.1% 18 4 22% 1 0 0%
utilMDE (sample usage) 1774 63 3.6% 18 2 11% 1 0 0%
RatPoly 2862 29 1.0% 1.5 0.65 42% 4 0.13 3.3%
Directions (student suite) 1099 40 3.6% 1.3 0.081 6.4% 1.6 0.025 1.6%
Directions (staff suite) 1099 41 3.8% 0.45 0.079 18% 1.6 0.025 1.6%
average 1338 33 2.3% 5.0 1.1 30% 1.13 0.02 0.92%

Fig. 11.Summary of Eclat’s results. The first three numeric columns represent inputs internally
generated by Eclat. The next three columns represent inputs reported to the user (after selection
and reduction). The last three columns represent inputs selected as fault-revealing by JCrasher.
Precision is the percentage of inputs that are fault-revealing. We calculated the average precision
by taking the average of the individual experiments; this gives each experiment equal weight, but
is slightly different from dividing the average number of fault-revealing inputs by the average
number of selected inputs.

true
label inputs generatedinputs selected
normal 74% 31%
illegal 24% 38%
fault 2.3% 30%

Fig. 12. True labels of generated and selected inputs. The entries in each column sum to 100%
(modulo rounding imprecision). These results represent a total of 440,000 inputs.

5.3 Effectiveness on Small Initial Test Suites

Classification depends on a set of correct program executions to derive an approximate
model of correct program behavior. This section measures the effect of the initial test
suite on Eclat’s fault-finding effectiveness. To evaluate the technique’s performance on
smaller suites, we artificially reduced the set of correct executions used by Eclat to
construct an operational model. We compared our previous results with running Eclat
using only the first 10% of the original execution trace (which was itself sometimes
quite small). The table below shows the results.

inputs reveal inputs reveal
generatedfaults selectedfaults

original trace 1338 33 5.0 1.1
10% of trace 1219 29 5.6 1.2

When given a smaller trace, Eclat selected more inputs (5.6 for the small trace, 5.0
for the original trace). Of those, almost the same percentage were fault-revealing.



true Eclat label
label normal illegal fault recall
normal 0.67 0.045 0.030 90%
illegal 0.057 0.17 0.012 71%
fault 0.013 0.00350.0058 25%
precision 90% 78% 12%

Fig. 13.Each entry shows the average proportion of generated inputs with the given Eclat label
and true label. The sum of the nine middle entries is 1. The sum of each row in the nine middle
entries yields the percentages in the middle column of Figure 12.

Generating inputs based on the full-sized trace yields only slightly better results—
fewer inputs to inspect, and almost the same number of fault-revealing ones among
them. The technique is still effective with an impoverished trace, which makes it useful
in the presence of a small test suite that does not cover all aspects of the program’s
behavior.

The table below shows the percentage of methods covered per test suite, and average
number of calls made to each covered method. The number of calls per method covered
does not give the whole story, since the distribution is highly non-uniform: in each case
(even when test suites exist), a few methods are called many times and most methods
are called very few times.

methods calls per
Program coveredmethod covered
BoundedStack (8-test suite) 82% 8
BoundedStack (12-test suite)100% 18
DSAA 90% 679
JMLSamples 84% 102
utilMDE (test suite) 46% 13747
utilMDE (sample usage) 1.5% 4
RatPoly 83% 501
Directions (student suite) 85% 330
Directions (staff suite) 85% 3015

For the programs with multiple test suites (BoundedStack, DSAA, and utilMDE),
the difference in coverage and number of calls per method is large, but the difference in
Eclat’s results is smaller.

5.4 Evaluating the Classifier

Every input has two labels, one assigned by Eclat and the true label assigned by the
formal specification. Figure 13 shows the proportion of inputs falling into each〈Eclat
label, true label〉 category

The last row in Figure 13 shows theprecision[21, 24] of Eclat’s classifier. Precision
is the ratio of correct labelings to the total number of labelings:

precision=
inputs correctly labeled asL

inputs labeled asL



The last column in Figure 13 shows therecall [21, 24] of the classifier. Recall is the
ratio of correct labelings to the total number of inputs that belong to the label:

recall=
inputs correctly labeled asL

inputs that are actuallyL

In summary, the classifier:

– correctly labels the vast majority of inputs as non-fault-revealing (90% precision,
90% recall for normal inputs),

– recognizes most illegal inputs (78% precision, 71% recall for illegal inputs), but
– labels fault-revealing many inputs that are not (12% precision for fault-revealing

inputs).

The degree to which the technique overclassifies normal inputs as illegal depends
on the accuracy with which the operational model captures the legality of the program’s
inputs. An operational model that is out of sync with the true input space of the program
can indicate a poor test suite. A good example of this is BoundedStack. This interface
permits arbitrary sequences of method calls with arbitrary parameters, so it is impossi-
ble to produce an illegal input, but the technique classifies many inputs as such, due to
the test suite’s poor coverage. When a test engineer inspects an input that is incorrectly
classified as fault-revealing, the engineer is likely to find weaknesses in the test suite,
permitting the engineer to improve it.

