
Randoop: Feedback-Directed Random Testing for Java

Carlos Pacheco Michael D. Ernst

MIT CSAIL

{cpacheco,mernst}@csail.mit.edu

Abstract

RANDOOP FOR JAVA generates unit tests for Java code us-

ing feedback-directed random test generation. Below we de-

scribe RANDOOP’s input, output, and test generation algo-

rithm. We also give an overview of RANDOOP’s annotation-

based interface for specifying configuration parameters that

affect RANDOOP’s behavior and output.

Categories and Subject Descriptors: D.2.5 SOFTWARE

ENGINEERING: Testing and Debugging

General Terms: Verification.

Keywords: Java, random testing.

1. Introduction

Unit testing is an important and widely-practiced activity

in software development. Unfortunately, writing unit tests

is often tedious, difficult and time consuming. This paper

describes RANDOOP FOR JAVA, a tool that automatically

generates random but meaningful unit tests for Java code

(we have also developed a .NET version of RANDOOP, used

internally at Microsoft). RANDOOP is available at

http://people.csail.mit.edu/cpacheco/randoop/

RANDOOP takes as input a set of classes under test, a

time limit, and optionally, a set of “contract checkers” that

extend those used by RANDOOP as default. RANDOOP out-

puts two tests suites. One contains contract-violating tests

that exhibit scenarios where the code under test leads to the

violation of an API contract. For example, test1 in Figure 1

is a contract-violating test that reveals an error in Java’s col-

lections framework. It shows a way of creating a set s that

violates reflexivity of equality in Sun’s JDK 1.5 and 1.6. In

particular, the call s.equals(s) returns false, which violates

the API for java.lang.Object. RANDOOP implements a de-

Copyright is held by the author/owner(s).

OOPSLA 2007 October 21-25, 2007, Montreal, Canada.

ACM 978-1-59593-786-5/07/0010.

Example error-revealing test

// Fails on Sun 1.5, 1.6.
public static void test1() {

LinkedList l1 = new LinkedList();

Object o1 = new Object();
l1.addFirst(o1);

TreeSet t1 = new TreeSet(l1);
Set s1 = Collections.unmodifiableSet(t1);

Assert.assertTrue(s1.equals(s1));
}

Example regression test

// Passes on Sun 1.5, fails on Sun 1.6 Beta 2.
public static void test2() {

BitSet b = new BitSet();
Assert.assertEquals(64, b.size());

b.clone();
Assert.assertEquals(64, b.size());

}

Figure 1. RANDOOP’s input is a set of classes, a time limit,

and optionally, a set of contract checkers. It outputs contract-

violating tests and regression tests.

fault set of contracts (including reflexivity of equality) that

the user can extend.

The second suite that RANDOOP outputs contains regres-

sion tests. which do not violate contracts but instead capture

an aspect of the current implementation. For example, test2

in Figure 1 shows a regression test that records an aspect

of method BitSet.size()’s behavior (specifically, cloning a

BitSet does not change its size). Regression tests can dis-

cover inconsistencies between two different versions of the

software; test2 reveals an inconsistency between Sun’s JDK

1.5 (on which the test was generated, and thus succeeds by

construction) and Sun’s JDK 1.6 Beta 2 (on which the test

fails). Contract-violating tests and regression tests both have

as their purpose finding errors—the former in the current im-



plementation of the classes under test, and the latter in future

or different implementations.

2. How it works

Randoop generates unit tests using feedback-directed ran-

dom testing, a technique inspired by random testing that uses

execution feedback gathered from executing test inputs as

they are created, to avoid generating redundant and illegal

inputs [5]. RANDOOP creates method sequences incremen-

tally, by randomly selecting a method call to apply and se-

lecting arguments from previously constructed sequences.

As soon as it is created, a new sequence is executed

and checked against a set of contracts. Sequences that lead

to contract violations are output to the user as contract-

violating tests. Sequences that exhibit normal behavior (no

exceptions and no contract violations) are output as regres-

sion tests. Finally, sequences that exhibit illegal behavior

(for example, a sequence that throws an IllegalArgumentEx-

ception) are discarded. Only normally-behaving sequences

are used to generate new sequences, as it makes little sense to

extend a sequence that contains an already-corrupted state.

