Reasoning about TLA Actions

Undergraduate Honors Thesis

Carlos Pacheco
The University of Texas at Austin

Supervisor: J Strother Moore
May 2001

This research was supported by an IBM Partnership Award to J Strother Moore,
and a UROP grant from the Educational Advancement Foundation to the
Computer Sciences Department at UT Austin.

Contents

1 Algorithms, Languages, and Tools
1.1 Introduction. Lo
1.2 The Temporal Logic of Actions
1.3 Finite Set Theory in ACL2

2 Translation
2.1 Translation Guidelines
2.2 Translation Conventions
2.3 Translation Rules
2.4 Requirements for the TLA specifier
2.5 Translating the Increment Example
2.6 Disk Synod

3 Verification
3.1 Consistency of Disk Synod
3.2 Controlling ACL2.
3.3 Typelnvariance.
3.4 A Second Invarianto

3.5 Issues in Verification

4 Conclusion
4.1 Further Work

A The Increment Example
B Disk Synod Specification

C Disk Synod Translations

ii

12
13
14
17
21
22
24

27
27
28
29
36
43

51
52

58

61

65

CONTENTS iii

D ACL2 Event Files 77
D.1 additions.lisp 77
D.2 choose-max.lisp L. 85
D.3 common-alllisp oo 90
D.4 defalllisp e 91
D.5 defexistslisp. 98
D.6 defpkglisp. 103
D.7 hinvllisp 104
D.8 hinv2-exportsllispo 105
D.9 hinv2.lisp 107
D.10hinv3.lispo 110
D.11 newdefmap.lispo 112
D.12 newpowerset.lisp oo 120
D.13 tla-translation-macros.lisp 124
D.14 translations.lisp oL 126
D.15i2a/i2aldisp 146
D.16i2a/i2a-1.lisp 147
D.17i2c/common-i2clisp Lo oL 154
D.18 i2c/common-p12r.lisp 156
D.19i2¢/ep0.lispo 157
D.20i2¢c/epl2.lisp. 160
D.21i2¢/faillisp 162
D.221i2¢c/i2clisp. 164
D.2312¢/pOr.lispo 167
D.24i2¢/pl2r-d2=d.lisp 170
D.25i2¢/pl2r-d2not=d.lisp 172
D.26 i2¢/p12r-p2=p.lisp 174
D.27i2¢/pl2r-p2=qlisp 176
D.28i2¢/pl2r-pdp.lisp 177
D.29i2¢/pl2r-pdqlispo 178
D.30i2¢/pl2r-pdx.disp 181
D.31i2¢/pl2r-q2=p-2.lisp 184
D.32i2¢/pl2r-q2not=q.lisp 188
D.33i2¢/pl2rlisp 190
D.3412¢/pl2w.lispo 191

D.35i2¢c/startballot.lisp 193

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3

3.1
3.2

A simple increment program [16]. L. 3
A more detailed increment program [16]. 5
Set theoretic functions, excerpted from [21]. 10
TLA-ACL2 translations. 19
TLA-ACL2 translations (continued). 20
ACL2 translation of action N 23
Highlights in Gafni and Lamport’s proof of Lemma I2c. [3] . 38

Our proof of Lemma 12¢c. 44

v

Abstract

We use the ACL2 theorem prover to verify invariants of a distributed
algorithm specified in TLA (Temporal Logic of Actions). The algorithm,
Disk Synod, achieves consensus among a set of processors communicating
through disks. We discuss the translation of TLA specifications into a fi-
nite set theory framework in ACL2, as well as the proof of two invariant
properties of Disk Synod.

Chapter 1

Algorithms, Languages, and Tools

Civilization advances by extending the number
of important operations which we can perform
without thinking about them.

Alfred Whitehead,
An Introduction to Mathematics.

1.1 Introduction

Reasoning in TLA consists largely of reasoning about actions—relations
between pairs of states. According to Lamport [15],

What makes verification of TLA practical is that most of the work
lies in the action reasoning—which is ordinary math—rather than in
temporal reasoning. This is especially important for formal verifica-
tion, because temporal reasoning is a lot harder to do formally than
ordinary mathematical reasoning.

This project does not deal at all with temporal reasoning. By most
accounts, 90% of all reasoning in TLA specifications occurs at the action
level, where temporal logic has been eliminated [15, 20]. Interestingly, action
reasoning seems to be the least discussed aspect in previous TLA verification
work [2, 11, 20]. On second look, this is not surprising, since reasoning about
ordinary math is a problem all to its own.

While there is no hope of providing satisfactory support—a good degree
of automation—for an arbitrary theorem stated in TLA, we benefit from
the fact that TLA specifications and theorems follow a similar pattern. At

2 CHAPTER 1. ALGORITHMS, LANGUAGES, AND TOOLS

its heart, this thesis concerns reasoning about simple set theory concepts,
cast in a specific format.

We build upon the finite set theory framework for ACL2 developed by
Moore[21]. Acquaintance with Moore’s work is an advantage, but we provide
a basic introduction. This project has augmented ACL2’s finite set theory
with some new concepts, added both by Moore and by the author.

The object of investigation is Disk Synod [3], an algorithm for achieving
consensus among a group of processors. Disk Synod was suggested by Lam-
port as a nontrivial example to test the feasibility of a verification system
[18]. Inspection of other specifications [10, 14] suggests that our observations
carry over to them as well.

Our endeavor partitions naturally into two tasks: translating TLA con-
structs to ACL2, and proving properties of the translation. After a brief in-
troduction to TLA and ACL2, we describe a translation scheme developed.
Then we discuss the mechanical verification of two invariant properties of
Disk Synod that we successfully proved with ACL2.

As this is a work in progress, we will point out without hesitation im-
portant issues that have not yet been addressed.

1.2 The Temporal Logic of Actions

We now present a brisk and selective introduction to TLA. For a more
detailed exposition, refer to [16] or [14].

TLA is a first-order temporal logic. Its formulas are built from the usual
predicate calculus constructs (function symbols, predicate symbols, variable
symbols, =, A, =, and 3) as well as the special symbols O, ' | and 3. Also
assumed is an infinite set of wvalues, an infinite set of variable names, and
the booleans true and false.

The semantics of TLA is defined in terms of states. A state is an assign-
ment of values to variables. The expression z2 4 y — 3 has value 6 in a state
that assigns 2 to £ and 5 to y, and it has value 0 in a state that assigns 1 to
z and 2 to y. Variables that may assume different values from state to state
are called flexible variables. Variables denoting a single value that doesn’t
change with time are called rigid variables (programmers usually call them
constants).

Algorithms can be thought of as rules that specify sequences of states.
A behavior is an infinite sequence of states; it corresponds to a single “run”
of an algorithm. For a sequence of states (S1,S2,...), and two contiguous
states S; and S;41, we call S; the old state and S;11 the new state.

1.2. THE TEMPORAL LOGIC OF ACTIONS 3

A
DAY =y)

A (2 =1)

MV My

Initg A O[M] (g) A WF (4 (M1) A WF (, y(M>)

Figure 1.1: A simple increment program [16].

An action is a boolean-valued expression made up of variables, primed
variables, and constant symbols. The expression y’ + 3 = y + z is an action,
where y and z are variables. The unprimed variable y represents the value
of y in the old state, and gy’ represents the value of y in the new state. For
our purposes, it’s enough to think of a primed variable v’ not as an operator
applied to a variable, but as just another variable name, which happens to
denote the value of v in the next state.

To illustrate the above concepts, we introduce an example due to Lam-
port [16]. Figure 1.1 describes a system with two variables z and y, both
initially 0 and increasing nondeterministically. The next-state action M de-
scribes how the system can change from one state to the next. Formula ®
expresses the requirement that the system always executes an M-action (or
stutters), and that both z and y are incremented infinitely often.

Invariant Properties

We can prove properties of our increment example. Useful properties of a
system are often invariant properties—those which are true of the system
at every state of its execution. In temporal logic, invariant properties are
of the form OP, where the O operator applied to a property P means that
P holds in every state. In TLA, one proves an invariance property OP of a
system with initial state Init and next-state N by establishing the following
conditions (ignoring the f subscript). !

Init = 1
I=P
I/\[N]f:I’

Notice that formula I appears primed. What does it mean for a formula to be primed?
In our context, we think of I' as formula I where all variables are primed.

4 CHAPTER 1. ALGORITHMS, LANGUAGES, AND TOOLS

An application of a TLA inference rule, along with simple temporal rea-
soning, lets us establish OP from the above conditions. We should emphasize
that this last step of converting action-level properties into temporal prop-
erties is not where the work lies. In the Disk Synod algorithm, establishing
OP takes up one page, while the creation of an invariant and verification
of the three conditions spans 18 pages. Creativity is needed to formulate a
suitable invariant; the proof effort lies in verifying the invariant.

Going back to our simple example, we may wish to establish type invari-
ance of the system variables:

T £ (z € Nat) A (y € Nat).
To establish T, we must show (again ignoring subscripts):

Initg = T (1)
T A[M],) = T (2)

The proof of (1) is trivial. The proof of (2) is achieved by considering actions
M, and M separately. For example, in the case of M; we must show

(x € Nat) N (y € Nat) AN (z' =z + 1) A (v =y) = (2’ € Nat) A (y' € Nat).

Another Example

In TLA, there is no distinction between program and specification. Formula
® in Figure 1.1 could describe a (very simple) program, or specify the prop-
erties that a more elaborate program must satisfy. Figure 1.2 shows a TLA
formula ¥ that implements ®.? Formula ¥ consists of two processes execut-
ing a loop with three atomic operations. The processes share a semaphore
variable sem.

We will not go into the details of the proof that ¥ implements ®, but
only remark that the theorem to prove is

U= o

2To say that ¥ implements & means that for any behavior, ¥ satisfies the requirements
imposed by ®—in this case, it means that ¥ always executes an action in which either z
or y is incremented, and both z and y are incremented infinitely often.

1.2. THE TEMPORAL LOGIC OF ACTIONS

[Pl [P

Inity = A (pe1 = “a”) A (pey = “a”)
Az =0)A(y=0)
A sem =1

a1 2 A (per = “a”) A (0 < sem)
A pcll — ub”
A sem' = sem — 1
A UNCHANGED (z,y, pca)

ay 2 A (peg = “a’) A (0 < sem)
/\ pcl2 — “b”
A sem' = sem — 1
A UNCHANGED (z,y, pc1)
A U
Bi = Al(per="“b")
/\ pcll — “g”
ANt =z +1
A UNCHANGED (y, sem, pca)
A U
B2 = A (pc2="“b")
/\ pcl2 — “g”
Ny =y+1
A UNCHANGED (y, sem, pcy)
A [{P))
Y1 = pc1r = g
pcll — “a”

sem' = sem + 1
UNCHANGED (z,y, pca)

A [)]
Yo = Apca="¢g
/\ pclz — “a”

A sem' = sem + 1

A UNCHANGED (z,y, pc1)

a1 VBV

az V B2V y2

N{V Ny

(z,y, sem, pcy, pea)

Initg A O[N]y A SFy(N1) A SFy(Ns)

A
=

> e e

Figure 1.2: A more detailed increment program [16].

6 CHAPTER 1. ALGORITHMS, LANGUAGES, AND TOOLS

Since both ¥ and ¢ are logical formulas, simulation is expressed as
implication. Not surprisingly, an invariant is needed in the proof. In section
2.5 , we discuss the invariant and its proof in ACL2.

TLA™*

TLA provides the logic necessary to reason about concurrent systems. TLA™
is a specification language based on TLA. It is formally defined and has a pre-
cise grammar, which makes it amenable to mechanized tool support. TLA™
introduces the mathematical concepts necessary for specification, as well as
a module system not discussed here. Some concepts (or their particular
syntax) may be unfamiliar to the reader, so we introduce them here.

The CHOOSE operator. The expression CHOOSE z : p denotes an un-
specified value v such that p holds when v is substituted for z, if such a v
exists. Otherwise, the expression denotes an arbitrary value.

Functions. In TLA™, a function is an unspecified set with certain proper-
ties. The following constructs are primitives:

e fle] : The function f applied to e.
e DOMAIN f : The domain of f.

e [S — T]: The set of all functions with domain S and range a subset
of T.

e [z € S+ e]: An explicit way to define a function: for each z in its
domain S, z is mapped to e.

Functions can be modified through the EXCEPT construct. The expres-
sion

[f EXCEPT ![m] = u]

denotes the function ¢ that is equal to f, except it maps m to wu.

There are two ways to write functions of several arguments. One is to
let the domain of a function be an n-tuple, and the other is by writing a
curried function. A function f with domain a set of triples A x B x C and
range R applied to the argument (a, b, ¢), is written f[(a, b, ¢)] or f[a, b, c].
It belongs to the set [A x B x C — R]. On the other hand, a curried function

1.2. THE TEMPORAL LOGIC OF ACTIONS 7

belonging to the set [A — [B — [C — R]]], applied to three arguments a, b
and ¢, is written f[a][b][c].

TLA also introduces operators, which are different from functions. Func-
tions have a domain (a set), while operators do not. Functions can be defined
recursively, but operators cannot. Function application uses square brack-
ets, while operator application uses parentheses. Thus f[z] reveals that f is
a function, while g(z) reveals that g is an operator. We do not elaborate
further on this distinction; more information can be found in [14].

Records. Records are defined in terms of functions; their notation is similar
to functional notation. The expression

[hl — el,hg — 62,h3 —> 63]

denotes a record with (field, value) pairs (h1, e1), (he, e2), and (hs, e3). More
formally, it is the function that maps the string “h;” to the value eq, the
string “hs” to the value es, and the string “hs” to the value es. The expres-
sion

[hl . Sl,hz . Sg,hg : Sg]
denotes the set of all records with fields hy, hs and hs, and correspond-
ing value sets. More formally, it is the set of all functions with domain

{“h1”, “h2”, “h3”} and range the union S; U S92 U S3, such that if r is in the
set, the application r[“h;”] is an element of §;.

The field Ay of a record r is written r.hq, which is equivalent to r[“h;”].

Other constructs. The UNCHANGED construct is used to specify flex-
ible variables that do not change within an action. The expression

UNCHANGED (z,y,2)

is equivalent to

The following constructs are formally introduced in TLA™. Their mean-
ing should be familiar to computer scientists.

8 CHAPTER 1. ALGORITHMS, LANGUAGES, AND TOOLS

if p then e;
else ey

case p; — e ... Op, — e,
case p; — e10...0p, — e,0 other — ¢

let d £ f
e

in

Mechanical Support for TLA

Ours is not the first effort to provide mechanical support for TLA. A parser
and a model checker [14] have detected bugs in TLA specifications. In the
theorem proving arena, Larch [2], Isabelle [20] and HOL [11] have been used
to verify TLA theorems. Among these, TLP has been used to verify large
specifications. The above research has highlighted the benefit in separat-
ing temporal reasoning from action reasoning. While most of the previous
work pays great attention to the temporal aspects of TLA, our effort deals
exclusively with actions. In doing this, we hope to focus our energies in the
area where mechanical verification might be most useful to the TLA user:
reasoning about large formulas composed of simple mathematical concepts.

Having discussed some basic TLA concepts, we address Moore’s work on
finite set theory in ACL2 [21]. We invite the reader to draw connections be-
tween the TLA concepts just introduced and the ACL2 concepts introduced
in the next section. These connections will be made explicit in section 2.3.

1.3 Finite Set Theory in ACL2

How can sets be represented in ACL2? One answer is to use lists. But
writing down the list > (1 2 3) to represent the set {1,2,3} is not enough.
Lists have properties that sets do not—they distinguish duplication and
order.

To deal with sets in a more natural way, Moore has developed a the-
ory of hereditarily finite sets [21]. In this theory, the universe is divided
into ur-elements and sets. The ur-elements are all ACL2 numbers, strings,
characters, symbols and conses of the form (:UR-CONS (e; . ep)). All other
conses represent sets. The symbol nil is both a ur-element and the empty
set.

1.3. FINITE SET THEORY IN ACL2 9

Here are some examples of sets in conventional notation and in ACL2.
(We use the notation [z1,...z,] to represent a list.)

Conventional notation | ACL2 notation

{} nil
{{}} ’ (nil)

{1} (11 1)
{1,2,3} (1 2 3)
{1,2,3} (122 3)
{1,{1},2,{3,4}} (1 (1) 2 (3 4)
{1,{1},2,]3,4]} ’(1 (1) 2 (:ur-cons (3 4)))
To reason about equality, we use the relation =. This relation encom-

passes both set equality and ur-elementp equality. It can recognize, for
example, > ((1 2) 3) and ’(3 3 (2 1)) as the same set. For ur-elements,
= reduces to equal. When defining a set-theoretic function, it is important
to establish =-congruence: it allows ACL2 to exchange two equal sets. If
this congruence were not established for the second argument of mem, ACL2
wouldn’t easily prove the following simple fact.

(defthm mem-union-lemma
(implies (and (mem e s1)
(= s1 s2))

(mem e s2)))

Figure 1.3 shows many basic set-theoretic functions defined by Moore.
We have defined some additional functions and document them here.

e (dot-dot m n): {i|i € NAm <i<n}.

e (union#* a): the union over all elements in a.

e (all-fns d r): the set of all functions with domain d and range a subset of r.
e (defrec name (hy Sy) ... (hy Si)): defines (name) to be the set of

all functions with domain {hq,...h;} and range S; U--- U Sy, such
that the value of name on h; is a member of §;.

10 CHAPTER 1. ALGORITHMS, LANGUAGES, AND TOOLS

(ur-elementp a): t or nil according to whether @ is an ur-element.
(setp a): t or nil according to whether a is a set.
(scons e a): {e} U a.

(brace a; ... ag): the set whose elements are given by the values of the
k expressions; this is known as “roster notation.”

(= a b): If a and b are the same object, then t, otherwise, nil.
(mem e a): e € a. Both arguments are treated as sets.
(subsetp a b): a C b.

(nats n): {1 | i e NAO<i<n}

(union a b): aUb.

(intersection a b): a N b.

(diff a b): a'\ b.

(choose a): an element of the set a, if a is non-empty.

(functionp f): if f is a set of pairs and no two elements of f have the same
hd, then t; otherwise, nil. If a function f contains (pair e v), then we
say v is the value of f on e.

(domain f): {e | 31:(1: €fANe=(hd z))}
(range f): {e|Jz(z € f Ne=(t1 z))}.

(apply f e): if f is a function and e is in its domain, then the value of f
on e.

(except f e v): If f is a function then the function that is everywhere
equal to f except on e where the value is v.

(func (e; v) ... (e, v,)): the function mapping e; to v;. Presentation
order is used to resolve conflicts. That is, if e; is e; for some ¢ < 7, then
the function maps e; to v;.

(powerset a): {s ‘ s C a}

(defmap f (v; ... wg) :for z :in v; :such-that ¢):
defines (f v ... v) tobe {z |z € v; A ¢}.

(defmap f (v; ... wg) :for z :in v; :map ¢):
defines (f v ... w) to be{e|Jz(z € v; Ne=¢)}.

Figure 1.3: Set theoretic functions, excerpted from [21].

1.3. FINITE SET THEORY IN ACL2 11

o (defmap-fn f (v; ... wvg) :for z :in v; :map ¢):
defines (f v; ...) to be {(z,e) | Jz(z € v; N e=¢)}.
o (defexists f (v; ... wvg) :exists z :in v; :such-that ¢):
defines (f v; ... w) to be t if 3z € v; : ¢, and nil otherwise.
o (defall f (v; ... vg) :forall z :in v; :holds ¢):
defines (f v ... w) tobet if Vo € v; : ¢, and nil otherwise.

The ACL2 definitions of all-fns and defrec, as well as proofs of their
characteristic properties, are due to Moore. Appendices D.1, D.5, and D .4
contain the ACL2 files defining the above constructs.

We have only scratched the surface of Moore’s work, but it is enough
to get us started. For a detailed introduction to finite set theory in ACL2,

refer to [21].