Identifying new behavior. Our technique classifies inputs into one of three labels:ille-
gal, normal operationandfault-revealing. As shown in Figure 6, there are two kinds of
normal inputs: those that violate no model properties, and those that violate some pre-
conditions but no postconditions. The latter, callednew inputs, are inputs that diverge
from the original test suite, but the properties they violate are not considered indica-
tive of faults; instead they are considered indicative of an overconstrained model. We
experimented with outputting thenew inputs for user inspection along with the fault-
revealing ones, but we found that new behaviors were no more effective in revealing
faults than normal behaviors that violate no properties. However, distinguishing new
behaviors from old ones might help the programmer improve a test suite’s coverage by
suggesting normal program operation not already covered by the suite.

5.5 Evaluating the Reducer

The reducer takes the inputs labeledfault-revealing, and retains a representative subset.
The table below summarizes its behavior. The first numeric column shows the aver-
age distribution of all inputs that the classifier labeledfault-revealing(the input to the
reducer). The next column shows the distribution of inputs selected (the output of the
reducer). Each column sums to 100%, modulo rounding imprecision.



inputs reveal inputs reveal
generatedfaults selectedfaults

classifier-guided generation 1338 33 5.0 1.1
unguided bottom-up generation 3217 17 5.3 0.80

Fig. 14.Comparison of unguided and enhanced bottom-up generation. The first line summarizes
the results for classifier-guided generation (averages reproduced from Figure 11). The second line
uses unguided input generation.

inputs
labeled inputs

true as fault selected
label by classifier(reduced)

normal 63% 31%
illegal 25% 38%
fault 12% 30%

The reduction step increases the percentage of fault-revealing inputs from 12% to
30%. For these programs (and, we suspect, for programs in general), fault-revealing
program behavior is more difficult to produce than illegal or normal behavior, and thus
more difficult to produce repeatedly by different inputs. This makes fault-revealing in-
puts less reducible than other inputs, because there are fewer inputs per partition, re-
sulting in an increased proportion of selected fault-revealing inputs.

5.6 Evaluating the Input Generator

Classifier-guided Input Generation Section 3.5 describes the use of the classifier in a
bottom-up input generation strategy in which only inputs classified asnormal operation
are added to the growing pool of inputs. The first line in Figure 14 shows the results
of this strategy (Eclat’s default) for the formally-specified programs (this line repeats
the averages from Figure 11). The second line shows the result of running Eclat using
unguided generation: all inputs from previous rounds are added to the pool regardless
of their classification.

Unguided generation leads to a larger number of inputs generated. The reason is
that the pool has a larger number of building blocks to create new inputs from. Despite
the larger number of inputs generated, fewer of those inputs are fault revealing. This
is reflected in the results: with the unguided generation strategy, Eclat reports a larger
number of inputs and yet fewer inputs are fault-revealing.

We can gain insight into this difference by looking back at Figure 12, which shows
that the input selection technique selects not only morefault-revealinginputs, but also
more illegal inputs. Eclat is most effective at correctly classifying normal inputs, but
less so for illegal ones. When we remove the classifier from the generation process, the
number of illegal inputs among candidate inputs increases, and Eclat selects more of
them as fault-revealing, which decreases the tool’s precision. Constraining the building
blocks used by the generator to inputs classified asnormal operationreduces these false
positives.
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Fig. 15.Number of inputs generated and selected by Eclat, when varying the number of rounds
and the generation strategy. The white bars are the results of running Eclat using random gener-
ation. The four data points are for the end-to-end time Eclat takes doing 2, 4, 6, and 8 rounds of
random generation. The black bars are the results of running Eclat using exhaustive generation.
The times shown are averages over all experiments.

Generation Parameters. This section evaluates Eclat’s output under varying parame-
ters. We varied two parameters:

– The number of rounds of bottom-up generation. Eclat’s default is 4 rounds; we also
ran the experiments using 2, 6, and 8 rounds of generation.

– The number of new inputs generated per round. Eclat’s default is to randomly gen-
erate 100 new inputs per method per round. To compare this approach against a
more systematic approach, we added exhaustive generation to Eclat: for each round,
it exhaustively generates all new inputs that are possible to generate given the cur-
rent pool of values. To compare this approach against random generation, we mea-
sured how random and exhaustive generation performed given the same amount of
time. We measured the time that Eclat spent generating, classifying and reducing
inputs using random generation for a given number of rounds, and we ran Eclat



again, using exhaustive generation and setting a time limit equal to the time spent
by random generation.

Figure 15 shows the results for the eight possible combinations of parameter vari-
ations described above. Given the same amount of time, random generation generates
fewer candidate inputs (upper-left plot). At every attempt to generate a new input for
a method, Eclat’s random generation algorithm randomly chooses a set of parameters,
and then checks to see if the input has already been generated. This adds two costs to
random generation: the cost of comparing a newly-generated random input for mem-
bership in the set of existing inputs, and the wasted cost of generating an input that
is already in the pool. Exhaustive generation, on the other hand, never re-generates an
already-existing input.