In [5] we showed that feedback-directed random test gen-

eration can outperform both systematic and undirected ran-

dom test generation, in terms of coverage and error detec-

tion. On four small but nontrivial data structures, RANDOOP

achieved higher or equal block and predicate coverage than

model checking and undirected random generation. On 14

large, widely-used libraries (comprising 780KLOC), RAN-

DOOP found many previously-unknown errors not found by

either model checking or undirected random generation.

3. Writing contracts

To specify a contract to be checked, the user declares a class

implementing a contract-checking interface. For example, to

specify a contract involving a single object, the user declares

a class implementing randoop.UnaryObjectChecker. The cru-

cial method in this interface is boolean check(Object), which

returns true iff the given object satisfies the contract. RAN-

DOOP defines additional interfaces to create other types of

contracts, for example, contracts involving more than one

object (e.g. if o1.equals(o2) == true then o1.hashCode() ==

o2.hashCode()), or contracts specifying the expected effect

of a method on the program state.

4. Annotations

In addition to writing contracts, the user can annotate meth-

ods to direct RANDOOP’s test generation algorithm. To date,

we have implemented three kinds of annotations, all at the

method level.

• @Omit indicates that the given method should not be used

to generate tests. For example, methods that exhibit non-

deterministic behavior (e.g. System.currentTimeMillis())

are typically not good candidates for RANDOOP-based

generation, because they can cause generated tests to pass

or fail unpredictably from one run to the next.

• @Observer indicates that a method should be used to

create regression assertions. For example, the method

BitSet.size() from the regression test in Figure 1 is an

observer method.

• @ObjectInvariant indicates that a parameterless method

that returns a boolean value is an object invariant. Object

invariant methods are used similarly to contract checkers:

if an object invariant method returns false the test input

is considered to be error-revealing and output to the user

with an appropriate assertion.

5. Related work

Tools for generating unit tests for Java code include JCra-

sher [2], Eclat [4], and Jartege [3] (academic), and Jtest [6]

and Agitator [1] (commercial). JCrasher creates sequences

of method calls for Java programs and reports sequences

that throw certain types of exceptions. Jartege lets the user

specify properties to check as formal specifications written

in JML [3]. This contrasts with RANDOOP’s use of Java in-

terfaces and annotations to specify properties to check. The

philosophy behind our choice is that a tool will be more

useful to practicing programmers if they can express con-

tracts using constructs they already know, rather than learn-

ing a new formal language. (JML is more expressive than our

contracts, so our choice also represents a tradeoff in expres-

siveness.) Neither JCrasher nor Jartege generate regression

tests, support annotations, or use runtime feedback, which

can lead the tools to generate many redundant and illegal

tests that RANDOOP can avoid.

In previous work, we developed the Eclat [4] test gen-

eration tool. like RANDOOP, Eclat uses execution feedback

to guide its generation. Instead of user-provided contracts,

Eclat uses a predefined set of dynamically-inferred prop-

erties (and requires the user to provide an existing test

suite from which to infer these properties). RANDOOP does

not automatically infer properties, so it does not require a

pre-existing test suite. Instead, it uses a set of universally-

applicable object properties, and lets the user extend this set

to express properties specific to the implementation under

test.

References
[1] Agitar. http://www.agitar.com.

[2] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for

Java. Software: Practice and Experience, 34(11):1025–1050, Sept. 2004.

[3] C. Oriat. Jartege: A tool for random generation of unit tests for Java classes. In

QoSA/SOQUA, pages 242–256, Sept. 2005.

[4] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and classification of

test inputs. In ECOOP, pages 504–527, July 2005.

[5] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test

generation. In ICSE ’07: Proceedings of the 29th International Conference on

Software Engineering, Minneapolis, MN, USA, 2007. IEEE Computer Society.

[6] Parasoft Corporation. Jtest. http://www.parasoft.com/.