Chapter 2

Translation

Several issues arise when we consider the differences between the TLA and
ACL2 logics, and the static nature of TLA as a specification language versus
the dynamic nature of ACL2 as a theorem prover. We list some of these
issues here, limiting our discussion to nontemporal aspects of TLA.

e TLA makes heavy use of existential and universal quantification. ACL2
formally has quantification (in the form of skolem functions), but it
isn’t well supported; for that reason we do not use it.

e ACL2 overspecifies TLA expressions. This can lead to conclusions in
ACL2 that are not necessarily true in TLA. For example, Lamport
and Gafni note [3]:

We deduce phase'[p] = 2 from phase' = [phase EXCEPT ![p] = 2]
only if phase is a function whose domain contains p.

However, in ACL2, given
(= phase-prime (except phase p 2)),

we can deduce (= (apply phase-prime p) 2))) with no further hy-
potheses about phase. A more fundamental example is that 4 = “h”
might be a theorem in TLA. Everything is a set in TLA, so 4 and “h”
are sets. Since sets like 4 and “h” are left unspecified, the set denoted
by 4 and the set denoted by “h” may in fact be the same set. But in
ACL2, (= 4 "h") immediately evaluates to nil.

This is a very important issue because it deals with the relationship
between a theorem in TLA and its corresponding version in ACL2. It
is the next issue we plan to tackle in our project.

12

2.1. TRANSLATION GUIDELINES 13

e In ACL2, theorems become rules that guide the mechanical theorem
prover in finding proofs of further theorems. The user is keenly aware
of this, and is sensitive, when writing down a theorem, to the way it
will be used by the system. The form of a theorem can make or break
a proof, even if two different forms are logically equivalent. TLA
formulas, on the other hand, are not written to become effective rules.
A TLA user might state an assumption in an elegant form that would
not be a useful ACL2 rule.

e In our ACL2 framework, all sets are finite. Our current solution when
dealing with an infinite set in TLA is to reword the TLA expression
surrounding the set. For example, the expression z € Nats, where
Nats is the set of natural numbers, can be translated as

(and (integerp x) (>= x 0)).

All the infinite sets we have encountered so far are amenable to this
type of transformation.

e ACL2 is applicative: there is no notion of global variables. In TLA,
state variables are global. In substance, this is a minor point—we can
simply pass all state variables as parameters among ACL2 functions.
But soon our ACL2 translations become hideous to look at, and it’s
easy to lose sight of a function body in a sea of parameters.

We will address the above issues throughout our discussion.

2.1 Translation Guidelines

In creating a translation scheme, our overriding principles are clarity and
simplicity. We need a scheme that makes it obvious how an ACL2 term
corresponds to a TLA expression. Otherwise, we might say things in ACL2
that weren’t intended in TLA.

A simple translation scheme has another advantage: mechanization.
While the translation of Disk Synod was done by hand, our experiments
highly suggest that it can be automated. This will become a necessity for
larger specifications. We hope the informal rules that we lay out suggest
how our translation scheme can be mechanized.

We should mention that TLA constructs and their ACL2 translation
differ in how they are formally defined. For instance, the TLA conditional
constructs are defined in terms of the CHOOSE operator [14].

14 CHAPTER 2. TRANSLATION

if p then e; = CHOOSE v : (p= v =-e1)A(-p=v=e)
else eq

case p; — e d...Op, — e,
CHOOSE v : (plA(v=-c¢l))V...V(pn A (v =-en))

It is obvious that if we want to use ACL2 in any sensible way, we should
use its built-in conditionals IF and COND, which have nothing to do with
the function choose. This deviation makes its difficult to establish a formal
correspondence between TLA and ACL2. But in our opinion, it is vastly
more important to use ACL2 to prove facts about TLA specifications than
it is to construct a formal correspondence between the two logics.

Before laying out the translation scheme, we discuss three adopted con-
ventions.

2.2 Translation Conventions

The Naming Convention

Consider the following TLA construct:
collect = {z +2:z € {3y:yecS}}.

How can we translate collect into ACL2? Trying to cast it in a more
succinct or clever form is not allowed—the role of a translator is to translate,
not to illuminate. So let’s begin with the innermost set {3y : y € S}, and
assume that S is a finite set that translates as the ACL2 constant (S). Using
the set comprehension macro defmap, we obtain

(defmap collect-1 (dom) :for y :in dom :map (* 3 y)).

The set {3y : y € S} can now be expressed as (collect-1 (S)). The
outermost set is translated similarly:

(defmap collect-2 (dom) :for x :in dom :map (+ x 2)).

Finally, we define a function collect that corresponds to collect.

2.2. TRANSLATION CONVENTIONS 15

(defun collect ()
(collect-2 (collect-1 (S))))

The above translation does not require imagination; it is direct and
therefore attractive. But it does define three functions, and three names
to go with them. In larger specifications, name generation can become a
problem. To drive our point home, let’s consider another TLA construct:

P £ Vg,y,2€8: p(z,y,2)
The first thing to note is that P is shorthand for
VeeS :VyeS VzeS : p(z,y,2).

Again, we assume that S translates into ACL2 as (S). We also assume
that p(z,y,z) translates as (p = y 2). Using the defall macro (Section
1.3), we obtain the following translation.

(defall forall-p-z (dom x y)
:forall z :in dom :holds (p x y z))

(defall forall-p-y (dom x)
:forall y :in dom :holds (forall-p-z dom x y))

(defall forall-p-x (dom)
:forall x :in dom :holds (forall-p-y dom x))

We express P as (forall-p-x (S)).

Again, the translation is straightforward. And again, there are more
function names than we care for. There is no clear way to avoid generating
multiple functions for unnamed TLA expressions in our current framework.
The best we can do is adopt a naming convention, so that reasonable names
are generated mechanically. What we deem a reasonable name is not yet
clear, so we postulate an undefined naming convention, both expressing the
need for a uniform naming strategy, and our current lack of commitment to
a particular one.

16 CHAPTER 2. TRANSLATION

Flexible Variable Conventions

We now present two conventions dealing with the translation of flexible
variables. The flexible variables in a TLA™ specification are declared using
the VARIABLES construct. For instance,

VARIABLES z, ¥, 2
declares z, y and z as flexible variables in the given specification.

Convention. A TLA variable name is translated without change. A
primed TLA variable is translated by appending “-n” to its unprimed variable
name.

For example, the TLA variable z translates to x, and z' translates to x-n.

The next convention hides flexible variables in ACL2 translations. This
makes ACL2 translations look more like the TLA formulas that produced
them, and prevents a large number of flexible variables from taking up space
in ACL2 definitions. !

Convention. Flexible variables are always hidden by macros.

Consider a specification with five flexible variables z1,...,z5, and the
action

A
A1 = A CL'I2 = T9 + 1
A UNCHANGED (%1, %3, %4,Z5).

To translate this action, we need to define a function that takes 10
arguments—one for each unprimed variable, and one for each primed vari-
able. The defaction macro lets us hide flexible variables in our definitions.
Action A translates as follows:

(defaction a1l ()
(and (= x2-n (+ x2 1))
(unchanged x1 x3 x4 x5))).

!The reader might wonder how much space flexible variables as function arguments
can take. The answer is: enough to distract us from the functions at hand.

2.3. TRANSLATION RULES 17

This form expands to the following two events.

(defun _al (x1 x1-n x2 x2-n x3 x3-n x4 x4-n x5 x5-n)
(and (= x2-n (+ x2 1))
(= x1-n x1) (= x3-n x3) (= x4-n x4) (= x5-n x5)))

(defmacro al () ’(.al x1 x1-n x2 x2-n x3 x3-n x4 x4-n x5 x5-n))

Afterwards, if we need to use A; in a theorem, we can just type (al).
The defstate macro is similar to defaction except it is used to define state
predicates, which do not include primed variables. It is useful when defining
invariants. For example, the invariant from formula ® in Section 1.2,

T £ (z € Nat) A (y € Nat),

is translated using defstate as follows (t means true in ACL2, so we name
T differently).

(defstate t-inv () (and (integerp x) (>= x 0)
(integerp y) (>=y 0)))

Defstate creates two forms, one to express T and one to express T'.

(defun _t-inv (x1 x2) (and (integerp x) (>= x 0)
(integerp y) (>= y 0))

(defmacro t-inv O ’(t-inv x y))

(defmacro t-inv-n () ’(_t-inv x-n y-n))

2.3 Translation Rules

With our previous discussion in mind, we use the building blocks discussed
in Section 1.3 to translate TLA constructs into their ACL2 counterparts.
Figures 2.1 and 2.2 show the translation scheme. It is understood that all
sets in question are finite; otherwise the translation does not apply. Our
translation scheme is not formal, but we believe it can be made formal
enough to be mechanized. The breakdown of categories is from Lamport’s
A Summary of TLA'[12]. The reader can refer to Lamport’s summary and
find the concepts we left out.

18 CHAPTER 2. TRANSLATION

We do not provide entries for some obvious translations, such as €, A,
V, C, etc. We not only show what can be translated, but also what cannot.
The constructs we cannot directly translate deal with expressions quantified
over infinite sets.

Abbreviations

Some TLA expressions have elaborate ACL2 translations that can be diffi-
cult to understand. Consider the following example.

[f EXCEPT ![z][y] = 2

Hal[b] = ¢]

It denotes the function g equal to f except that g[z|[y] equals z and
gla][b] equals c. Its ACL2 translation is straightforward but cryptic:

(except (except f a (except (apply f a) b c))
X
(except (apply (except f a (except (apply f a) b c))
x)
y z)).

Using macros, we can create shorthand notation for complicated expres-
sions. Except-and is an example. The form

(except-and £ (x y z) (a b c))

expands to the same expression as the “cryptic” one. Here are other ex-
amples of TLA expressions, macros that provide a succinct translation, and
their expansion.

e f[z][y] translates as the form
(apply-m £ x y), which expands to
(apply (apply f x) y).

e [f EXCEPT ![z]|[y] = z] translates as the form
(except-m f x y z), which expands to
(except f a (except (apply f a) b c)).

2.3. TRANSLATION RULES 19

Logic

BOOLEAN (brace t nil)

Ve :p no translation

dz . p no translation

VeeS :p (f S v1 ... w), where f adheres to the naming convention,
and is defined by
(defall f (dom wv; ... v) :forall z :in dom :holds p).

dJx eSS :p (f S v ... v), where f adheres to the naming convention,

and is defined by

(defexists f (dom vy ... v;) :exists z :in dom
:such-that p).

CHOOSE T : p

no translation

CHOOSE £ €S : p

(choose (f S v ... w)), where f adheres to the naming
convention, and is defined by

(defmap f (dom vy ... v;) :for z :in dom :such-that p).

Sets
SUBSET S (powerset S)
UNION S (union* S)

Figure 2.1: TLA-ACL2 translations.

20 CHAPTER 2. TRANSLATION
Functions
flel (apply f e)
DOMAIN f (domain f)
[z €S e (f S v ... v), where f adheres to the naming convention,
and is defined by
(defmap f (dom v ... v;) :for z :in dom :map e)
[S — T] (all-fns S T)

[f EXCEPT ![e1] = eg]

(except f e e2)

Records

[hp—)el,...,hnb—)en}

(func (M e1) ... (h, e,))

[hl : Sl,...,hn : Sn}

(name), where name adheres to the naming convention and
is defined by

(defrec name (hy S1) ... (h, S»)).

[r EXCEPT ![h] = ¢]

(except r h e)

Figure 2.2: TLA-ACL2 translations (continued).

2.4. REQUIREMENTS FOR THE TLA SPECIFIER 21

e UNCHANGED (z,y, z) translates as the form
(unchanged x y z), which expands to
(and (= xn x) (= yny) (=2znz)).

These abbreviations may be considered just an aesthetic issue. But
they are important because they make expressions easier to understand,
and therefore easier to reason about.

2.4 Requirements for the TLA specifier

A TLA specifier using our translation scheme is obliged to satisfy the fol-
lowing requirements.

Witnesses

When a constant or function is not explicitly declared but assumed to have
certain properties, we require a witness—an object that has the same prop-
erties as the declared constant or function. Suppose we declare the constant
N to be a positive integer.

CONSTANT N
ASSUME (N € Nat) A (N > 0)

The above statements are translated with an encapsulate event [7]. This
event lets us create an undefined function enjoying the properties exported
from the encapsulation. We are required to define locally a function that
has the properties claimed. Here is the encapsulated event for N.

(encapsulate ((n () t))
(local (defun n () 1))
(defthm n-constraint
(and (integerp (n))
(<0 (m))

:rule-classes :type-prescription))

Exhibiting a witness is a good practice regardless of ACL2 verification:
it keeps us from writing unsound definitions.

In future work, we hope to build a TLA-ACL2 translator that allows
the TLA user to provide witnesses as part of a specification, flagged in such
a way that the translator can recognize them and use them appropriately.

22 CHAPTER 2. TRANSLATION

Infinite sets

As mentioned earlier, we cannot express infinite sets. Our solution is to re-
cast expressions involving them. A TLA user planning to use our framework
to verify a specification should be sensitive to this issue and avoid infinite
sets. Given that TLA is used to reason about computational systems, we do
not expect to see many infinite sets in a specification. They might be more
widely used, however, when expressing properties of the specification.

2.5 Translating the Increment Example

We now revisit the example introduced in Section 1.2. Recall formula ¥
from Figure 1.2, denoting two processes that increment variables z and y
and share a semaphore sem. Figure 2.3 shows the ACL2 translation of action
N in .

In the process of proving that ¥ implements ® (Figure 1.1), the following
invariant is defined [16].

I = Azé€ Nat
AV (sem = 1) A (pc1 = peg = “@”)
V (sem =0) AV (pc1 = “@”) A (pcg € {“b”, “g”})
\/ (pc2 — “a”) /\ (pCI 6 {“b”’ “g”})

Here is its ACL2 translation.

(defstate i ()
(and (and (integerp x) (>= x 0))
(or (and (= sem 1) (= pcl "a") (= pc2 "a"))
(and (= sem 0)
(or (and (= pcl "a") (mem pc2 (brace "b" "g")))
(and (= pc2 "a") (mem pcl (brace "b" "g"))))))))

A theorem to prove is I’s invariance across states.

INN=T

(defthm i-invariant
(implies (and (i) (m))
(i-n)))

2.5. TRANSLATING THE INCREMENT EXAMPLE 23

(defstate init
(and (= pcl "a") (= pc2 "a")
(=x0) (=y0)
(= sem 1)))

(defaction alphal
(and (= pcl "a") (< O sem)
(= pci-n "b")
(= sem-n (- sem 1))
(unchanged x y pc2)))

(defaction betal
(and (= pcl "b")
(= pci-n "g")
(= xn (+ x 1))
(unchanged y sem pc2)))

(defaction gammal
(and (= pcl "g")
(= pcl-n "a")
(= sem-n (+ sem 1))
(unchanged x y pc2)))

(defaction nil

(or (alphal) (betal) (gammal)))

(defaction n

(or (n1) (n2)))

(defaction alpha2
(and (= pc2 "a") (< 0 sem)
(= pc2-n "b")
(= sem-n (- sem 1))
(unchanged x y pcl)))

(defaction beta?2
(and (= pc2 "b")
(= pc2—n ||gn)
(= ymn (+y 1))
(unchanged x sem pcl)))

(defaction gamma?2
(and (= pc2 "g")
(= pc2-n "a")
(= sem-n (+ sem 1))
(unchanged x y pcil)))

(defaction n2
(or (alpha2) (beta2) (gamma2)))

Figure 2.3: ACL2 translation of action N

24 CHAPTER 2. TRANSLATION

ACL2 proves i-invariant automatically. The file containing ACL2 events
for the increment example is in Appendix A.

2.6 Disk Synod

Disk Paxos [3] is an algorithm for implementing an arbitrary distributed
system with a network of processors and disks. Disk Paxos is fault tolerant—
it maintains consistency in the event of lost or delayed messages and certain
types of processor failure. It also ensures progress as long as one processor
can read and write a majority of the disks, and all other processors are either
non-faulty or have failed completely.

Implementing an arbitrary distributed system reduces to solving the con-
sensus problem. A system is represented as a deterministic state machine
executing a series of commands [17, 22]. The state machine represents a
group of processors, and all processors must agree on each command. To
reach agreement, the consensus problem must be solved. Here is a descrip-
tion of the problem from Gafni and Lamport [3].

In the consensus problem, each processor p starts with an input
value input[p], and all processors output the same value, which equals
input[p] for some p. A solution should be:

e Consistent All value output are the same.

e Nonblocking If the system is stable and a non-faulty processor
can communicate with a majority of disks, then the processor
will eventually output a value.

Disk Synod is the consensus algorithm used by Disk Paxos. Our work
deals with the translation of Disk Synod and the proof of its consistency.
We will not explain Disk Synod; for a discussion of the algorithm, refer to
[3]. All we need to know is that Disk Synod concerns a group of processors
Proc and a group of disks Disk, communicating with each other by writing
to and reading values from the disks in Disk.

The next-state action of Disk Synod consists of seven actions.

2.6. DISK SYNOD 25

Next = dp € Proc :
V StartBallot(p)
V 3d € Disk : V PhaseORead(p, d)
V' Phaselor2 Write(p, d)
V dq € Proc\ {p} : Phaselor2Read(p, d, q)
V EndPhaselor2(p)
V Fail(p)
V' EndPhase0(p)

The algorithm has three phases, in which processors read values from a
set of disks, try to submit a chosen value by writing to disks, or declare their
output value as the chosen one. These activities are suggested by the names
of the various actions. What it means for a processor to fail is specified
in action Fail(p). Appendix B contains the complete specification of Disk
Synod.

Let’s look at an action and understand its general shape. Action
Phaselor2 Write(p, d) is defined as follows.

Phaselor2 Write(p,d) =
A phaselp] € {1,2}
A disk' = [disk EXCEPT ![d][p] = dblock[p]]
N disks Written' = [disks Written EXCEPT ![p] = QU {d}]
A UNCHANGED (input, output, phase, dblock, blocksRead)

The first conjunct,

phase[p] € {1,2}

acts as a guard. If processor p is not currently in phase 1 or 2, this conjunct
evaluates to false and therefore action Phaselor2 Write(p, d) evaluates to
false, meaning that p cannot execute this action in the current state (an
action being “executed” from one state to the next is equivalent to the
action being true across these states).

The second and third conjuncts,

disk' = [disk EXCEPT ![d][p] = dblock[p]]
disks Written' = [disks Written EXCEPT ![p] = Q U {d}]

describe what variables are changed when p executes Phaselor2 Write(p),

26 CHAPTER 2. TRANSLATION

and how they change. ? Finally, the fourth conjunct
UNCHANGED (input, output, phase, dblock, blocksRead)

describes the state variables that remain unchanged when p executes
Phaselor2 Write(p).

Throughout the rest of this paper, we will refer not to action Next but
instead to action HNezt (see Appendix B). The latter action conjoins Next
with two actions describing the values of variables used to prove the consis-
tency of Disk Synod. Nothing is lost in our context if we assume that HNext
looks just like Next above.

The complete translation of Disk Synod can be found in Appendices C
and D.14. Appendix C consists of each TLA construct followed by its ACL2
translation. It omits ACL2 events that are included in the actual translation
file, such as congruence theorems and other lemmas needed to reason about
the translation. Its purpose is to show the reader TLA and ACL2 expressions
side by side. Appendix D.14 contains the ACL2 file that includes Disk
Synod’s translations, with all the events omitted in Appendix C.

The complete translation of Disk Synod consists of 61 events. Defmap
declarations and regular function definitions comprise 16 events. We use
9 defaction forms, corresponding to the seven subactions of Next plus the
definitions of Next and HNext. In addition, we declare 14 quantification
events (defall and defexists). It takes ACL2 183 seconds to process the
translation.® A large fraction of the time is spent admitting quantification
and set comprehension events. We are currently working on a modification
to these types of events that will make them both more robust and faster
to process.

There are two notable places where we do not follow the translation
scheme. The first is in translating TLA’s assumed constants. These are
the first constructs appearing in Disk Synod, and also the first constructs
we translated in the project. At the time, we translated without a rigorous
translation scheme. This is reflected in the translation—rather than faith-
fully translating TLA constructs, we translated them directly into useful
ACL2 rules, both saving time and obscuring a mechanical translation. We
plan to go back and rework the translations under our now-stable framework.