Despite creating fewer candidate inputs, random generation produces better-quality
candidates—candidates that are fault-revealing (upper-right plot). Exhaustive genera-
tion creates many inputs that exercise the class in ways that are indistinguishable for
the purpose of fault detection. Random generation produces a more diverse collection
of inputs and more fault-revealing inputs than exhaustive generation (bottom plots). In
future work, we plan to investigate exhaustive generation combined with techniques for
avoiding generation of duplicate inputs [28, 29].

6 Related Work

The most closely related work to ours is the Jov [30] and JCrasher [9] tools, which
share the goal of selecting, from a randomly-generated set of candidate inputs, a set
most likely to be useful. This reduces the number of test inputs a human must examine.

Our research was inspired by Jov [30]. Jov builds on earlier work [15] that identified
a test as a potentially valuable addition to a test suite if the test violates an operational
abstraction built from the suite: the test represents some combination of values that
differs from all tests currently in the suite. (The DIDUCE tool [14] takes a similar
approach, though with the goal of identifying bugs at run time rather than improving
test suites: a property that has held for part of a run, but is later violated, is suggestive
of an error.) The Jov tool uses the operational abstraction not just to select tests, but
also to guide test generation, by iterated use of the Jtest tool [19]. Jov also differs from
the previous, automated work on test selection [15] by placing it in a loop with human
interaction and iterating as many times as desired:

1. Create an operational model (invariants) from a test suite.
2. Generate test inputs that violate the invariants.
3. A human selects some of the generated tests and adds them to the test suite.

Often, overconstrained preconditions rendered Jtest incapable of producing any outputs,
so Xie and Notkin report on the effectiveness of Jov after eliminating all preconditions
from the operational model generated in step 1. Essentially, this permitted Jtest to gen-
erate any input that violates the postconditions (including many illegal ones), not just
inputs similar to the ones in the original test suite. However, the user gets no help in
recognizing such illegal inputs. In fact, the majority of errors that Jov finds [30] are
illegal inputs and precondition violations, not true errors [27].



Our work extends that of Xie and Notkin in several ways. Our technique explicitly
addresses the imperfect nature of a derived operational model. Our technique explicitly
distinguishes between illegal and fault-revealing inputs. Our technique is more auto-
mated: it requires only one round of examination by a human, rather than multiple
rounds. Our technique uses operational abstractions in a different way to direct test
input generation. Our implementation is more robust and faster; Eclat takes less than
two minutes for a class that took Jov over 10 minutes to process, primarily because the
Jtest tool is so slow. We have performed a more extensive experimental evaluation (631
classes rather than 12). Even though we count only actual errors, not illegal inputs, our
approach outperforms the previous one.

JCrasher [9], like Eclat, generates a large number of random inputs and selects a
small number of potentially fault-revealing ones. An input is considered potentially
fault-revealing if it throws an undeclared runtime exception. Inputs are grouped (re-
duced) based on the contents of the call-stack when the exception is thrown. JCrasher
and Eclat have similar underlying generation techniques but different models of cor-
rect program behavior, which leads to different classification and reduction techniques.
JCrasher’s model takes into account only exceptional behavior, and Eclat augments the
model with operational behavior, which accounts for its greater effectiveness in uncov-
ering faults.

6.1 Future Work

Future work on this research centers around two themes.

– Input generation.While it may not help in establishing the reliability of a program,
random testing seems to be remarkably effective in exposing errors and may be as
effective as more formally founded techniques [10, 13]. However, it is primarily
useful when all inputs are legal, or when a specification of valid inputs is available.
Therefore, techniques that make it more effective are valuable contributions. Our
technique could be combined with any technique for generating tests [8, 4], in order
to filter the tests before being presented to a user. Our technique is attractive because
it does not require a human-written formal specification; when one is present, much
more powerful testing methodologies are possible [2, 7].

– Input classification. Eclat’s reduction step clusters test inputs in order to reduce
their number, and JCrasher has a similar step. Several researchers have used ma-
chine learning to classify program executions as either correct or faulty [20, 5, 3].
It would be interesting to apply such techniques in order to further improve Eclat.

7 Conclusion

We have presented an input selection technique that incorporates a classifier and a re-
ducer, both of which make use of a model of correct program operation. We have com-
bined our input selection technique with two other techniques. One technique uses the
classifier to guide input generation towards legal inputs, which improves the efficiency
of the input search space by pruning illegal sequences of methods calls as early as they



are encountered. The other additional technique uses the operational model to produce
oracles for the selected test inputs, which converts the test inputs into full-fledged test
cases. Together, these techniques result in an effective test generation and selection
methodology.

We have implemented the methodology in Eclat, a tool for Java unit testing, and
demonstrated its effectiveness in producing fault-revealing test inputs. The input gen-
eration technique creates legal, fault-revealing candidate inputs for the methods in our
subject programs, and the input selection technique selects inputs that are an order of
magnitude as likely to reveal faults as the candidate inputs. The methodology reveals
real, previously unknown errors in the subject programs. When the test inputs fail to
reveal faults, the user is not heavily inconvenienced, because only a few inputs are se-
lected.
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