The second place where we deviate from the translation scheme is in
translating existentially quantified expressions. We do this because ACL2
has trouble reasoning with our translation on this front. An in-depth dis-
cussion of the problem is found in Section 3.5.

?The notation [f EXCEPT ![z] = @QU S] is equivalent to [f EXCEPT ![z] = f[z]U S].
$We used a 450 MHz Pentium III processor.

Chapter 3

Verification

3.1 Consistency of Disk Synod

In the long version of their paper, Gafni and Lamport [3] establish consis-
tency of Disk Synod by incrementally establishing an invariant. In other
words, they establish I = Iy A --- A I; for increasing ¢, until the invariant
I is strong enough to yield consistency of the algorithm. We do not discuss
how the invariant is used to establish consistency.

The final invariant in the Disk Synod proof consists of six smaller invari-
ants.

HInv 2 HInvl A HInw2 A HInw3 A HInv4 A HInv5 A HInv6

Establishing HInv amounts to proving the following theorems, where
HlInst is Disk Synod’s initial state and Hnezt its next-state action.

THEOREM I1 HInit = Hlnv
THEOREM [2 HInv A HNext = HInv'

In this project, we tackle the more challenging THEOREM 2. We have
used ACL2 to prove versions of 12 for Hinvl and HInv3:

LEMMA [2a HInvl A HNext = HInvl'.
LEMMA [2¢ HInvl A HInv2 A HInv3 A HNext = HInv3'.

Our choice of invariants is not arbitrary. Invariant HInvl is interesting
to us because it is boring to the TLA specifier—it states type invariance
of the specification’s variables. It’s an invariant that we expect a good
verification system to establish automatically. Invariant HInv3 is interesting

27

28 CHAPTER 3. VERIFICATION

to us because it is the first invariant for which Gafni and Lamport provide
a proof. Can ACL2 follow their proof?

Our proof effort yielded several positive results. In addition to finding
syntactic mistakes in the written proof outlines given by Gafni and Lamport,
we found a nontrivial error in the course of verifying I2¢ with ACL2—the
original formulation of LEMMA I2¢ omitted HInv2 as an assumption.

The translated lemmas are:

(defthm i2a
(implies (and (hinv1)
(hnext p d q b-witnessl ip-witnessl b-witness))
(hinvi-n))).

(defthm i2c
(implies (and (hinv1)
(hinv?2)
(hinv3)

(hnext p d q b-witnessl ip-witnessl b-witness))
(hinv3-n))).

In Section 3.5, we explain the six arguments in action HNext.

3.2 Controlling ACL2

It is important to control the amount of information in ACL2’s database.
Having too many rules can, at best, substantially slow down the prover, and
at worst, lead ACL2 astray and result in failure. For this reason, we limit
the assumptions visible to ACL2 during a particular proof step. Our general
approach is to keep most definitions and theorems disabled, and enable them
during particular proofs based on their need.

In the proof of theorem I2¢, for instance, we keep all three assumed
invariants disabled, and enable a particular invariant only when its infor-
mation is necessary in a proof step. In fact, enabling an invariant rarely
provides useful information (except for HInvl), because the form in which
the invariant is stated does not yield good rewrite rules. In the case of
Hinv2, we create a separate file HInv2-exports that massages HInv2 into
rules useful to ACL2. These rules are disabled by default. A rule is en-
abled only inside the theorem that needs it. The reader may wonder how
much we cripple ACL2 by disabling all the invariants. This approach does

3.3. TYPE INVARIANCE 29

not cripple ACL2 at all. The cases when invariant information is necessary
are interesting cases that would have failed anyway without user guidance.
Providing information explicitly in a theorem is also a way to document a
nontrivial proof step, making explicit the facts it follows from.

3.3 Type Invariance

Among the first theorems one encounters in a typical TLA specification is a
theorem stating type invariance. Such is the case for Disk Synod. Formula
HInvl states the type of all flexible variables.

Hinvl =
A input € [Proc — Inputs]
A output € [Proc — Inputs U NotAnInput]
A disk € [Disk — [Proc — DiskBlock]]
A phase € [Proc — 0..3]
A dblock € [Proc — DiskBlock]
A disks Written € [Proc — SUBSET Disk]
A blocksRead € [Proc — [Disk — SUBSET [block : DiskBlock, proc : Procl]]]
A alllnput € SUBSET Inputs
A chosen € Inputs U NotAnInput

LEMMA [2a HInvl A HNext = HInvl'.

The translation of HInv1 is straightforward (see Appendix D.7). We have
proved LEMMA [2a with ACL2. A total of 32 lemmas lead up to its proof.
Of these, 19 are general set theoretic lemmas that we have incorporated into
our set theory framework. The remaining 13 are lemmas specific to Disk
Synod, all of which can be generated automatically following an approach
we present below. The proof of 12a, including all 32 auxiliary lemmas, takes
47 seconds on a 450MHz Pentium III processor.

ACL2 splits theorems into cases when appropriate. For example, a goal
of the form (IF e; e e3) often generates a case split on e, resulting in two
subgoals: one to establish es assuming e;, and one to establish e3 assuming
(not e1). The next-state action HNext is a large expression. It contains
several places where ACL2 generates a case split, and each case split doubles
the number of subgoals to establish. This leads to a severe case explosion
in the proof of /2a. The solution is to prove I2a one action at a time. In
other words, we prove

30 CHAPTER 3. VERIFICATION

LEMMA [2gq; HInvl N A; = HInvl'

replacing A; by each of the seven actions in HNezt. Lemma [2a follows
directly from these smaller lemmas.

ACL2 further divides the task of proving each I2a; into proving each
conjunct of HInvl separately. Here is a subgoal involving the variable disk.

HInvl A A; = disk’ € [Disk — [Proc — DiskBlock]] (1)

Notice that most of the flexible variables in Disk Synod—including disk—
denote functions. These variables are generally modified using the EXCEPT
construct. Suppose that action A; changes disk as follows.

disk' = [disk EXCEPT ![d][p] = db]

Recall that HInvl is among our hypotheses, so we can assume that
disk € [Disk — [Proc — DiskBlock]]. The variable disk’ is everywhere equal
to disk, except that disk'[d][p] equals db. If we can show that disk’ respects
the type [Disk — [Proc — DiskBlock]] in the only place where it differs from
disk, we can establish (1). To do this, we must verify three facts:

(d € Disk) A\ (p € Proc) A (db € DiskBlock).

The proof of Hinv1 is basically a large-scale version of the above example,
comprising about 200 cases across all actions of HNezt. A key lemma is the
one characterizing the set [D — R] of functions with domain D and range
a subset of R. In ACL2, we write this set as (all-fns D R).

(defthm all-fns-property
(iff (mem g (all-fns a b))
(and (functionp g)
(= (domain g) (sfix a))
(subsetp (range g) b)))).

Establishing type invariance of a variable v € (all-fns D R) changed
through (except v z y) is equivalent to establishing the following three
subgoals.

3.3. TYPE INVARIANCE 31

e (functionp (except v z y))
e (= (domain (except v z y)) D)

e (subsetp (range (except v z y)) R)

The next three lemmas let us reason about type properties of functions
changed through except.

(defthm functionp-except
(implies (functionp f)
(functionp (except f x v)))
:hints...)

(defthm domain-=-except
(implies (and (mem x s1)
(functionp g)
(= (domain g) s1))
(= (domain (except g x y)) s1)))

(defthm range-subsetp-except
(implies (and (mem y s2)
(subsetp (range f) s2))
(subsetp (range (except f x y)) s2))
:hints...)

Generating lemmas automatically

We now have the lemmas needed to handle type invariance of EXCEPT
expressions. But we aren’t finished proving all the lemmas that will establish
HInvl. The missing lemmas are tedious but shallow; we claim that most of
them can be generated automatically.

Consider the operator allBlocksRead(p) in Disk Synod.

allBlocksRead(p)

let allRdBlks UNION {blocksRead[p][d] : d € Disk}
in {br.block : br € allRdBlks}

2
A

What is the type of allBlocksRead(p)? If we assume Hinvl and p € Proc,
can we recognize the set to which allBlocksRead(p) belongs?

32 CHAPTER 3. VERIFICATION

First let’s consider the set that comes after the UNION operator in
allBlocksRead(p). Call it a.

o 2 {blocksRead[p][d] : d € Disk}
From HInvl, we know the type of the variable blocksread:

blocksRead € [Proc — [Disk — SUBSET BlockProc]),
where BlockProc is the set of records [block : DiskBlock, proc : Proc].

Given the type of blocksRead, from p € Proc and d € Disk it follows that
blocksread[p][d] belongs to the set SUBSET BlockProc.! Thus, the elements
of o are members of SUBSET BlockProc, which means « is a collection of sets
of BlockProc records.

Having determined the type of o, we determine the type of the expression
surrounding it.

allRdBlks = UNION {blocksRead[p][d] : d € Disk}}

Applying UNION to a collection of sets of records yields a set of records—
allRdBlks denotes a set of BlockProc records. Finally, we must determine
the type of the set returned by allBlocksRead(p). Call it (.

B = {br.block : br € allRdBlks}

But this last step is easy: collecting all the block fields in a set of
BlockProc records produces a set of DiskBlock objects (by the definition
of BlockProc). We conclude that allBlocksRead(p) is a set of DiskBlock
objects.

Can we mechanize this train of thought? Let’s first look at the transla-
tion of allBlocksRead(p) into ACL2.

(defmap allblocksread-map-2 (allrdblks)
:for br :in allrdblks :map (apply br "block"))

(defmap allblocksread-map-3 (disk p blocksread)
:for d :in disk :map (apply-m blocksread p d))

'Remember that SUBSET S is the powerset of S.

3.3. TYPE INVARIANCE 33

(defun allblocksread (p blocksread)
(allblocksread-map-2
(union* (allblocksread-map-3 (disk) p blocksread))))

Allblocksread-map-3 corresponds to the set a, and allblocksread-map-2
corresponds to 3. The following propositions are a more formal version of
the arguments we used to determine the type of allBlocksRead(p).

Proposition 1. Consider the construct

(defmap f (dom vy...v,) :for x :in dom :map (apply v; x)).
If SC D, and

v; € (all-fns D R),

then (f S v...v,) C R.

Proposition 2. Consider the construct

(defmap f (dom y v1...v,) :for x :in dom :map (apply-m v; x y)).
If SC Dy,

y € Dy, and

v; € (all-fns D; (all-fns D, R)),

then (f S v...v,) C R.

Proposition 3. Consider the constructs

(defrec Rec (M Si1) ... (h; Si)) and

(defmap f (dom wvy...v,) :for x :in dom :map (apply x h;))
If S C Rec,

then (f S v1...v,) CS; .

Propositions 1 and 2 can be paraphrased as follows: if we have a
function g € [D — R] and we collect a number of its applications g[z € D],
we are left with a subset of R. Proposition 2 applies to functions of two
arguments, where we collect applications of the form g[z € D]y € Ds]. We
can contemplate analogous propositions for functions with a larger number
of arguments, up to a reasonable limit.

Proposition 3 states that if we have a set of records and we collect all
their fields h; : S;, we are left with a subset of S;.

A computer program with knowledge of these propositions and with
access to the Disk Synod translation, including the translation of HInwvl,
should be able to deduce the type of allBlocksRead(p). The program we
have in mind works as follows. Let’s say we want to determine the type of

34 CHAPTER 3. VERIFICATION

the expression (f e;...e,), where the e;’s may themselves be expressions.
We recursively determine the type of each e;, and then determine the type
of (f e...e,), perhaps with the help of Propositions 1-3.

Our computer program doesn’t have to be sound. Its output is a list of
theorems that are submitted to ACL2. The point is to create meaningful
theorems that capture the type of our constructs. Let’s try our program on
allblocksread and see if it works in this case.

(defun allblocksread (p blocksread)
(allblocksread-map-2
(union* (allblocksread-map-3 (disk) p blocksread))))

To determine the type of allblocksread, we must first determine the type
of the expression

(union* (allblocksread-map-3 (disk) p blocksread)). (2)

This leads us to ask for the type of

(allblocksread-map-3 (disk) p blocksread), (3)
where
(newdefmap allblocksread-map-3 (disk p blocksread)

:for d :in disk :map (apply-m blocksread p d)).

With a slight variation of Proposition 2, we postulate 2

(defx allblocksread-map-3-subsetp
(implies (and (mem blocksread
(all-fns (proc)
(all-fns (disk)
(powerset (blockproc)))))
(mem p (proc)))
(subsetp (allblocksread-map-3 (disk) p blocksread)
(powerset (blockproc))))
:strategy subset-relation).

The above theorem is used in the proof of HInwvl1.

’The reader may regard the form defx as a defthm event. For more information on
this construct, refer to [21].

3.3. TYPE INVARIANCE 35

Now let’s go back to (2). First, here is a fact about union* that would need
to be stored in our computer program.

(defthm union*-powerset
(implies (subsetp s (powerset a))
(subsetp (union* s) a))
:hints...)

This fact, together with the deduced type of (3) above (captured by Theorem
allblocksread-map-3-subsetp) lets us deduce the type of (2).

(defthm allblocksread-union*-map-3

(implies (and (mem blocksread
(all-fns (proc)
(all-fns (disk)
(powerset (blockproc)))))
(mem p (proc)))
(subsetp (union* (allblocksread-map-3 (disk) p blocksread))
(blockproc))))

Finally, we arrive at the outermost function,

(allblocksread-map-2 (union* (allblocksread-map-3 (disk) p blocksread))),
where
(defmap allblocksread-map-2 (allrdblks)

:for br :in allrdblks :map (apply br "block")).

By Proposition 3 and the deduced type of (2) above (captured by Theorem
allblocksread—union*—map—3),“EiObtahl

(defx subsetp-allblocksread-map-2-diskblock
(implies (subsetp dom (blockproc))
(subsetp (allblockgqsread-map-2 dom) (diskblock)))
:strategy subset-relation)
where
(defrec blockproc ("block" (diskblock)) ("proc" (proc))).

36 CHAPTER 3. VERIFICATION

Note that before writing down the theorem, we generalized it, using variable
dom instead of the term

(union* (allblocksread-map-3 (disk) p blocksread)).

The above theorem is actually used in the proof of HInvl.

Most the effort in deducing the type of allblocksread involved keeping
track of the expression we were working on, and deciding which one of
Propositions 1-3 to apply. The one piece of ingenuity consisted in using
a theorem about union*. In proving HInvl with ACL2, we have observed
that the number of theorems invoked in deducing type information is rather
small, so a modest database of theorems would probably be enough for a
program that generates type lemmas. Of course, our comments must be
taken with a grain of salt until such a tool is built.

After proving type lemmas about specific Disk Synod constructs, the
proof of LEMMA [2a goes through.

3.4 A Second Invariant

The second invariant we establish, HInv3, states that when certain condi-
tions hold for two processors p and ¢ and a disk d, at least one processor
has some information about the other stored in d. Here is the invariant and
the lemma to establish, as given by Gafni and Lamport.

HInw3 =

Vp,q € Proc,d € Disk :

A phaselp] € {1,2}

A phaselq] € {1,2}

A hasRead(p, d, q)

A hasRead(q,d, p)

=V [block — dblock[q], proc — q] € blocksRead[p][d]
V [block — dblock[p], proc — p] € blocksRead|q][d]

LEMMA (Wrong!) I2¢ HInvl A HInv3 A HNext — HInv3'

We have verified LEMMA [2¢ with ACL2. The proof takes a total of 38
seconds, not counting the time spent in the translation of Disk Synod. A
total of 137 lemmas are needed. This number will probably go down to about
50 lemmas once we develop better techniques to reason about quantification.

3.4. A SECOND INVARIANT 37

In addition to spotting a typographic error in Gafni and Lamport’s writ-
ten proof of I2¢, we have discovered a nontrivial error in the statement of the
theorem: HInv2 was omitted as a hypothesis. Our proof effort has yielded
a correction to Lemma I2¢, which should be modified to state

LEMMA I2¢ HInvl A HInv2 A HInv3 A HNext = HInv3'.

Gafni and Lamport provide a proof outline for LEMMA [2¢. Figure 3.1
shows the general structure of their outline. They start by assuming that
the left-hand side of the implication in HInv3 holds for some p, ¢ € Proc and
d € Disk. Then they show that the right-hand side follows for p, ¢ and d. 3

Let’s consider case <1>1 in Figure 3.1. In this case, since we assume both
- HInv3(p, q,d).L and HInv3(p, q, d).L', it follows that one of the conjuncts
in HInv3(p, q, d).L must have changed from false to true. This means that

1. —hasRead(p, d, q) and hasRead(p, d, q)’, or
2. —hasRead(q, d,p) and hasRead(q, d, p)’, or
3. phase[p] ¢ {1,2} and phase'[p] € {1,2}, or

4. phase[q] ¢ {1,2} and phase'[q] € {1, 2}.

Since Gafni and Lamport have a good intuition of their algorithm, they
can predict which actions produce one of the above changes. They at-
tribute conditions 1 and 2 to the action Phaselor2Read, and conditions
3 and 4 to the action EndPhase0. These actions are covered in cases
<2>1 through <2>4 in Figure 3.1. Finally, Gafni and Lamport state that
“Steps <2>1-<2>4 cover the four subactions of HNext that can make one of
those conjuncts true.” In other words, they consider <2>1 through

8Gafni and Lamport use a special notation to refer to particular pieces of a formula.
The notation HInv3(p, q,d).L' refers to the primed left-hand side of HInv3, instantiated
with p, ¢ and d —which in this case happen to have the same name as the variables p, ¢
and d in HInv3. Recall that priming a formula means replacing all the flexible variables
occurring in it by their primed versions.

38 CHAPTER 3. VERIFICATION

We prove Lemma I2c by proving:

ASSUME: 1. HInvl A HInv3 A HNext
2. CONSTANTS p, q € Proc, d € Disk
3. HInv3(p,q,d).L’

PROVE: HInv3(p,q,d).R’

<1>1. CASE: -HInv3(p,q,d).L
<2>1. CASE: Phaselor2Read(p,d,q)
<2>2. CASE: Phaselor2Read(q,d,p)
<2>3. CASE: EndPhaseO(p)
<2>4. CASE: EndPhaseO(q)
<2>5. Q.E.D.

PROOF: By assumption 3 and the level <1> case assumption,
one of the four conjuncts of HInv3(p,q,d).L is changed
from false to true. Steps <2>1-<2>4 covers the four
subactions of Next that can make one of those
conjuncts true.

<1>2. CASE: HInv3(p,q,d).L
<1>3. Q.E.D.
PROOF: Immediate from steps <1>1 and <1>2.

Figure 3.1: Highlights in Gafni and Lamport’s proof of Lemma I2¢c. [3]

<2>4 the only interesting cases—all other possibilities leave the conjuncts of
HInv3(p, q, d).L unchanged.

How many uninteresting cases are there?

First, we must realize that the constants p, ¢ and d assumed in Figure 3.1
are not the only processors and disks to consider. Let’s look carefully at our
hypotheses. Among them, we have

ASSUME : 1.HInvl A HInv3 A\ HNext
2.CONSTANTS p, q € Proc,d € Disk
3.HInv3(p, q,d).L’

case ~HInv3(p, q,d).L.

What does it mean to assume HNezt? It means that for some pair of
processors—call them py and ¢s—and some disk—call it do—the formula
HNext holds, or intuitively, an action of HNezt is “executed.” Does it
follow that it is the assumed CONSTANT values p, d,q which take part in
this execution? Put another way, does it follow that po = p, g2 = ¢, and
d2 = d? Definitely not!

3.4. A SECOND INVARIANT 39

Obviously, Gafni and Lamport know that if our particular p, d, ¢ are not
all part of the executed action, HInv3(p, ¢, d).L remains unchanged, making
it impossible for any of conditions 1-4 to hold, and thus establishing case
<1>1 by contradiction. For ACL2—or equivalently, for someone not familiar
with the algorithm—this is not necessarily obvious. Imagine the following
scenarios.

e po # p, do # d, and ps # ¢. In this case, an action is executed by
a processor po different from both p and ¢, a processor g2 which we
know nothing about, and a disk ds different from d. Does it matter
if go = p or go = q7 Does it follow that HInv3(p, q,d).L remains
unchanged?

e py =p, do # d, and g9 # q. Processor p participates in the execution
of an action with some processor g2 and disk ds. Does it follow that
HInv3(p, q, d).L remains unchanged?

e po = p, do = d, and ¢q2 # ¢q. Both our processor of interest p and
our disk of interest d participate in the execution of an action. We
know that ¢ # g2, but is ¢ = p2? Does it follow that HInv3(p, q,d).L
remains unchanged?

e py = p, da # d, q2 = q. Both p and ¢ participate in an action, but
d is not part of the execution. Does it follow that HInv3(p, q,d).L
remains unchanged?

e ps = p, dyg = d, q2 = q. Our three variables of interest participate in
the execution of an action. We still must ask whether p = ¢. Does it
follow that HInv3(p, q, d).L remains unchanged?

We also need to consider the following scenarios, not included in cases
<2>1-<2>4 from Figure 3.1.

e Suppose that the action making HNezt true is StartBallot(ps2). Does
it follow that HInv3(p, q, d).L remains unchanged?

e Suppose that the action making HNezt true is PhaseORead(p2, d2).
Does it follow that HInv3(p, q, d).L remains unchanged?

e Suppose that the action making HNext true is Phaselor2 Write(pso, ds).
Does it follow that HInv3(p, q, d).L remains unchanged?

40 CHAPTER 3. VERIFICATION

e Suppose that the action making HNezt true is EndPhaselor2(p2).
Does it follow that HInv3(p, q, d).L remains unchanged?

e Suppose that the action making HNezt true is Fail(p2). Does it follow
that HInv3(p, q, d).L remains unchanged?

The above scenarios are not meant to be an exhaustive consideration of
all the cases that must be considered in a mechanical proof of Lemma 12c.
But they illustrate the fact that there is a number of “trivial” cases to be
considered in the mechanical verification of 12c.

The Well-Behaved Property

Dispatching many of the above cases depends on a property implicitly as-
sumed by Gafni and Lamport: when a processor p changes the value of a
shared variable, it changes only its own slot in the variable. Consider the
variable phase in Disk Synod. We know its type is [Proc — 0..3].* This
variable records some information about the processors in the system—we
don’t care what. For a particular processor p, phase[p] holds p’s share of
information. When an action executes and it involves a change of p’s state,
only phase[p] is modified, if phase is modified at all. We find an example in
the action Initialize Phase.

Initialize Phase(p) 2
A disksWritten' = [disks Written EXCEPT ![p] = {}]
A blocksRead' = [blocksRead EXCEPT ![p| = [d € Disk — {}]]

This action changes p’s slots in the shared variables disks Written and
blockRead. However, it is not illegal to define an action that changes the val-
ues of arbitrary processors. Imagine an alternate version of IntializePhase.

EvilPhase(p) =
let pevir £ CHOOSE Proc
in A disksWritten' = [disks Written EXCEPT ![peyit] = {}]
A blocksRead' = [blocksRead EXCEPT ![peyi] = [d € Disk — {}]]

The action EwvilPhase changes disksWritten[peyi;| and blocksRead[p ey]
for some processor py; in the set of processors Proc, not necessarily the p
its argument advertises.

4The TLA notation m..n denotes the set {t € Nat : m < i < n} when m < n.

3.4. A SECOND INVARIANT 41

Gafni and Lamport assume this kind of behavior never happens in their
specification of Disk Synod (and they are correct). The theorem capturing
their assumption is straightforward to prove in ACL2.

(defthm wb-hnext
(implies (and (hnext p2 d2 g2 b-witnessl ip-witnessl b-witness)
(not (= p2 p)))
(and (= (apply input-n p) (apply input p))
= (apply output-n p) (apply output p))
= (apply-m disk-n d p) (apply-m disk d p))
= (apply phase-n p) (apply phase p))
= (apply dblock-n p) (apply dblock p))
= (apply diskswritten-n p) (apply diskswritten p))
= (apply-m blocksread-n p d)
(apply-m blocksread p d))
(= (apply blocksread-n p) (apply blocksread p))))

We now illustrate how the well-behaved property can be used to deal
with some cases. We only do this for the easiest one.

e py £ p, do # d, and py # ¢q. An action is executed by a processor ps
different from both p and ¢, a processor ¢s which we know nothing
about, and a disk dy different from d. Does it matter if go = p or
g2 = q7 Does it follow that HInv3(p, ¢, d).L remains unchanged?

In this case, we can use the well-behaved property to reduce HInv3' to
HInv3. The intuition is that if p, d and ¢ have nothing to do with the
action executed, then HInv3(p, q, d), which states a relationship between p,
d and ¢, should remain unchanged after HNext executes. Note that we can
assume HInv3(p, q,d), since it is an instance of the assumption HInv3.

Translating HInv3(p, q, d)’ yields the following ACL2 expression.

1 (implies (and (mem (apply phase-n p) (hide (brace 1 2)))

2 (mem (apply phase-n q) (hide (brace 1 2)))

3 (hasread p d q blocksread-n)

4, (hasread q d p blocksread-n))

5. (or (mem (func ("block" (apply dblock-n q)) ("proc" q))
6 (apply-m blocksread-n p d))

7 (mem (func ("block" (apply dblock-n p)) ("proc" p))
8 (apply-m blocksread-n q d))))

42 CHAPTER 3. VERIFICATION

Given the hypothesis (hnext p2 d2 q2 b-witnessl ip-witnessl b-witness)
and the assumption (not (= p2 p)), we can use wb-hnext to deduce
(= (apply phase-n p) (apply phase p)). Using this equality, line 1 be-
comes

1*. (implies (and (mem (apply phase p) (hide (brace 1 2))).

The same reasoning applied to (not (= q2 p)) transforms line 2 into

2x. (mem (apply phase q) (hide (brace 1 2))).

The definition of hasread is

(defun hasread (p d q blocksread)
(exists-hasread (apply-m blocksread p d) q)).

Using this definition, the assumption (not (= p2 p)), and the well-behaved
property, we rewrite lines 3 and 4 as follows.

(hasread p d q blocksread-n)

(exists-hasread (apply-m blocksread-n p d) q))

(exists-hasread (apply-m blocksread p d) q))

(hasread p d q blocksread).

Continuing in this manner, we are able to replace all the primed variables
in lines 1-8 with unprimed variables, which implies

HInv3(p, q,d) = HInv3(p, q,d)".

Since HInv3 = HInv3(p, q,d) and HInv3(p, q,d) = HInv3(p, q,d)’, we
have HInv3 = HInv3(p, q,d)’, establishing LEMMA I2¢ for the case we're
considering.

Notice that we have established the invariance of Hinv3 for the case
“po #£ p, do # d, and py # q.” This case has no correspondence to any of
the cases in Gafni and Lamport’s outline (Figure 3.1). We are following an

3.5. ISSUES IN VERIFICATION 43

altogether different proof of Lemma I2¢. Figure 3.2 shows an outline of our
proof. We have marked some points of interest. Line *3* corresponds to
the case we just worked out. Line *1* corresponds to Gafni and Lamport’s
case <2>1. Notice the effort involved just to arrive at their starting point.
In fact, once we arrive at case <4>1 in line *1%, establishing the conclusion
for this particular case is straightforward. Most of our effort is involved in
considering all the case splits that Gafni and Lamport avoid. Line *2x (case
<3>3) produces the same number of case splits as <3>2. To save space, we
do not include all cases in our proof outline.

Ideally, ACL2 would have easily followed Gafni and Lamport’s proof.
We would like to give ACL2 a high-level hint to split our proof into the
numerous cases in Figure 3.2 and have it establish automatically those which
the designers of Disk Synod considered uninteresting. The verdict on this
front is not in—we are in the process of analyzing our proof of HInv3 to see
if we can follow Gafni and Lamport’s proof.

Still, we claim that our own proof is not unreasonable. It gives as much
space to the “obvious” as it does to the “non-obvious” but it makes explicit
the fact that HNext is a general assumption that doesn’t necessarily apply
to a specific processor we may have in mind.

3.5 Issues in Verification

This section presents two examples of issues confronted by the user of a
verification system. The first deals with representation. In TLA, one can
be an elegant mathematician. But sometimes elegance gets in the way of
proofs—it can be difficult to prove basic properties about a construct in its
original TLA form. To establish these properties, we may need to take a
step back and define an equivalent construct, in a style more amenable to
ACL2. After proving the desired properties for the new construct, we must
relate it back to its TLA counterpart.

The second example illustrates the reality that no theorem prover is
ready-made for every task. It poses a problem in the interplay between
ACL2 and our translation scheme, and offers a possible solution.

Finding a Maximal Element

Consider a construct found in actions EndPhase0(p) and EndPhaselor2(p)
in the Disk Synod specification. The construct appears unnamed within the
actions; here we give it a name.

44 CHAPTER 3. VERIFICATION

We prove Lemma I2c by proving:

1. HInvl A HInv2 A HInv3

2. HNext(pgy,dy,qs)

2. CONSTANTS p, q € Proc, d € Disk
3. HInv3(p,q,d).L’

PROVE: HInv3(p,q,d).R’

ASSUME:

<1>1. CASE: StartBallot(psy)
<1>2. CASE: PhaseORead(ps,ds)
<1>3. CASE: Phaselor2Write(ps,ds)
<1>4. CASE: EndPhaseiorQ(p2)
<1>5. CASE: Fail(p2)
<1>6. CASE: Phaselor2Read(ps,ds,qs)
<2>1. CASE: dy = d
<8>1. CASE: po #p A py # ¢
<3>2. CASE: py =p
<4>1. CASE: g2 = q *1 %
<56>1. CASE: p=gq
<5>2. CASE: p # q
<5>3. Q.E.D. Immediate from <5>1 and <56>2.
<4>2. CASE: q2 # q
<4>3. Q.E.D. Immediate from <4>1 and <4>2.
<3>3. CASE: py = q * 2k
<3>4. Q.E.D. Immediate from steps <3>1-<3>3.
<2>2. CASE: dy #d
<8>1. CASE: py #p A Py # 4 *3%
<3>2. CASE: py =p
<3>3. CASE: py = q
<3>4. Q.E.D. Immediate from steps <3>1-<3>3.
<2>3. Q.E.D. Immediate from steps <2>1 and <2>2.
<1>7. CASE: EndPhaseO(ps)
<1>8. Q.E.D. Cases <1>1-<1>7 cover all the actions of Next.

Figure 3.2: Our proof of Lemma I2c.

3.5. ISSUES IN VERIFICATION 45

ChooseMazBal =
CHOOSE 7 € allBlocksRead(p) : Vs € allBlocksRead(p) : r.bal > s.bal

This expression denotes a record from the set allBlocksRead(p) with
maximal bal field. The element of a set with some “maximal” property is
a concept bound to come up in different contexts, so let’s generalize our
discussion and consider instead

ChooseMaz = CHOOSE re€ 8§ :Vze§ : g(r)> g(z).

Leaving ¢ undefined, we capture the statement in its most general form.
Here is its translation.

(encapsulate

((g (x) t))

(local (defun g (x) (declare (ignore x)) t))
(defcong = = (g x) 1))

(defall forall-x-is-greater (y s)
:forall x :in s
tholds (>= (g r) (g x)))
(defmap collect-maximal-elements (sl s2)
:for x :in si
:such-that (forall-x-is-greater x s2))
(defun choose-max (s)
(choose (collect-maximal-elements s s)))

Choose-max has the important =-congruence property (see Section 1.3).

(defcong = = (choose-max s) 1)

However, it is difficult to prove the two important theorems about choosemax:

(defthm choose-max-exists
(implies (not (ur-elementp s))
(mem (choose-max s) s))).

(defthm choose-max->=
(implies (mem x s)
(>= (g (choose-max s))

(g x)))).

46 CHAPTER 3. VERIFICATION

A more natural way to define ChooseMaz is to define a recursive function
that finds the maximal element. Having such a function, it is much easier
to prove the two above theorems. In fact, they follow immediately for the
function below.

(defun choose-max-alt (s)
(cond ((ur-elementp s) nil)
((ur-elementp (scdr s)) (scar s))
((>= (g (scar s))
(g (choose-max-alt (scdr s))))
(scar s))
(t (choose-max-alt (scdr s)))))
(defthm choose-max-alt-exists
(implies (not (ur-elementp s))
(mem (choose-max-alt s) s)))
(defthm choose-max-alt->=
(implies (mem x s)
(>= (g (choose-max-alt s)) (g x))))

Unfortunately, choose-max-alt doesn’t respect =-congruence. The rea-
son is that (choose-max-alt S) picks the first maximal element it finds in
the list representation of the set S. If two equal sets S1 and S2 having more
than one maximal element happen to have their maximal elements pre-
sented in different order, the values returned by (choose-max-alt S1) and
(choose-max-alt S2) could differ.

Our goal is to prove choose-max-exists and choose-max->= with the
help of choose-max-alt. The key is to relate both functions, choose-max
and choose-max-alt. We cannot prove them equivalent, because they aren’t.
But we can establish facts that let us transfer theorems from choose-max-alt
to choose-max. Here are two observations.

1. If S is not empty, then (choose-max-alt S) is an element of

(collect-maximal-elements S S),

which is involved in the definition of choose-max.

2. If S is not empty, then
(fix (g (choose-max S))) = (fix (g (choose-max-alt S5))).
Observations like (1) and (2) let us translate knowledge about choose-max-alt

into knowledge about choose-max. For the ACL2 events corresponding to
this claim, see Appendix D.2.

3.5. ISSUES IN VERIFICATION 47

The Witness Problem

Consider the definition of action Fail in the Disk Synod algorithm.

Fail(p) =
A Jip € Inputs : input’ = [input EXCEPT ![p] = ip]
A phase' = [phase EXCEPT ![p] = 0]
A dblock’ = [dblock EXCEPT ![p] = InitDB]
A output’ = [output EXCEPT ![p] = NotAnInput]
A InitializePhase(p)
A UNCHANGED disk

It translates into the following ACL2 events.

(defexists exists-fail-1 (inputs input input-n p)
:exists ip :in inputs :such-that (= input-n (except input p ip))
:mem-corollary nil)

(defaction fail (p)

(exists-fail-1 (inputs) input input-n p)

(= phase-n (except phase p 0))

(= dblock-n (except dblock p (initdb)))

(= output-n (except output p (notaninput)))

(initializephase p diskswritten diskswritten-n
blocksread blocksread-n)

(unchanged disk))

Now, imagine a function ® with the following property.

(defthm theta-lemma
(implies (mem y (inputs))
(O (except w x y))))

We are asked to prove the following theorem.

(defthm fail-implies-theta
(implies (fail p)
(® input-n)))

The way to proceed is to use lemma exhibit-member-fail-1.

48 CHAPTER 3. VERIFICATION

(defthm exhibit-member-fail-1

(iff (exists-fail-1 (inputs) input intput-n p)

(and (mem (choose

(exists-fail-1-map (inputs) input

input-n p))

inputs)

(= input-n
(except input

P
(choose

(exists-fail-1-map (inputs) input
input-n p)))))))

Exhibit-member-fail-1 creates a witness object that satisfies the prop-
erties stated in the existentially quantified statement

Jip € Inputs : input’ = [input EXCEPT ![p] = ip].
Inspecting exhibit-member-fail-1, we find that the witness is

w 2 (choose (exists-fail-1-map (inputs) input input-n p)).

How is Wrcreated? Behind the scenes, defexists creates a function
exists-fail-1-map, analogous to exists-fail-1, that collects all elements
satisfying

(= input-n (except input p ip)).

If (exists-fail-1 (inputs) input input-n p) holds, then some element
in (inputs) satisfies the above equation, and
(exists-fail-1-map (inputs) input input-n p)) is nonempty. W collects
an element from this nonempty set.

We can use exhibit-member-fail-1 to rewrite fail-implies-theta.

3.5. ISSUES IN VERIFICATION 49

(implies (and (and (mem W (inputs))
(= input-n
(except input p W)))
(= phase-n (except phase p 0))
(= dblock-n (except dblock p (initdb)))
(= output-n (except output p (notaninput)))
(initializephase p diskswritten diskswritten-n
blocksread blocksread-n)
(unchanged disk)
(© input-n)))

To establish (© input-n), we replace input-n by (except input p W) in
the conclusion. Then fail-implies-theta follows from theta-lemma. How-
ever, ACL2 doesn’t replace input-n. The reason is that input-n occurs inside

w:
(choose (exists-fail-1-map (inputs) input input-n p)).

ACL2 reasonably refuses to replace a variable with an expression con-
taining it—this could lead to an infinite loop. But without the replacement,
the conclusion (© input-n) remains unchanged, and we are unable to use
theta-lemma and prove the theorem.

Currently, this problem is unresolved. To succeed in our proofs, we
depart from our translation scheme, translating statements of the form
Jdz € S : p(z) into

(and (mem w; S)
(p wi)).

We are careful to choose variables w; that do not occur in any other
context within the translated expression. HNezt needs six such variables.
That is why a call of HNext looks like

(hnext p d q b-witnessl ip-witnessl b-witness).

In LEMMA I2a and LEMMA [2c¢, all existentially quantified expressions
appear in HNext, which is on the left side of the implication sign. So in this
case our new translation is sound. We consider this a temporary fix, not a
permanent alternative.

50 CHAPTER 3. VERIFICATION

A solution proposed by Kaufmann and Moore[9] would involve a change
in ACL2’s generalization strategy. The idea is that when ACL2 encounters
a function symbol flagged as “generalizable,” it generalizes the current ex-
pression. In our case, choose would be a generalizable function symbol. (If
choose is used in other contexts where we do not want generalization to hap-
pen, we might create a function choose-witness, equal to choose, and flag it
as generalizable, leaving the original choose unchanged.) Now, when ACL2
runs into W, it generalizes it to a fresh variable® and produces a stronger
goal.

(implies (and (and (mem W23 (inputs))
(= input-n

(except input p W23)))
(= phase-n (except phase p 0))
(= dblock-n (except dblock p (initdb)))
(= output-n (except output p (notaninput)))
(initializephase p diskswritten diskswritten-n

blocksread blocksread-n)
(unchanged disk))
(® input-n))

Now, input-n is successfully replaced by (except input p W23), and
fail-implies-theta is established.

This addition to ACL2 is currently the best proposed solution to our
problem, because it leaves our translation scheme intact.

By ‘fresh’, we mean a variable that doesn’t already appear in the goal.

Chapter 4

Conclusion

Our project has accomplished several objectives. The first and most stable
result is a straightforward translation scheme. We have also become familiar
with the structure of invariant proofs in TLA. We successfully used ACL2
to prove two invariants of Disk Synod. Our mechanical proof of HInv3 sug-
gests that the translation scheme can be used effectively to verify nontrivial
invariants. A rewarding aspect of proving nontrivial invariants of a realistic
algorithm is that we have taken as a starting point a non-toy problem, and
learned much from each invariant proved. Starting with something as large
as Disk Synod might seem like a bad idea for a verification experiment, but
in our case it proved beneficial—it forced us to come up with a translation
that would make sense for a sizable specification, and to develop our system
so it could handle relatively large invariants from the outset. Our success
with Disk Synod attests to the system’s strength, and shows promise for
attacking larger verification projects.

We have also developed a good intuition for type invariance proofs of
TLA specifications, and are confident that a program can be written that
mechanically generates most of the lemmas needed to establish type invari-
ance.

Our proofs of HInvl and HInv3 are fast. The proof of HInvl breaks
into approximately 200 cases. Adding the time taken by ACL2 to establish
auxiliary lemmas, each case is proved in approximately 0.25 seconds. The
proof of HInv3 is faster: all auxiliary lemmas plus the main theorem are
established in 38 seconds.

Many issues are still unresolved. The most important is our desire to
have ACL2 focus on the most interesting parts of a proof and establish
uninteresting aspects automatically. In [10], Lamport et al. comment on
the use of a theorem prover to verify concurrent systems.

51

52

CHAPTER 4. CONCLUSION

Ultimately, one reaches a point where prose can be eliminated and
the proof checked by computer. However, the function of proofs in
engineering is not to attain absolute certainty, but to achieve a rea-
sonable degree of confidence with a reasonable amount of effort. We
believe that, at the moment, for many large applications, the most
cost-effective approach stops short of mechanical verification.

Our continuing research will focus on strengthening our system to make
mechanical verification cost-effective at all levels of proof.

4.1

Further Work

To conclude, we offer a list of outstanding tasks.

Short-term Further Work

e As it turns out, we don’t use HInv1 in the proof of I2¢, even though it

is necessary. Is this alarming? We claim it isn’t, in this particular case.
The reason we don’t use Hlnvl is exemplified precisely in Chapter 2:

We deduce phase'[p] = 2 from phase' = [phase EXCEPT ![p] = 2]
only if phase is a function whose domain contains p. However, in
ACL2, given (= phase-prime (except phase p 2)), we can de-
duce (= (apply phase-prime p) 2))) with no further hypothe-
ses about phase.

In other words, the hypotheses that ACL2 fails to ask for are type
hypotheses. But we prove type invariance separately, so (for example)
while ACL2 does not ask for the hypothesis (mem p (proc)) whenever
it encounters an expression of the form (except input p y), this hy-
pothesis would be successfully relieved by virtue of HInv1’s established
invariance.

Some solutions to this problem have been offered. One of them uses
ACL2’s guard mechanism to certify the correct “type” of TLA spec-
ifications. This work is in very early stages so we do not discuss it
further, and note that our next immediate goal in the project is to
resolve the mismatch between ACL2 and TLA.

Reasoning about nested quantifiers like Vz,y,z € S : p(z,y,z) re-
mains a manual task. We need methods that can automatically estab-
lish the above fact from a proof of z,y,2z € S = p(z,y, 2).

4.1.

FURTHER WORK 53

Our current version of defaction is hardwired for Disk Synod actions.
A more sophisticated version would read a list of flexible variables (usu-
ally declared at the beginning of a TLA specification), and afterwards
generate the appropriate functions with respect to the specification at
hand. The same applies to defstate.

In this first experiment, hand translation of Disk Synod helped us
develop intuition for a good translation scheme. Larger verification
projects will require an automatic translator. The desire for automa-
tion guided many of our translation decisions.

The naming convention discussed in Section 2.2 needs to be formu-
lated, presumably when implementing an automatic translator.

The “type lemma” generator discussed in Section 3.3 should follow—
and possibly coexist with—a TLA-ACL2 translator. Regardless of
general invariant verification, a type checker alone would be a useful
tool.

Long-term Further Work

e A graphical interface to ACL2 has been discussed before by ACL2

users—it would be particularly helpful in our system. We mentioned
the problem of name generation for unnamed concepts in TLA. An
interface that allowed us to, say, place the mouse over a name and
see the logical construct it represents, would speed up the verification
process.

An efficiently executable model of a TLA specification would allow
the user to “run” the specification and learn from its behavior. Since
our translated specifications are Lisp code, can we execute them? The
theoretical answer is yes, but the practical answer is no—consider the
amount of time needed to execute (mem e (all-fns D R)) even if D
and R are small sets. A solution would be to provide an escape mech-
anism: an expression like the above would not be computed. Instead,
ACL2 would inspect e and check if its elements are of the proper form.

We have focused on nontemporal aspects of TLA verification. If our
system could be tied to a prover that dealt with temporal properties,
we would have a complete and powerful framework to reason about
TLA specifications.

54

CHAPTER 4. CONCLUSION

Acknowledgements

I am deeply grateful to my advisor, Professor J Moore, for his encourage-
ment, trust, and wisdom, and for being my first role model, a person I ad-
mire and aspire to emulate. I also thank Professor Bob Boyer for answering
questions large and small, and for reviewing this work.

55

Bibliography

[1]

[9]

Martin Abadi and Stephan Merz. On TLA as a Logic. M. Broy, editor,
Deductive Program Design, Springer-Verlag, NATO ASI series F, 1996.

Urban Engberg, Reasoning in the Temporal Logic of Actions. PhD the-
sis, Aarhus University, 1994.

Eli Gafni and Leslie Lamport. Disk Paxos. Technical Report 163, Com-
paq Systems Research Center, July 2000.

Eli Gafni and Leslie Lamport. Disk Paxos. in Maurice Herlihy, editor,
Distributed Computing: 14th International Conference, DISC 2000 Lec-
ture Notes in Computer Science number 1914, pages 330-344, Springer-
Verlag, 2000.

Stephen J. Garland and Nancy A. Lynch. Using I/O Automata for De-
veloping Distributed Systems. In Gary T. Leavens and Murali Sitara-
man, editors, Foundations of Component-Based Systems, pages 285-
312, Cambridge University Press, 2000.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore,
Computer-Aided Reasoning: An Approach, Kluwer Academic Publish-
ers, 2000.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore,
editors, Computer-Aided Reasoning: ACL2 Case Studies, chapter 6,
Kluwer Academic Publishers, 2000.

Matt Kaufmann and J Moore. Structured Theory Development for a
Mechanized Logic. Journal of Automated Reasoning, 26(2), pp. 161-203,
2001.

Matt Kaufmann and J Moore. Personal communication.

56

BIBLIOGRAPHY 57

[10] Peter Ladkin, Leslie Lamport, Bryan Olivier, and Denis Roegel, A Lazy
Caching Proof in TLA, Distributed Computing 12, 2/3, pages 151-174,
1999.

[11] Thomas Langbacka. A HOL formalisation of the Temporal Logic of
Actions. In Thomas E Melham and Juanito Camilleri, editors, Higher
Order Logic Theorem Proving and Its Applications, volume 859 of Lec-
ture Notes in Computer Science, pages 332-345, Berlin, 1994. Springer-
Verlag.

[12] Leslie Lamport. A Summary of TLA". June 2000. In
http://www.research.compaq.com/SRC/personal/lamport/tla/papers.html.

[13] Leslie Lamport. How to Write a Proof. American Mathematical Monthly
102, 7 (August-September 1993) pages 600-608.

[14] Leslie Lamport. Specifying Concurrent Systems with TLA+. Unpub-
lished draft (dated February 9, 2000).

[15] Leslie Lamport. Some Thoughts on Specification. Message posted to
the TLA mailing list, May 5 1992. Available at
http://www.research.compaq.com/SRC/personal/lamport/tla/notes.html.

[16] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923, May 1994.

[17] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, July 1978.

[18] Leslie Lamport. Personal communication.

[19] Leslie Lamport and Stephan Merz. Specifying and Verifying Fault-
Tolerant Systems. In Formal Techniques in Real-Time and Fault-
Tolerant Systems, H. Langmaack, W.-P.de Roever, and J. Vytopil, ed-
itors. LNCS 863, 41-76.

[20] Stephan Merz. An Encoding of TLA in Isabelle. In

http://www.informatik.uni-muenchen.de/ “merz/isabelle/index.html
Institut fur Informatik, Universitat Munchen, Germany.

[21] J Moore. Finite Set Theory in ACL2. January 2001. Submitted for
publication.

http://www.cs.utexas.edu/users/moore/publications/finite-set-theory/index.html

[22] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4):299-
319, December 1990

Appendix A

The Increment Example

; increment.lisp
(include-book "/projects/acl2/v2-5/books/finite-set-theory/set-theory")
(include-book "../paxos/acl2-files/tla-translation-macros")

(in-package "S")

(defmacro defaction (name a)

¢ (progn
(defun , (packn-in-pkg (list "_" name) ’defaction)
(pcl pcl-n pc2 pc2-n x x-n y y-n sem sem-n)
,a)
(defmacro ,name ()
’(, (packn-in-pkg (list "_" name) ’defaction)

pcl pcl-n pc2 pc2-n x x-n y y-n sem sem-n))))

(defmacro defstate (name a)
¢ (progn
(defun , (packn-in-pkg (list "_" name) ’defaction)
(pcl pc2 x y sem)
,a)
(defmacro ,name ()
> (, (packn-in-pkg (list "_" name) ’defaction)
pcl pc2 x y sem))
(defmacro , (packn-in-pkg (list name "-N") ’defaction) ()
’(, (packn-in-pkg (list "_" name) ’defaction)
pcl-n pc2-n x-n y-n sem-n))))

(defstate init
(and (= pcl "a") (= pc2 "a")
(=x0) (=y 0
(= sem 1)))

58

(defaction alphal
(and (= pcl "a") (< O sem)
(= pci-n "b")
(= sem-n (- sem 1))
(unchanged x y pc2)))

(defaction alpha?
(and (= pc2 "a") (< O sem)
(= pc2-n "b")
(= sem-n (- sem 1))
(unchanged x y pcl)))

(defaction betal
(and (= pcl "b")
(= pci-n "g")
(= xn (+ x 1))
(unchanged y sem pc2)))

(defaction beta?2
(and (= pc2 "b")
(= pCQ_Il ||g||)
(= yn (+y 1))
(unchanged x sem pcl)))

(defaction gammal
(and (= pcl "g")
(= pcl-n "a")
(= sem-n (+ sem 1))
(unchanged x y pc2)))

(defaction gamma2
(and (= pc2 "g")
(= pc2-n "a")
(= sem-n (+ sem 1))
(unchanged x y pcl)))

(defaction ni
(or (alphal) (betal) (gammal)))

(defaction n2
(or (alpha2) (beta2) (gamma2)))

(defaction n

(or (n1) (n2)))

59

60 APPENDIX A. THE INCREMENT EXAMPLE

(defun _i (x sem pcl pc2)
(and (and (integerp x) (>= x 0))
(or (and (= sem 1) (= pcl "a") (= pc2 "a"))
(and (= sem 0) (or (and (= pcl "a") (mem pc2 (brace "b" "g")))
(and (= pc2 "a") (mem pcl (brace "b" "g"))))))))

(defmacro i ()
>(_i x sem pcl pc2))

(defmacro i-n ()
’(_i x-n sem-n pcl-n pc2-n))

(thm
(implies (and (i) (m))
(i-n)))

; end of file

Appendix B

Disk Synod Specification

Here, we provide the TLA specification of the Disk Synod algorithm. Our
specification is organized slightly differently than Gafni and Lamport’s be-
cause we do not make use of TLAT ’s module system. In particular, we
introduce some TLA contructs that aren’t strictly part of Disk Synod (like
action HNext), and are defined in a separate module in Gafni and Lamport’s
paper. This does not affect the validity of the constructs or the theorems.
For more details, refer to [3].

vars = <« input, output, disk, phase, dblock, disksWritten, blocksRead >

CONSTANT N, Inputs
ASSUME (N € Nat) A (N > 0)

Proc = 1..N
NotAnInput = CHOOSE c : c¢ ¢ Inputs
CONSTANTS Ballot(.), Disk, IsMajority(.)

ASSUME A V p € Proc : Ballot(p) C {n € Nat : n > 0}
A VY q € Proc p : Ballot(p) N Ballot(q) = {}
A V S,T € SUBSET Disk :

IsMajority(S) A IsMajority(T) = (SN T # {})

DiskBlock = [mbal : (UNION {Ballot(p) : p € Proc }) U {0},
bal : (UNION {Ballot(p) : p € Proc }) U {0},
inp : Inputs U {NotAnInput}

]

hasRead(p,d,q) = 3 br € blocksRead[p][d] : br.proc = q

61

62 APPENDIX B. DISK SYNOD SPECIFICATION

allBlocksRead(p) 2

LET allRdBlks = UNION { blocksRead[p]l[d] : d € Disk }
IN { br.block : br € allRdBlks }

InitDB 2 [mbal — 0 , bal — O , inp +> NotAnInput]

Init = A input € [Proc — Inputs]
A output = [p € Proc +— NotAnInput]
A disk = [d € Disk +— [p € Proc — InitDB]]
A phase = [p € Proc — 0]
A dblock = [p € Proc +— InitDB]
A disksWritten = [p € Proc — {}]
A blocksRead = [p € Proc — [d € Disk — {}1]

InitializePhase(p) =
A disksWritten' = [disksWritten EXCEPT ![p] = {}]
A blocksRead’ = [blocksRead EXCEPT ! [p] [d € Disk — {}1]

A

StartBallot(p) =
A phase[p] € {1,2}
A phase’ = [phase EXCEPT ![p] = 1]
A 3 b € Ballot(p)
A b > dblock[p] .mbal
A dblock’ = [dblock EXCEPT ![p].mbal = b]
A InitializePhase(p)
A UNCHANGED <input,output,disk>

Phaselor2Write(p,d) 2

A phaselp]l € {1,2}
disk’ = [disk EXCEPT ![d][p] = dblock[p]]
disksWritten’ = [disksWritten EXCEPT ![p] = @ U {d}]
UNCHANGED <input,output,phase,dblock,blocksRead>

> > >

Phaselor2Read(p,d,q) =
A d € disksWritten[p]
A IF disk[d][q].mbal < dblock[p].mbal
THEN A blocksRead’ =
[blocksRead EXCEPT ![p][d] =
@ U { [block /— disk[dl[ql, proc /— ql }]
A UNCHANGED <input,output,disk,phase,dblock,disksWritten>
ELSE
StartBallot (p)

PhaseORead(p,d) 2
A phase[p] =0
A blocksRead’ = [blocksRead EXCEPT
'[plld]l = e U { [block /— disk[dl[p],
proc /= p 1 } 1]
A UNCHANGED <input,output,disk,phase,dblock,disksWritten>

forall s € allBlocksRead(p)

Fail(p) =
A 3 ip € Inputs : input’ = [input EXCEPT ![p] = ip]
A phase’ = [phase EXCEPT ![p] =0]
A dblock’ = [dblock EXCEPT ![p] = InitDB]
A output’ = [output EXCEPT ![p] = NotAnInput]
A InitializePhase(p)
A UNCHANGED disk
EndPhase0(p) 2
A phase[p] =0
A isMajority({ 4 € Disk : hasRead(p,d,p) })
A 3 b € Ballot(p)
A forall r € allBlocksRead(p) : b > r.mbal
A dblock’ = [dblock EXCEPT
'[p] = [(CHOOSE r € allBlocksRead(p)
r.bal >= s.bal)
EXCEPT !.mbal =b] 1]
A InitializePhase(p)
A phase’ = [phase EXCEPT ![p] =1]
A UNCHANGED <input,output,disk>

EndPhaselor2(p) 2

A

A

IsMajority({ d € disksWritten[p]

forall q € Proc {p} : hasRead(p,d,q)})

V A phaselp] =1
A dblock’ =
[dblock EXCEPT
! [p] .bal = dblock[p] .mbal,
''[p].inp =

63

LET blocksSeen = allBlocksRead(p) U { dblock[p] }

A

nonInitBlks =

{ bs € blocksSeen : bs.inp # NotAnInput }

maxBlk =
CHOOSE b € nonInitBlks :
forall ¢ € nonInitBlks

: b.bal >= c.bal

64 APPENDIX B. DISK SYNOD SPECIFICATION

IN

IF nonInitBlks = {} THEN input[p]
ELSE maxBlk.inp]

UNCHANGED output

N
V A phasel[p] = 2
N

output’ = [output EXCEPT ![p] = dblock[p].inp]

A UNCHANGED dblock

A phase’ = [phase EXCEPT ![p] = @ + 1]
A InitializePhase(p)
A UNCHANGED <input, disk>

MajoritySet = { D € SUBSET Disk : IsMajorit

A

blocks0f (p) =
LET rdBy(q,d) 2 {br € blocksRead[q] [d]

y(D) }

: br.proc =p }

IN { dblock[p]l } U { disk[d]l[p] : d € Disk }
U { br.block : br € UNION {rdBy(q,d) : q € Proc,

d € Disk }}

allBlocks = UNION { blocksOf(p) : p € Proc

A

Next =
3 p € Proc :
V StartBallot(p)
V 3 d € Disk : V PhaseORead(p,d)
V Phaselor2Write(p,d)
V d q € Proc {p} :
Phaselor2Read(p,d,q)
V EndPhaselor2(p)
V Fail(p)
V EndPhase0(p)
HNext =
A Next

A chosen’ = LET hasOutput(p) = output’[p] # NotAnInput

IN IF V chosen # NotAnInput
V forall p in Proc
THEN chosen

: ~hasOutput (p)

ELSE output’[CHOOSE p in Proc : hasOutput(p)]

A alllnput’ = alllnput cup { input’[p]

: p in Proc }

Appendix C

Disk Synod Translations

vars = <« input, output, disk, phase, dblock, disksWritten, blocksRead >

CONSTANT N, Inputs
ASSUME (N € Nat) A (N > 0)

Proc = 1..N

NotAnInput = CHOOSE c : c ¢ Inputs

(encapsulate ((n1 () t))
(local (defun n1 () 1))

(defthm nl-constraint
(and (integerp (nl))
(< 0 (n1)))

:rule-classes :type-prescription))
(defstub inputs () t)
(defun Proc () (dot-dot 1 (nl1)))

(encapsulate ((notaninput () t))
(local (defun notaninput () (inputs)))
(local (defthm notaninput-helper
(equal (acl2::hide (notaninput))
(inputs))
thints (("Goal" :expand (acl2::hide (notaninput))
:in-theory
(disable
(:executable-counterpart notaninput))))))

(defthm notaninput-constraint
(not (mem (notaninBBt) (inputs)))))

66

APPENDIX C. DISK SYNOD TRANSLATIONS

CONSTANTS Ballot(_.), Disk, IsMajority(.)

ASSUME A V p € Proc : Ballot(p) C {n € Nat : n > 0}
A Y q € Proc p : Ballot(p) N Ballot(q) = {}
A ¥V S,T € SUBSET Disk :

IsMajority(S) A IsMajority(T) = (SN T # {})

(encapsulate

(encapsulate

((ballot (p) t))
(local (defun ballot (p) (declare (ignore p)) nil))

(defthm ballot-is-set-of-nats
(implies (and (mem b (ballot p))
(mem p (Proc)))
(and (integerp b)
(> b 0)))
:rule-classes ((:forward-chaining
:trigger-terms ((mem b (ballot p))))))

(defcong = equal (ballot p) 1)

(defthm ballot-partitions-nats
(implies (mem q (diff (proc) (brace p)))
(ur-elementp (intersection (ballot p) (ballot q))))))

((disk O t)

(ismajority (s) t))

(local (defstub disk () t))

(local (defun ismajority (s) (declare (ignore s)) nil))
(defcong = equal (ismajority s) 1)

(defthm is-majority-thml
(implies (and (ismajority s)
(ismajority s2)
(subsetp s (disk))
(subsetp s2 (disk)))
(not (ur-elementp (intersection s s2))))))

67

DiskBlock = [mbal : (UNION {Ballot(p) : p € Proc }) U {0},
bal : (UNION {Ballot(p) : p € Proc }) U {0},
inp : Inputs U {NotAnInput}

]

hasRead(p,d,q) = 3 br € blocksRead[p][d] : br.proc = q

allBlocksRead(p) =

A

LET allRdBlks = UNION { blocksRead[pl[d] : d € Disk }
IN { br.block : br € allRdBlks }

(newdefmap diskblock-mapl (proc) :for p :in proc :map (ballot p))
(in-theory (disable (:executable-counterpart diskblock-map1l)))

(defrec diskblock
("mbal" (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
("bal" (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
("inp" (hide (union (inputs) (brace (notaninput))))))

; The following construct is not explicitly defined in Disk Synod.
(defrec blockproc

("block" (diskblock))

("proc" (proc)))

(defexists exists-hasread (blocksread-p-d q)
:exists br :in blocksread-p-d :such-that (= (apply br "proc") q))

(defun hasread (p d q blocksread)
(exists-hasread (apply-m blocksread p d) q))

(newdefmap allblocksread-map-2 (allrdblks)
:for br :in allrdblks :map (apply br "block"))

(newdefmap allblocksread-map-3 (disk p blocksread)
:for d :in disk :map (apply-m blocksread p d))

(defun allblocksread (p blocksread)
(allblocksread-map-2 (union* (allblocksread-map-3 (disk) p blocksread))))

68 APPENDIX C. DISK SYNOD TRANSLATIONS

InitDB = [mbal + O , bal — 0 , inp — NotAnInput]

InitializePhase(p) =
A disksWritten’' = [disksWritten EXCEPT ![p] = {}]
A blocksRead’ = [blocksRead EXCEPT ! [p] [d € Disk — {}1]

A

StartBallot (p)
A phaselp]l € {1,2}
A phase’ = [phase EXCEPT ![p] = 1]
A 3 b € Ballot(p)
A b > dblock[p] .mbal
A dblock’ = [dblock EXCEPT ![p].mbal = b]
A InitializePhase(p)
A UNCHANGED <input,output,disk>

(defun InitDB ()
(func ("mbal" 0) ("bal" 0) ("inp" (NotAnInput))))

(defmap-fn map-to-nil (dom)
:for x :in dom :map nil)

(defun _initializephase (p
disksWritten diskswritten-n
blocksRead blocksread-n)

(and (= diskswritten-n (except disksWritten p nil))
(= blocksread-n (except blocksRead p (map-to-nil (disk))))))

(defmacro initializephase (p)
‘(_initializephase ,p disksWritten diskswritten-n
blocksRead blocksread-n))

(defaction startballot (p b-witness)
(and (mem (apply phase p) (brace 1 2))
(= phase-n (except phase p 1))
(mem b-witness (ballot p))
(> b-witness (apply-m dblock p "mbal"))
(= dblock-n (except dblock p
(except (apply dblock p) "mbal" b-witness)))

(initializephase p)
(unchanged input output disk)))

69

Phaselor2Write(p,d) =

phase[p] € {1,2}

A disk’ = [disk EXCEPT ![d][p] = dblock([p]]

A disksWritten’' = [disksWritten EXCEPT ![p] = @ U {d}]
A UNCHANGED <input,output,phase,dblock,blocksRead>

>

Phaselor2Read(p,d,q) 2
A d € disksWritten[p]
A IF disk[d][q].mbal < dblock[p].mbal
THEN A blocksRead' =
[blocksRead EXCEPT ![p]l[d] =
@ U { [block /— disk[d][ql, proc /— ql }]
A UNCHANGED <input,output,disk,phase,dblock,disksWritten>
ELSE
StartBallot (p)

(defaction phaselor2write (p d)
(and (mem (apply phase p) (brace 1 2))
(= disk-n (except-m disk d p (apply dblock p)))
(= diskswritten-n
(except diskswritten p (union (apply diskswritten p) (brace d))))
(unchanged input output phase dblock blocksread)))

(defaction phaselor2read (p d q b-witness)
(and (mem d (apply diskswritten p))
(if (< (apply-m disk d q "mbal") (apply-m dblock p "mbal"))
(and (= blocksread-n
(except-m blocksread
P
d
(union (apply-m blocksread p d)
(brace (func ("block"
(apply-m disk d q))
("proc" 9))))))
(unchanged input output disk phase dblock diskswritten))
(startballot p b-witness))))

70 APPENDIX C. DISK SYNOD TRANSLATIONS

PhaseORead(p,d) =
A phase[p] =0
A blocksRead’ = [blocksRead EXCEPT
'[pl[d]l = @ U { [block /— diskl[d][p],
proc /= p 1 } 1]
A UNCHANGED <input,output,disk,phase,dblock,disksWritten>

Fail(p) =
A 3 ip € Inputs : input’ = [input EXCEPT ![p] = ip]
A phase’ = [phase EXCEPT ![p] =0]
A dblock’ = [dblock EXCEPT ![p] = InitDB]
A output’ = [output EXCEPT ![p] = NotAnInput]
A InitializePhase(p)
A UNCHANGED disk

(defaction phaseOread (p d4)
(and (= (apply phase p) 0)
(= blocksread-n
(except-m blocksread
p
d
(union (apply-m blocksread p d)
(brace (func ("block" (apply-m disk d p))
("proc" p))))))
(unchanged input output disk phase dblock diskswritten)))

(defaction fail (p ip-witnessl)
(and (mem ip-witnessl (inputs))

(= input-n (except input p ip-witnessl))
(= phase-n (except phase p 0))
(= dblock-n (except dblock p (initdb)))
(= output-n (except output p (notaninput)))
(initializephase p)
(unchanged disk)))

71

EndPhase0(p) 2
A phase[p] =0
A isMajority({ 4 € Disk : hasRead(p,d,p) })
A 3 b € Ballot(p)
A forall r € allBlocksRead(p) : b > r.mbal
A dblock’ = [dblock EXCEPT
'[p] = [(CHOOSE r € allBlocksRead(p)
forall s € allBlocksRead(p)
r.bal >= s.bal)
EXCEPT !.mbal = b]]
A InitializePhase(p)
A phase’ = [phase EXCEPT ![p] = 1]
A UNCHANGED <input,output,disk>

(newdefmap epO-mapl (disk p blocksread)
:for d :in disk
:such-that (hasread p d p blocksread))

(defall forall-endphaseO-1 (allblocksread-p b)
:forall r :in allblocksread-p
:holds (> b (apply r "mbal")))

(defaction endphaseO (p b-wit)
(and (= (apply phase p) 0)
(ismajority (epO-mapl (disk) p blocksread))
(mem b-wit (ballot p))
(forall-endphaseO-1 (allblocksread p blocksread) b-wit)
(= dblock-n
(except dblock p
(except (choose-max-bal (allblocksread p blocksread))
"mbal" b-wit)))

(initializephase p)
(= phase-n (except phase p 1))
(unchanged input output disk)))

72 APPENDIX C. DISK SYNOD TRANSLATIONS

EndPhaselor2(p) =
A IsMajority({ d € disksWritten[p]
forall q € Proc {p} : hasRead(p,d,q)})
A V A phasel[p] =1
A dblock’ =
[dblock EXCEPT
! [p].bal = dblock[p] .mbal,
![p].inp =
LET blocksSeen = allBlocksRead(p) U { dblock[p] }
nonInitBlks =
{ bs € blocksSeen : bs.inp # NotAnInput }
maxBlk 2
CHOOSE b € nonInitBlks :
forall ¢ € nonInitBlks : b.bal >= c.bal
IN
IF nonInitBlks = {} THEN input [p]
ELSE maxBlk.inp]
UNCHANGED output

N

V A phasel[p] = 2
A output’ = [output EXCEPT ![p] = dblock[p].inp]
A UNCHANGED dblock

A phase’ = [phase EXCEPT ![p] = @ + 1]
A InitializePhase(p)
A UNCHANGED <input, disk>

(defall forall-epl2-1 (proc-minus-p p d blocksread)
:forall q :in proc-minus-p
:holds (hasread p d q blocksread))

(defexists exists-epl2-1 (blocksseen)
:exists bs :in blocksseen
:such-that (not (= (apply bs "inp") (notaninput))))

(newdefmap map-epl2-1 (diskswritten-p p blocksread)
:for d :in diskswritten-p
:such-that (forall-ep12-1 (diff (proc) (brace p)) p d blocksread))

(newdefmap noninitblks (blocksseen)
:for bs :in blocksseen
:such-that (not (= (apply bs "inp") (notaninput))))

73

(defaction endphaselor2 (p)

(and (ismajority (map-epl12-1 (apply diskswritten p) p blocksread))
(or (and (= (apply phase p) 1)
(= dblock-n
(except-and dblock
(p "bal" (apply-m dblock p "mbal"))
(p "inp" (if (= (noninitblks
(union (allblocksread p
blocksread)
(brace
(apply dblock p))))
nil)
(apply input p)
(apply (choose-max-bal
(noninitblks
(union (allblocksread p
blocksread)
(brace
(apply dblock p)))))
"inp")))))
(unchanged output))
(and (= (apply phase p) 2)
(= output-n (except output p (apply-m dblock p "inp")))
(unchanged dblock)))
(= phase-n (except phase p (+ (apply phase p) 1)))
(initializephase p)
(unchanged input disk)))

74 APPENDIX C. DISK SYNOD TRANSLATIONS

MajoritySet = { D € SUBSET Disk : IsMajority(D) }

A

blocks0f (p) =
LET rdBy(q,d) = {br € blocksRead[q][d] : br.proc = p }
IN { dblock[p] } U { disk[d]l[p] : 4 € Disk }
U { br.block : br € UNION {rdBy(q,d) : q € Proc,
d € Disk }}

allBlocks = UNION { blocksOf(p) : p € Proc

(newdefmap majorityset (powset-disk)
:for d :in powset-disk
:such-that (ismajority d))

(newdefmap rdby (p blocksread-q-d)
:for br :in blocksread-q-d
:such-that (= (apply br "proc") p))

(newdefmap rdby-proc-disk-1-1 (disk-dom p q blocksread)
:for d :in disk-dom
:map (rdby p (apply-m blocksread q d)))

(newdefmap rdby-proc-disk-1 (proc-dom disk-dom p blocksread)
:for q :in proc-dom
:map (rdby-proc-disk-1-1 disk-dom p q blocksread))

(newdefmap br-block (union-rdby-proc-disk-1)
:for br :in union-rdby-proc-disk-1
:map (apply br "block"))

(newdefmap disk-d-p (disk-dom disk p)
:for d :in disk-dom :map (apply-m disk d p))

(defun blocksof (p dblock disk blocksread)
(union (apply dblock p)
(union (disk-d-p (disk) disk p)
(br-block (union* (rdby-proc-disk-1 (proc) (disk) p blocksread))))))

(newdefmap blocks-of-p-map (proc-dom dblock disk blocksread)
:for p :in proc-dom
:map (blocksof p dblock disk blocksread))

(defun allblocks (dblock disk blocksread)
(union* (blocks-of-p-map (proc) dblock disk blocksread)))

Next =
3 p € Proc :
V StartBallot(p)
V d d € Disk : V PhaseORead(p,d)
V Phaselor2Write(p,d)
V d q € Proc {p} :
Phaselor2Read(p,d,q)
V EndPhaselor2(p)
V Fail(p)
V EndPhaseO(p)

75

(defaction next (p ; witness for next
d ; witness for next
q ; witness for next
b-witnessi ; witness for startballot
ip-witnessl ; witness for fail
b-witness) ; witness for endphaseO

(and (mem p (proc))
(or (startballot p b-witnessl)
(and (mem d (disk))
(or (phaseOread p d)
(phaselor2write p d)
(and (mem q (diff (proc) (brace p)))
(phaselor2read p d q b-witness1))))
(endphaselor2 p)
(fail p ip-witnessl1)
(endphaseO p b-witness))))

76 APPENDIX C. DISK SYNOD TRANSLATIONS

HNext =

A Next
A chosen' = LET hasOutput(p) = output’[p] # NotAnInput
IN IF V chosen # NotAnInput
V forall p in Proc : -hasOutput(p)
THEN chosen
ELSE output’[CHOOSE p in Proc : hasOutput(p)]
A alllnput’ = allInput cup { input’[p] : p in Proc }

(defall forall-hnext (proc output-n)
:forall p :in proc :holds (= (apply output-n p) (notaninput)))

(newdefmap map-hnext (proc output-n)
:for p :in proc :such-that (not (= (apply output-n p) (notaninput))))

(newdefmap map2-hnext (proc input-n)
:for p :in proc :map (apply input-n p))

(defun _chosen-allinput-action (chosen chosen-n
allinput allinput-n
input-n
output-n)
(and (= chosen-n (if (or (not (= chosen (notaninput)))
(forall-hnext (proc) output-n))
chosen
(apply output-n
(choose (map-hnext (proc) output-n)))))
(= allinput-n (union allinput (map2-hnext (proc) input-n)))))

(defmacro chosen-allinput-action ()
’(_chosen-allinput-action chosen chosen-n allinput allinput-n
input-n output-n))

(defaction hnext-with-vars (p d q b-witnessl ip-witnessl b-witness
chosen chosen-n allinput allinput-n)
(and (next p d q b-witnessl ip-witnessl b-witness)
(chosen-allinput-action)))

(defmacro hnext (p d q b-witnessl ip-witnessl b-witness)
¢ (hnext-with-vars ,p ,d ,q ,b-witnessl ,ip-witnessl ,b-witness
chosen chosen-n allinput allinput-n))

Appendix D

ACL2 Event Files

At the time of this writing, the proofs of LEMMA [2¢ and LEMMA [2a are
inelegant in some places. We believe that many of the theorems included
in these files can be eliminated or generalized. We now present the files
including all events that lead to both lemmas in their present form.

The files are organized into three directories: the base directory plus
two subdirectories i2a and i2c. The location of each file within this simple
directory structure is reflected by the section name.

Proofs of the two main theorems, I2a and I2c¢, can be found in files
i2a/i2a.lisp and i2c/i2c.lisp.

D.1 additions.lisp

; additions.lisp

; Some set theory additions

; I used these commands to certify this book:

; (include-book '"/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
; (certify-book "additions" 1)

(in-package "S")

(include-book "/home/pacheco/acl2-sources/books/finite-set-theory/all-fns")

; Two theorems about mem, range and except.

(defthm mem-range-except-1

7

78 APPENDIX D. ACL2 EVENT FILES

(mem e (range (except f x e)))
:hints (("Goal" :in-theory (enable except))))

(defthm mem-range-except-2
(implies (and (mem e (range (except f x y)))
(functionp £f))
(or (mem e (range f))
(= e)
:rule-classes
((:forward-chaining
:trigger-terms ((mem e (range (except f x y))))))
thints (("Goal" :in-theory (enable except))))

; At some point, we discussed the following two theorems. I’m not sure
; what was the conclusion and if only one was necessary. For now, I’1ll
; leave both in the file, since they cause no harm.

(encapsulate nil
(local
(defthm range-except-singleton-lemmal
(implies (= (range f) (brace e))
(subsetp (range (except f x e)) (brace e)))

:hints
(("Goal"
:use (:instance subsetp-range-except
(f £)
(x x)
(v e))

:in-theory (disable subsetp-range-except)))))

(local
(defthm range-except-singleton-lemma2
(subsetp (brace e) (range (except f x e)))))

(defthm range-except-singleton
(implies (= (range f) (brace e))
(= (range (except f x e)) (brace e)))
:hints (("Goal"
:use (range-except-singleton-lemmal
range-except-singleton-lemma2
(:instance =-iff-subsetps
(a (range (except f x e)))
(b (brace e))))))))

D.1. ADDITIONS.LISP 79

(defthm better
(implies (and (equal (cardinality (range f)) 1)
(= (choose (range f)) e))
(= (range (except f x e))
(range £))))

; The following are general theorems, mostly about the relationship
; among functions, their domains and ranges.

(defthm range-except-nil
(= (range (except nil x e))
(brace e))
thints (("Goal" :in-theory (enable except))))

(defthm apply-range
(implies (and (functionp f)
(mem e (domain £)))
(mem (apply f e) (range £))))

(defthm setp-sfix
(implies (setp s)
(= (sfix s) s)))

(defthm mem-apply-2
(implies (and (functionp f)
(mem e (domain f))
(subsetp (range f) s))
(mem (apply f e) s)))

(defthm range-subsetp-except-1
(implies (subsetp (range f) r)
(subsetp (range (except f x y)) (scons y r)))
:hints (("Goal" :in-theory (enable except))))

(defthm range-subsetp-except-2
(implies (and (mem y s2)
(subsetp (range f) s2))
(subsetp (range (except f x y)) s2))
:hints (("Goal" :in-theory (enable except))))

(defthm domain-subsetp-except-2
(implies (and (= (domain f) d)

80 APPENDIX D. ACL2 EVENT FILES

(functionp £f))
(= (domain (except f x y)) (scomns x d))))

(defthm domain-subsetp-except-1
(implies (and (mem x s1)
(functionp g)
(= (domain g) s1))
(= (domain (except g x y)) s1)))

; Dot-dot
; (dot-dot a b) creates the set { i | i \in Ints /\ a <=1i <=b }

(defun dot-dot (a b)
(declare (xargs :measure (acl2-count (- b a))))
(if (and (integerp a)
(integerp b)
(< ab))
(scons a (dot-dot (+ a 1) b))
(brace (nfix a))))

(defthm ur-elementp-dot-dot
(not (ur-elementp (dot-dot a b))))

I
1]

(dot-dot a b) 1)
(dot-dot a b) 2)

(defcong
(defcong

I
1]

; After proving the right theorems about dot-dot, its definition

; should be disabled, I think. I disable it now even though I don’t

; have all the right theorems about it yet, because its opening up is
; causing problems in some proofs.

(in-theory (disable dot-dot))

; We want something that looks like the following theorem
; (defthm mem-dot-dot

; (equal (mem e (dot-dot a b))

; (and (integerp e)
; (<= (nfix a) e)

D.1. ADDITIONS.LISP 81

; (<= e (nfix b))))
; :hints (("Goal" :in-theory (enable =))))

; Union*

; (union s) takes a s = { s_1, s_2, ..., s_n } where all the s_i are
; themselves sets, and unions all the s_i’s together.

(defun union* (collection-of-sets)
(if (ur-elementp collection-of-sets)
nil
(union (scar collection-of-sets)
(union* (scdr collection-of-sets)))))

(defthm setp-union*
(setp (union* s)))

(defthm mem-unionx*
(implies (and (mem e s)
(mem s s2))
(mem e (union* s2))))

(defx fooo (implies (and (mem sr s2)
(subsetp x (unionx s2)))
(subsetp (union sr x) (union* s2)))

:strategy subset-relation)

(congruence (union* s) 1 :method :subsetp)

; Defmap-fn

; defmap-fn is similar to defmap using the :map argument. Consider one
; such call of defmap:

; (defmap foo-set (s) :for x :in s :map (foo x))

; The function (foo-set s) builds a set consisting of all (foo x) such
; that x is in s, i.e. the mapping of s under foo. Now consider the

; analogous call of defmap-fn:

; (defmap-fn foo-fn (s) :for x :in s :map (foo x))

; The function (foo-fn s) creates the FUNCTION (set of ordered pairs)

82 APPENDIX D. ACL2 EVENT FILES

; with domain s and range the mapping of s under foo. In other words, it
; creates the function with pairs < x , (foo x) >, where x is in s.

(defmacro defmap-fn (name vars
&key
(for ’nil forp)
(in ’nil inp)
(map ’nil mapp))

(cond

((not (and (symbolp name)
(acl2::symbol-listp vars)
forp
(symbolp for)
(not (acl2::member-equal for vars))
inp
(symbolp in)
(acl2: :member-equal in vars)
mapp))

‘(acl2::er acl2::soft ’defmap
"No documentation yet. Sorry!"))

(t ;;; :map

(let* ((x for)
(s in)
(sloc (- (length vars) (length (member s vars))))
(body map)

(fx (gennamel x 1 (cons x vars)))
(s1 (gennamel s 1 (cons fx (cons x vars))))
(call ‘(,name ,@vars))
(rcall ‘(,name ,@(put-nth ‘(scdr ,s) sloc vars))))
‘ (encapsulate
nil
(defun ,name (,@vars)
(if (ur-elementp ,s)
nil
(let ((,x (scar ,s)))
(except ,rcall ,x ,body))))

(defthm , (packn-in-pkg (list "SETP-" name) ’defmap)
(setp ,call))

(defthm , (packn-in-pkg (list "UR-ELEMENTP-" name) ’defmap)
(equal (ur-elementp ,call)
(ur-elementp ,s)))

D.1. ADDITIONS.LISP 83

(defthm , (packn-in-pkg (list "WEAK-MEM-" name) ’defmap)
(implies (and (mem ,x ,s)
(= ,fx ,body))
(mem (pair ,x ,fx) ,call)))

(defthm , (packn-in-pkg (list "SUBSETP-" name) ’defmap)
(implies (subsetp ,sl ,s)
(subsetp (,name ,@(put-nth sl sloc vars))
,call)))

,@(defmap-congruences vars call (+ sloc 1) 1)

(defthm , (packn-in-pkg (list "FUNCTIONP-" name) °’defmap)
(functionp (,name ,@vars)))

(defthm , (packn-in-pkg (list "DOMAIN-" name) ’defmap)
(= (domain (,name ,@vars))
(sfix ,s)))

1))

; Rules about all-fns

; This rule subsumed by J’s. I keep it just for hints that may use its
; hame.

(defthm all-fns-def
(iff (mem f (all-fns d r))
(and (functionp f)
(= (domain f) (sfix d))
(subsetp (range f) r))))

(defthm all-fns-except
(implies (and (mem f (all-fns d r))
(mem x d)
(mem y r))
(mem (except f x y) (all-fns d r))))

(defthm all-fns-apply
(implies (and (subsetp (range f) (all-fns d r))

84 APPENDIX D. ACL2 EVENT FILES

(mem x (domain f))
(functionp £))
(mem (apply f x) (all-fns d r))))

(defthm all-fns-apply-2
(implies (and (mem f (all-fns d r))
(mem x (domain f)))
(mem (apply f x) r)))

(defthm all-fns-apply-3
(implies (and (mem f (all-fns d r))
(mem x d))
(mem (apply £ x) 1)))

; In reality all-fns-apply-apply should be covered by all-fns-apply-3. But it
; helps with type invariance proofs because we look explicitly for
; things of the form [a -> [b -> ¢]] in the hypotheses.

; ugly but i’m trying to write a thesis here...
(defthm all-fns-apply-apply
(implies (and (mem f (all-fns a (all-fns b c¢)))
(mem x a)
(mem y b))
(mem (apply (apply f x) y) c))
:instructions (promote
(:REWRITE all-fns-APPLY-3 ((D B)))
rewrite))

; The rule all-fns-def should be disabled in order to reason at a higher
; level.
(in-theory (disable all-fns-def))

(defthm union-nil
(implies (setp s) (= (union s nil) s)))

(defthm subsetp-scons-2
(implies (and (subsetp a b)
(mem e b))
(subsetp (scons e a) b)))

; this worked wonders! how exactly does forward chaining work?
(defthm all-fns-property-forward-chain
(implies (mem f (all-fns d r))

D.2. CHOOSE-MAX.LISP 85

(and ; (not (ur-elementp (all-fns d r)))
(functionp f)
(= (domain f) (sfix d))
(subsetp (range f) r)))
:rule-classes ((:forward-chaining))
thints (("Goal" :in-theory (enable all-fns-def))))

; should i add something like this? its setp hypothesis reminds me of
; powerset-property.

; (defthm not-ur-elementp-s-iff-s
; (implies (setp s) (iff (not (ur-elementp s)) s)))

; This rule’s target is too general. You might find application of the
; rule by specializing it depending on the TLA spec (especially by
; looking at the type invariant).

; (defthm subsetp-apply

; (implies (and (functionp f)

; (mem x (domain f))

; (subsetp (range f) (powerset s)))

; (subsetp (apply f x) s))

; thints (("Goal" :use ((:instance mem-apply-2

; (e x)

: (s (powerset s)))

H (:instance weak-powerset-property
; (e (apply f x))))))
; :rule-classes nil)

; End of file ------------------------------ -\ - : : : : i b

D.2 choose-max.lisp

; choose-max.lisp

; I used these commands to certify this book:
; (include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
; (certify-book "choose-max" 1)

(in-package "S")
(include-book "newdefmap")

86 APPENDIX D. ACL2 EVENT FILES

(include-book '"defall')

(encapsulate

((g (x) t))

(local (defun g (x) (declare (ignore x)) t))
(defcong = = (g x) 1))

; Here is a definition of a function that returns one of possibly several
; maximal elements in a set (as ordered by >=).

(defun choose-max0 (s)
(cond ((ur-elementp s) nil)
((ur-elementp (scdr s)) (scar s))
((>= (g (scar s))
(g (choose-max0 (scdr s))))
(scar s))
(t (choose-max0 (scdr s)))))

; One important fact is that every nonempty set has a maximal element.
(defthm choose-max0O-exists
(implies (not (ur-elementp s))
(mem (choose-max0 s) s)))
; Another key fact about the maximal element.
(defthm choose-max0->=
(implies (mem x s)
(>= (g (choose-max0 s)) (g x))))
; Unfortunately, choose-max doesn’t respect the following congruence:
; (defcong = = (choose-max s) 1).
; The reason is that (choose-max s) picks the first maximal element it
; finds in the list representation of the set s. If two equal sets sl
; and s2 having more than one maximal element happen to have their
; maximal elements presented in different order, then the value
; returned by (choose-max s1) and (choose-max s2) could be different.

; Here is a different version that does respect set-equivalence.

This predicate checks that y is a maximal element with respect to the set s.
(defall forall-x-is-greater0 (y s)

D.2. CHOOSE-MAX.LISP 87

:forall x :in s
tholds (>= (g y) (g x)))

; Here we collect all elements from sl that are maximal with respect
; to s2. That is, we create the set of all x in sl s.t. x>=y for all y
; \in s2.

(newdefmap collect-maximal-elementsO (sl s2)
:for x :in si
:such-that (forall-x-is-greaterO x s2))

; Finally, choose-maxl collects all the maximal elements of set s, and
; chooses one. Since (choose x) always picks the same element for a

; given set, it choose-max enjoys the congruence property that

; choose-max1l doesn’t.

(defun choose-maxl (s)
(choose (collect-maximal-elementsO s s)))

(defcong = = (choose-maxl s) 1)

; We would also like to show that it enjoys the two other important
; properties that follow immediately for choose-max-0, namely

; choose-max-0O-exists and choose-max-0->=. They don’t follow

; immediately.

; This encapsulate is clunky. As an exercise, I should elegantize the
; proofs.

(encapsulate

nil

(local

(progn
(in-theory (enable forall-x-is-greaterO-predicate))
(in-theory (enable forall-x-is-greater0))

(defthm forall-x-is-greater—scons-2
(implies (and (forall-x-is-greaterQO x s)
0= (gy) (g x)))

(forall-x-is-greater0 y (scons x s))))

(defthm choose-max-0-forall-x-is-greater
(implies (not (ur-elementp s))
(forall-x-is-greater0 (choose-max0 s) s))
:hints (("Goal" :induct (choose-max0 s))))

88 APPENDIX D. ACL2 EVENT FILES

(defthm choose-max-0O-mem-collect-maximal-elements
(implies (not (ur-elementp s))
(mem (choose-max0 s) (collect-maximal-elementsO s s))))

(defthm collect-maximal-elements-not-empty
(implies (not (ur-elementp s))
(not (ur-elementp (collect-maximal-elementsO s s))))
:hints (("Goal" :use

(:instance choose-max-0-mem-collect-maximal-elements))))

; there’s a smarter way to prove this theorem. do it.
(defthm mem-choose-collect-maximal-elements-dumb
(implies (not (ur-elementp (collect-maximal-elementsO s s)))
(mem (choose (collect-maximal-elementsO s s)) s))
:hints (("Goal" :use ((:instance mem-collect-maximal-elementsO
(x (choose (collect-maximal-elementsO s s)))
(s1 s)
(s2 s))
(:instance mem-choose
(a (collect-maximal-elementsO s s))))
:in-theory nil)))
)) ; end local progn

; This is the only theorem we export from the encapsulate.

(defthm choose-max-existsi
(implies (not (ur-elementp s))
(mem (choose-maxl s) s)))

; Here I use functional instantiation to prove the previous theorem
; for the version of choose-maxl used in the Disk Paxos algorithm.

(defall forall-x-is-greater-bal (y s)
:forall x :in s
tholds (>= (apply y "bal") (apply x "bal")))

(newdefmap collect-maximal-elements-bal (sl s2)
:for x :in si
:such-that (forall-x-is-greater-bal x s2))

(defun choose-max-bal (s)
(choose (collect-maximal-elements-bal s s)))

D.2. CHOOSE-MAX.LISP 89

(defthm very-silly
(EQUAL (COLLECT-MAXIMAL-ELEMENTS-BAL S1 S2)
(AND (NOT (UR-ELEMENTP S1))
(LET ((X (SCAR S1)))
(IF (FORALL-X-IS-GREATER-BAL X S2)
(SCONS (SCAR S1)
(COLLECT-MAXIMAL-ELEMENTS-BAL (SCDR S1)
$2))
(COLLECT-MAXIMAL-ELEMENTS-BAL (SCDR S1)

$2)))))
thints (("Goal" :in-theory (enable collect-maximal-elements-bal)))
:rule-classes nil)

(in-theory (enable forall-x-is-greater-bal
collect-maximal-elements-bal
forall-x-is-greater-bal-predicate))

(defcong = = (choose-max-bal s) 1
:hints (("Goal" :by (:functional-instance

=-implies-=-choose-max1-1
(choose-max1l choose-max-bal)
(g (lambda (x) (apply x "bal")))
(forall-x-is-greaterO forall-x-is-greater-bal)
(collect-maximal-elementsO collect-maximal-elements-bal)
(forall-x-is-greaterO-predicate
forall-x-is-greater-bal-predicate)))))

(defthm choose-max-bal-exists
(implies (not (ur-elementp s))
(mem (choose-max-bal s) s))

thints (("Goal" :by (:functional-instance
choose-max-existsl
(choose-max1l choose-max-bal)
(g (lambda (x) (apply x "bal")))
(forall-x-is-greaterO forall-x-is-greater-bal)
(collect-maximal-elementsO collect-maximal-elements-bal)
(forall—x—is—greatero—predicate
forall-x-is-greater-bal-predicate)))))

(in-theory (disable choose-max-bal))

; end file

90 APPENDIX D. ACL2 EVENT FILES

D.3 common-all.lisp

; common-all.lisp

; I used the following command to certify this book:
; (1d "defpkg.lisp")
; (certify-book "common-all" 1)

(in-package "S")

(include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
(include-book "translations")

(defmacro enable-all-actions ()

’(in-theory (enable startballot phaseOread phaselor2write
phaselor2read endphaselor2 fail endphaseO
chosen-allinput-action
next hnext initializephase)))

(defmacro disable-all-actions ()

’(in-theory (disable startballot phaseOread phaselor2write
phaselor2read endphaselor2 fail endphaseO
chosen-allinput-action
next hnext initializephase)))

; Default: all actions are disabled.
(disable-all-actions)

(in-theory (disable hasread))

; Proc’s definition doesn’t help in proving type invariance, so I
; disable it.

(in-theory (disable proc))

; Found this rule expensive through accumulated-persistence. I don’t
; seem to need it.
(in-theory (disable subsetp-not-subsetp-trick))

; More rules that might be good to disable:
; (in-theory (disable mem-container))

; (in-theory (disable subsetp))

; (in-theory (disable mem-subsetp))

; (in-theory (disable mem))

; (in-theory (disable powerset-property))

; (in-theory (disable apply-outside-domain))

D.4. DEFALL.LISP 91

D.4 defall.lisp

; defall.lisp

; I used these commands to certify this book:
; (include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
; (certify-book "defall" 1)

(in-package "S")

; Universal Quantification

; Defall is my way of expressing universally quantified statements in
; a finite set theory context. Consider a call to defall

; (defall all-satisfy-q (a s b) :forall x :in s :holds (q a b x))
; where (q a b) is a previously-defined predicate.
; [Explanation to be continued...]

; I comment each piece of the macro with the translation generated by
; the following code:

(defun defall-predicate-congruences (vars call i)
(cond
((endp vars) nil)
(t (cons ‘(defcong = equal ,call ,i)
(defall-predicate-congruences (cdr vars) call (+ 1 i))))))

(defun defall-pred-set-congruences (vars call sloc i)
(cond
((endp vars) nil)
(t (cons (if (equal sloc i)
‘(defx :strategy :congruence ,call ,i :method :canonicalize)
‘(defcong = equal ,call ,i))
(defall-pred-set-congruences (cdr vars) call sloc (+ 1 i)))))))

92 APPENDIX D. ACL2 EVENT FILES

; Problem to fix with this defall: some theorems use variables such as
; e, a, b, c, but I don’t check to make sure that there variables are
; not among those in ‘vars’. So for instance, if in some theorem I

; want to express set membership within a defall named foo with

; arguments (d e f), and I happen to say

; (mem e , (pred-set-call ,@(pred-set-vars))), it will become

; (mem e (foo d e f)), which is not what I mean.

(defmacro defall (name
vars
&key
(forall ’nil forallp)
(in ’nil inp)
(holds ’nil holdsp))
(cond
((not (and (symbolp name)
(acl2::symbol-listp vars)
forallp
(symbolp forall)
(not (acl2::member-equal forall vars))
inp
(symbolp in)
(acl2: :member-equal in vars)
holdsp))
‘(acl2::er acl2::soft ’defquant
"Not documented."))
(t
(let* ((x forall)
(s in)
(sloc (- (length vars) (length (member s vars))))
(pred-name (packn-in-pkg (list name "-PREDICATE") ’defall))
(pred-set-name name)
(pred-vars (substitute x s vars))
(pred-set-vars vars)
(pred-call ‘(,pred-name ,@pred-vars))
(pred-set-call ‘(,pred-set-name ,@pred-set-vars))
(rcall ‘(,pred-set-name ,@(substitute ‘(scdr ,s) s vars))))
‘ (encapsulate
nil

D.4. DEFALL.LISP 93

; We will consider the following call to defall:
; (DEFALL FORALL-P-HOLDS (A S B) :FORALL X :IN S :HOLDS (P A X B))

; We need to declare a function expressing the :holds

; condition in order to place the condition inside a black

; box. This enables the proofs below to go through with no

; problems. The :holds condition should have nothing to do

; with the success of a defall declaration. However, if we do
; not hide its details, it can interfere with a successful

; proof.

; (DEFUN FORALL-P-HOLDS-PREDICATE (A X B) (P A X B))

(defun ,pred-name (,@pred-vars)

,holds)
; (DEFCONG = EQUAL (FORALL-P-HOLDS-PREDICATE A X B) 1)
; (DEFCONG = EQUAL (FORALL-P-HOLDS-PREDICATE A X B) 2)
; (DEFCONG = EQUAL (FORALL-P-HOLDS-PREDICATE A X B) 3)

,0(defall-predicate-congruences pred-vars pred-call 1)

; Having proven the necessary congruences about pred-name, I
; disable it so it doesn’t interfere with the rest of the
; proofs.

; (IN-THEORY (DISABLE FORALL-P-HOLDS-PREDICATE))
(in-theory (disable ,pred-name))

; Now we define the actual function that will be used outside
; the macro, with name equal to the one the user supplied.

; (DEFUN FORALL-P-HOLDS (A S B)

; (IF (UR-ELEMENTP S)

; T

; (IF (FORALL-P-HOLDS-PREDICATE A (SCAR S) B)
; (FORALL-P-HOLDS A (SCDR S) B)

; NIL)))

(defun ,pred-set-name (,@pred-set-vars)
(if (ur-elementp ,s)
t
(if (,pred-name ,@(substitute ‘(scar ,s) s vars))

APPENDIX D. ACL2 EVENT FILES

,rcall
nil)))

; (DEFCONG = EQUAL (FORALL-P-HOLDS A S B) 1)

; (DEFX :STRATEGY :CONGRUENCE (FORALL-P-HOLDS A S B) 2
; :METHOD :CANONICALIZE)

; (DEFCONG = EQUAL (FORALL-P-HOLDS A S B) 3)

,0(defall-pred-set-congruences vars pred-set-call (+ sloc 1) 1)
; trying this one 1.27.01

(defthm , (packn-in-pkg (list pred-set-name "-MEM") ’defall)
(implies (and (,pred-set-name ,@pred-set-vars)
(mem ,x ,s))
(,pred-name ,@pred-vars)))

; The next two theorems, FORALL-P-HOLDS-APPLY and

; FORALL-P-HOLDS-PREDICATE-IMPLIES, are used in the proof of
; FORALL-P-HOLDS-APPLY-2. While I’m certain I don’t want to
; have FORALL-P-HOLDS-PREDICATE-IMPLIES around (and thus

; declare it locally), I haven’t made up my mind yet about

; FORALL-P-HOLDS-APPLY yet. So I export it.

; (DEFTHM FORALL-P-HOLDS-APPLY

; (IMPLIES (AND (FORALL-P-HOLDS A (RANGE S) B)

; (FUNCTIONP S)

; (MEM E (DOMAIN S)))

; (FORALL-P-HOLDS-PREDICATE A (APPLY S E) B)))

(defthm , (packn-in-pkg (list pred-set-name "-APPLY") ’defall)
(implies (and (,pred-set-name ,Q@(substitute ‘(range ,s) s vars))
(functionp ,s)
(mem e (domain ,s)))
(,pred-name ,@(substitute ‘(apply ,s e) s vars))))

; Even though the ‘implies’ below could be substituted by

; ‘equal’ which is stronger, the theorem is proved much faster
; with ‘implies’. Since I only use this theorem as an

; auxiliary one in a proof below, I don’t care about strength
; but only speed.

; (LOCAL (DEFTHM FORALL-P-HOLDS-PREDICATE-IMPLIES
; (IMPLIES (FORALL-P-HOLDS-PREDICATE A X B)

D.4. DEFALL.LISP 95

; (P A X B))

; :HINTS

; (("Goal" :IN-THEORY

; (ENABLE FORALL-P-HOLDS-PREDICATE)))
; :RULE-CLASSES NIL))

(local
(defthm , (packn-in-pkg (list pred-name "-IMPLIES") ’defall)
(implies (,pred-name ,@pred-vars)
,holds)
thints (("Goal" :in-theory (enable ,pred-name)))
:rule-classes nil))

; (DEFTHM FORALL-P-HOLDS-APPLY-2

; (IMPLIES (AND (FORALL-P-HOLDS A (RANGE S) B)
; (FUNCTIONP S)

; (MEM E (DOMAIN S)))

; (P A (APPLY S E) B))

; :HINTS

; (("Goal" :USE

; ((:INSTANCE FORALL-P-HOLDS-APPLY)

; (:INSTANCE FORALL-P-HOLDS-PREDICATE-IMPLIES
; (X (APPLY S E))))

; :IN-THEORY NIL)))

(defthm , (packn-in-pkg (list pred-set-name "-APPLY-2") ’defall)
(implies (and (,pred-set-name ,Q@(substitute ‘(range ,s) s vars))
(functionp ,s)
(mem e (domain ,s)))
, (subst ‘(apply ,s e) forall holds))
:hints (("Goal" :use ((:instance
, (packn-in-pkg (list pred-set-name "-APPLY")
‘defall))
(:instance
, (packn-in-pkg (list pred-name "-IMPLIES")
’defall)
(,forall (apply ,s e))))
:in-theory nil)))

; (DEFTHM FORALL-P-HOLDS-RANGE-EXCEPT

; (IMPLIES (AND (FORALL-P-HOLDS A (RANGE S) B)

; (FORALL-P-HOLDS-PREDICATE A Y B))

; (FORALL-P-HOLDS A (RANGE (EXCEPT S X Y))
; B))

; :HINTS

96

APPENDIX D. ACL2 EVENT FILES

; (("Goal" :IN-THEORY (ENABLE EXCEPT))))

(defthm , (packn-in-pkg (list pred-set-name "-RANGE-EXCEPT") ’defall)
(implies (and (,pred-set-name ,@(substitute ‘(range ,s) s vars))
(,pred-name ,@(substitute ’y x pred-vars)))
(,pred-set-name ,@(substitute ‘(range (except ,s x y))
s vars)))
:hints (("Goal" :in-theory (enable except))))

; I had problems with some rewrite rules that converted terms
; into if-expressions. This is my current solution.

; (DEFTHM FORALL-P-HOLDS-IF-BREAK-UP

; (EQUAL (FORALL-P-HOLDS A (IF A1 B1 C1) B)
; (IF A1 (FORALL-P-HOLDS A B1 B)

; (FORALL-P-HOLDS A C1 B))))

(defthm , (packn-in-pkg (list pred-set-name "-IF-BREAK-UP") ’defall)
(equal (,pred-set-name ,@(substitute ‘(if al bl c1) x pred-vars))
(if a1l
(,pred-set-name ,@(substitute ’bl x pred-vars))
(,pred-set-name ,@(substitute ’cl x pred-vars)))))

; (DEFTHM FORALL-P-HOLDS-CHOOSE

; (IMPLIES (AND (NOT (UR-ELEMENTP S))

; (FORALL-P-HOLDS A S B))

; (FORALL-P-HOLDS-PREDICATE A (CHOOSE 8S)

; B))

; :HINTS

H (("Subgoal *1/3" :CASES ((= (CHOOSE S) (SCAR S))))))

(defthm , (packn-in-pkg (list pred-set-name "-CHOOSE") ’defall)
(implies (and (not (ur-elementp ,s))
(,pred-set-name ,Q@pred-set-vars))
(,pred-name ,@(substitute (choose ,s) x pred-vars)))
:hints (("Subgoal *1/3" :cases ((= (choose ,s) (scar ,s))))))

; (DEFTHM FORALL-P-HOLDS-UNION

; (IMPLIES (AND (FORALL-P-HOLDS A S B)

; (FORALL-P-HOLDS A S1 B))

; (FORALL-P-HOLDS A (UNION S S1) B)))

(defthm , (packn-in-pkg (list pred-set-name "-UNION") ’defall)
(implies (and (,pred-set-name ,@pred-set-vars)
(,pred-set-name ,@(substitute ’sl s pred-set-vars)))

D.4. DEFALL.LISP 97

(,pred-set-name
,@(substitute ‘(union ,s sl1) s pred-set-vars))))

; (DEFTHM FORALL-P-HOLDS-INTERSECTION

; (IMPLIES (AND (FORALL-P-HOLDS A S B)

; (FORALL-P-HOLDS A S1 B))

; (FORALL-P-HOLDS A (INTERSECTION S S1)
; B)))

(defthm , (packn-in-pkg (list pred-set-name "-INTERSECTION") ’defall)
(implies (and (,pred-set-name ,@pred-set-vars)
(,pred-set-name ,@(substitute ’sl s pred-set-vars)))
(,pred-set-name
,@(substitute ‘(intersection ,s s1) s pred-set-vars))))

; (DEFTHM FORALL-P-HOLDS-SCONS

; (IMPLIES (AND (FORALL-P-HOLDS-PREDICATE A X B)
; (FORALL-P-HOLDS A S B))

; (FORALL-P-HOLDS A (SCONS X S) B)))

(defthm , (packn-in-pkg (list pred-set-name "-SCONS") ’defall)
(implies (and (,pred-name ,Q@pred-vars)
(,pred-set-name ,@pred-set-vars))
(,pred-set-name ,@(substitute ‘(scons ,x ,s) s vars))))

; (DEFTHM FORALL-P-HOLDS-NIL
; (FORALL-P-HOLDS A NIL B))

(defthm , (packn-in-pkg (list pred-set-name "-NIL") ’defall)
(,pred-set-name ,@(substitute nil s vars)))

; Finally, we disable both functions. Currently, I hold the

; view that these functions should never be opened; we should
; only have the needed theorems to reason about them. This is
; most true of the recursive function. (I think) opening

; recursive functions can be expensive, and disabling all my

; recursive functions defined through defmap and defall made a
; huge impact in performance.

(in-theory (disable ,pred-set-name))
(in-theory (enable ,pred-name)))))))

98 APPENDIX D. ACL2 EVENT FILES

; Instantiatable theory -- plug and play!

; proving ‘:forall: x :in: s : p(x)’ statements
; using ‘x :in: s => p(x)’

#|

(encapsulate

((p (x) ©)

(hyps O t)

(s O t))

(local (defun p (x) (declare (ignore x)) t))
(local (defun hyps () nil))

(local (defun s () t))

(defcong = equal (p x) 1)
(defthm mem-foo (implies (and (hyps)

(mem x (s)))

(p x))))

(defall foo (s)
:forall x :in s :holds (p x))

; ;5 ; once mem-foo theorem is proved, a macro creates:
(defthm helper2-foo (implies
(and (hyps)
(subsetp s1 (s)))
(foo s1))
:hints (("Goal" :in-theory (enable foo0))))

(defthm main-foo (implies (hyps)
(foo (s))))

| #

; End of file ----------------------------- -

D.5 defexists.lisp

; defexists.lisp

; I used these commands to certify this book:

D.5. DEFEXISTS.LISP 99

; (include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
; (certify-book "defexists" 1)

(in-package "S")
(include-book "newdefmap")

; Existential Quantification

; My first thought was to express existential quantification simply by
; writing

; (foo-map s)
; Where
; (defmap foo-map (s) :for x :in s :such-that p)

; If there is some element in s with property p, then (foo-map s) will
; be a nonempty set. If there is no element in s satisfying p, then

; (foo-map s) will return nil. Thus (foo-map s) is logically

; equivalent (i.e. is nil/non-nil in unison) to existential

; quantification.

; The motivation behind defexists is my desire to have a place where I
; can think about existential reasoning without interfering with other
; kinds of constructs that I might define using defmap and which might
; have nothing to do with existential reasoning. There are theorems

; that are useful for set constructors that use defmap but are not

; useful for existential quantification statements, and visceversa.

; It also seems more satisfying to express existential quantification
; using a boolean construct.

; However, I use an abbreviated version of defmap, including the same
; recursive definition that defmap defines, inside defexists. I do

; this because a theorem I want to prove the following theorem within
; defexists:

; (equal (exists-x-such-that-p s)
s (and (mem (witness s) s)
; (p (witness s))

; where (defexists exists-x-such-that-p (s) :exists x :in s
; :such-that (p x))

100 APPENDIX D. ACL2 EVENT FILES

; (Witness s) is easily defined as follows:

; (defmap collect-elements-such-that-p (s) :for x :in s
H :such-that (p x))

; (defun witness (s) (choose (collect-elements-such-that-p s)))

; Since I don’t care to export collect-elements-such-that-p, I define
; it locally and prove some theorems about it, directly lifted from
; the defmap macro.

(defun defexists-congruences (vars call i)
(cond
((endp vars) nil)
(t (cons ‘(defcong = equal ,call ,i)
(defexists-congruences (cdr vars) call (+ 1 i))))))

(defmacro defexists (name vars
&key
(exists ’nil existsp)
(in ’nil inp)
(such-that ’nil such-thatp)

; I’11 have to check if I need the rule that
; led to this keyword in the proofs for

; defexists. If not, the keyword can go away.
(mem-corollary ’t))

(cond
((not (and (symbolp name)
(acl2::symbol-listp vars)
existsp
(symbolp exists)
(not (acl2::member-equal exists vars))
inp
(symbolp in)
(acl2: :member-equal in vars)
such-thatp))
‘(acl2::er acl2::soft ’defmap "Not documented."))
(t (Qet* ((x exists)
(s in)
(sloc (- (length vars) (length (member s vars))))
(body such-that)
(s1 (gennamel s 1 (cons x vars)))

D.5. DEFEXISTS.LISP 101

(call ‘(,name ,@vars))

(pred-name (packn-in-pkg (list name "-PRED") ’newdefmap))
(name-local (packn-in-pkg (list name "-LOCAL") ’newdefmap))
(name-map (packn-in-pkg (list name "-MAP") ’newdefmap))
(rcall ‘(,name-map ,@(put-nth ‘(scdr ,s) sloc vars)))
(call-local ‘(,name-local ,@vars))

(pred-call ‘(,pred-name ,@(substitute x s vars))))

‘ (encapsulate
nil
(local
(progn
(defun ,pred-name
, (substitute x s vars)
,body)

,@(newdefmap-pred-congruences (substitute x s vars) pred-call 1)

(in-theory (disable ,pred-name))

; We define name-local in terms of pred-name.

(defun ,name-local (,@vars)
(if (ur-elementp ,s)
nil
(let ((,x (scar ,s)))
(if ,pred-call
(scons (scar ,s) (,name-local ,@(put-nth ‘(scdr ,s)
sloc vars)))
(,name-local ,@(put-nth ‘(scdr ,s) sloc vars))))))

(defthm , (packn-in-pkg (list "SETP-" name-local) ’newdefmap)
(setp (,name-local ,@vars)))

(defthm , (packn-in-pkg (list "UR-ELEMENTP-" name-local) ’newdefmap)
(equal (ur-elementp ,call-local)
(equal ,call-local nil)))

(defthm , (packn-in-pkg (list "MEM-" name-local) ’newdefmap)
(equal (mem ,x ,call-local)
(and ,pred-call ; we write it this way in case body
(mem ,x ,s))) ; is not Boolean!
totf-flg t)

102 APPENDIX D. ACL2 EVENT FILES

(defthm , (packn-in-pkg (list "SUBSETP-" name-local) ’newdefmap)
(subsetp ,call-local ,s))

,0(newdefmap-local-congruences vars call-local (+ sloc 1) 1)

,0(if mem-corollary
‘((defthm , (packn-in-pkg (list "MEM-'" name-local "-CORROLLARY")
’newdefmap)
(implies (and (subsetp ,sl ,call-local)
(mem ,x ,s1))
,pred-call)))
nil)

(defthm , (packn-in-pkg (list "CARDINALITY-" name-local) ’newdefmap)
(<= (cardinality ,call-local)
(cardinality ,s))
:rule-classes :linear)))

(defun , (packn-in-pkg (list name "-MAP") ’defexists) (,@vars)
(if (ur-elementp ,s)
nil
(let ((,x (scar ,s)))
(if ,body
(scons (scar ,s) ,rcall)
,rcall))))

; Here is the definition that expresses existential quantification.
(defun ,name ,vars
(not (ur-elementp
(, (packn-in-pkg (list name "-MAP") ’defexists)
,@vars))))

; Now, we show that foo-local and foo-map are equal. Thus, any

; theorems that held for foo-local trivially hold for foo.

(local

(defthm , (packn-in-pkg (list name-map "-EQUALS-'" name-local) ’newdefmap)
(equal (,name-map ,@vars) (,name-local ,@vars))
thints (("Goal" :in-theory (enable ,pred-name)))))

; We also show that pred-call and body are equal.
(local
(defthm PRED-EQUALS-BODY

(equal ,pred-call ,body)

:hints (("Goal" :in-theory (enable ,pred-name)))))

D.6. DEFPKG.LISP 103

(defthm , (packn-in-pkg (list name "-IS-BOOLEAN") ’defexists)
(booleanp (,name ,@vars))
:rule-classes :type-prescription)

,@(defexists-congruences vars ‘(,name ,Q@vars) 1)

(local (in-theory (disable
PRED-EQUALS-BODY)))

(in-theory (disable , (packn-in-pkg (list name "-MAP") ’defexists)
,name))

; We prove MEM-CHOOSE using <name>-LOCAL first.
; (defthm , (packn-in-pkg (list name "-MEM-CHOOSE") ’defexists)
; (iff (,name ,Q@vars)
; (and (mem (choose (,name-map ,@vars))
; »S)
; , (subst ‘(choose (,name-map ,@vars)) x body))))

)))))

; End of file ------------------------------ - -\ : : il b

D.6 defpkg.lisp

; defpkg.lisp

(defpkg "S"

(set-difference-equal

(union-eq ’ (PACK
ORDINARYP
<<
<<-IRREFLEXIVITY
<<-TRICHOTOMY
<<-MUTUAL-EXCLUSION
<<-TRANSITIVITY
FAST-<<-TRICHOTOMY
FAST-<<-MUTUAL-EXCLUSION
FAST-<<-TRANSITIVITY
FAST-<<-RULES

104 APPENDIX D. ACL2 EVENT FILES

SLOW-<<-RULES
<<-RULES)
(union-eq *acl2-exports*
common-lisp-symbols-from-main-lisp-package))
’(union intersection subsetp add-to-set functionp = apply)))

D.7 Thinvl.lisp

; hinvl.lisp

; I used the following command to certify this book:
; (1d "defpkg.lisp")

; (certify-book "hinvi" 1)

(in-package "S")

(include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
(include-book "translations")

; HInvl ==

; /\ input in [Proc -> Inputs]

; /\ output in [Proc -> Inputs cup { NotAnInput }]
s /\ disk in [Disk -> [Proc -> DiskBlock]]

; /\ phase in [Proc -> 0..3]

; /\ dblock in [Proc -> DiskBlock]

; /\ disksWritten in [Proc -> SUBSET Diskl]

; /\ blocksRead in [Proc -> [Disk ->

; SUBSET [block : DiskBlock, proc : Proc]ll]
; /\ alllnput in SUBSET Inputs

; /\ chosen in Inputs cup {NotAnInput}

(defstate hinvli-with-vars (allinput chosen)
(and (mem input (all-fns (proc) (inputs)))
(mem output (all-fns (proc)
(hide (union (inputs) (brace (notaninput))))))

D.8. HINV2-EXPORTS.LISP 105

(mem disk (all-fns (disk)

(all-fns (proc) (diskblock))))
(mem phase (all-fns (proc) (mats 3)))
(mem dblock (all-fns (proc) (diskblock)))

(mem diskswritten (all-fns (proc) (powerset (disk))))
(mem blocksread (all-fns (proc)
(all-fns (disk) (powerset (blockproc)))))
(mem allinput (powerset (inputs)))
(mem chosen (hide (union (inputs) (brace (notaninput)))))))

(defmacro hinvl ()
’(hinvl-with-vars allinput chosen))

(add-macro-alias hinvl _hinvl-with-vars)

; End of file ----------------—----+-----—»------—---o-——

D.8 hinv2-exports.lisp

; hinv2-exports.lisp
(in-package "S")

; I used the following command to certify this book:
; (1d "defpkg.lisp")
; (certify-book "hinv2-exports" 1)

(include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
(include-book "hinv2")

(local
(progn

(defthm
forall-hinv2-2-mem-sane-version
(implies
(and (forall-hinv2-2 proc diskswritten
phase disk dblock blocksread)
(mem p proc))
(forall-hinv2-2-1 (disk)
p diskswritten
phase disk dblock blocksread))

106 APPENDIX D. ACL2 EVENT FILES

thints (("goal" :use forall-hinv2-2-mem)))

(defthm
forall-hinv2-2-1-mem-sane-version
(implies (and (forall-hinv2-2-1 disk-dom p diskswritten
phase disk dblock blocksread)
(mem d disk-dom))
(and
(implies (mem d (apply diskswritten p))
(and (mem (apply phase p) (brace 1 2))
(= (apply-m disk d p)
(apply dblock p))))
(implies (mem (apply phase p) (brace 1 2))
(and (implies (not (= (apply-m blocksread p d) nil))
(mem d (apply diskswritten p)))
(not (hasread p d p blocksread))))))
thints (("goal" :use forall-hinv2-2-1-mem
:in-theory ’(forall-hinv2-2-1-predicate))))

(defthm
forall-hinv2-2-1-mem-sane-version-with-hide-and-disk
(implies (and (forall-hinv2-2-1 (disk) p diskswritten
phase disk dblock blocksread)
(mem d (disk)))
(and
(implies (mem d (apply diskswritten p))
(and (mem (apply phase p) (hide (brace 1 2)))
(= (apply-m disk d p)
(apply dblock p))))
(implies (mem (apply phase p) (hide (brace 1 2)))
(and (implies (not (= (apply-m blocksread p d) nil))
(mem d (apply diskswritten p)))
(not (hasread p d p blocksread))))))
:use (:instance forall-hinv2-2-1-mem-sane-version
(disk-dom (disk)))
:expand ((hide (brace 1 2)))
:in-theory nil)))

:hints (("Goal"

)) ; end local progn

(defthm
hinv2-lemma?2
(implies (and (hinv2)
(mem p (proc))
(mem d (disk))

D.9. HINV2.LISP 107

(mem (apply phase p) (hide (brace 1 2)))
(not (= (apply-m blocksread p d) nil)))
(mem d (apply diskswritten p)))
:hints (("goal" :use (forall-hinv2-2-mem-sane-version
forall-hinv2-2-1-mem-sane-version-with-hide—-and-disk)
:in-theory (enable hinv2))))

(defthm hinv2-lemma
(implies (and (hinv2)
(mem p (proc))
(mem d (disk))
(mem d (apply diskswritten p)))
(and (mem (apply phase p) (hide (brace 1 2)))
(= (apply-m disk d p) (apply dblock p))))
:hints (("Goal" :use (forall-hinv2-2-mem-sane-version
forall-hinv2-2-1-mem-sane-version-with-hide—-and-disk)
:in-theory (enable hinv2))))

(defthm phaselor2read-phase-1
(implies (and (hinv2)
(mem p (proc))
(mem d (disk))
(mem d (apply diskswritten p)))
(mem (apply phase p) (hide (brace 1 2))))
:hints (("Goal" :use (forall-hinv2-2-mem-sane-version
forall-hinv2-2-1-mem-sane-version-with-hide—-and-disk)
:in-theory (enable hinv2))))

; End of file ------------------------------ o : : : ' i b

D.9 hinv2.lisp

; hinv2.lisp

; I used the following command to certify this book:
; (1d "defpkg.lisp")

; (certify-book "hinv2" 1)

(in-package "S")

(include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")

108

(include-book "translations")

3

HInv2 ==
/\ forall p in Proc :
forall bk in blocksOf (p)

APPENDIX D. ACL2 EVENT FILES

: /\ bk.mbal in Ballot(p) cup {0}
/\ bk.bal in Ballot(p) cup {0}
/\ (bk.bal=0) === (bk.inp = NotAnInput)
/\ bk.mbal >= bk.bal

/\ forall p in Proc, d in Disk :

/\ (d in disksWritten[p]

) => /\ phasel[p] in {1,2}
/\ diskl[d][p] = dblockl[p]

/\ (phase[p] in {1,2}) => /\ (blocksRead[p]l[d] # {}) =>

/\ forall p in Proc :
/\ (phasel[pl = 0) => /\
/\
/\

/\ (phaselp] # 0) => /\
/\
/\

(d in disksWritten[p])
/\ -hasRead(p,d,p)

dblock[p] = InitDB
disksWritten[p] = {3
forall d in Disk :
forall br in blocksRead[p] [d]
/\ br.proc = p
/\ br.block = disk[d] [p]

dblock[p] .mbal in Ballot(p)

dblock([p].bal in Ballot(p) cup {0}

forall d in Disk:

forall br in blocksRead[p] [d]
br.block.mbal < dblock[p].mbal

/\ (phaselp] in {2,3}) => (dblock[p].bal = dblock[p].mbal)
/\ output[p] = IF phase[p] = 3 THEN dblock[p].inp ELSE NotAnInput

/\ chosen in allInput cup {NotAnInput}

/\ forall p in Proc :
/\ input[p] in allInput
/\ (chosen = NotAnInput)

=> (output[p] = NotAnInput)

(defall forall-hinv2-1-1 (blocksof-p p)

:forall bk :in blocksof-p

:holds (and (mem (apply bk "mbal") (union (ballot p) (brace 0)))
(mem (apply bk "bal") (union (ballot p) (brace 0)))

(iff (= (apply bk

Ilballl) 0)

D.9. HINV2.LISP 109

(= (apply bk "inp") (notaninput)))))

(defall forall-hinv2-1 (proc dblock disk blocksread)
:forall p :in proc
:holds (forall-hinv2-1-1 (blocksof p dblock disk blocksread) p))

(defall forall-hinv2-2-1 (disk-dom p diskswritten phase disk dblock blocksread)
:forall d :in disk-dom
:holds (and (implies (mem d (apply diskswritten p))
(and (mem (apply phase p) (brace 1 2))
(= (apply-m disk d p) (apply dblock p))))
(implies (mem (apply phase p) (brace 1 2))
(and (implies (not (= (apply-m blocksread p d) nil))
(mem d (apply diskswritten p)))
(not (hasread p d p blocksread))))))

; Abbreviation to add: (not (= s nil)) ---> s

(defall forall-hinv2-2 (proc diskswritten phase disk dblock blocksread)
:forall p :in proc
:holds (forall-hinv2-2-1 (disk) p diskswritten phase disk dblock blocksread))

(defall forall-hinv2-3-1-1 (blocksread-p-d p d disk)
:forall br :in blocksread-p-d
:holds (and (= (apply br "proc") p)
(= (apply br "block") (apply-m disk d p))))

(defall forall-hinv2-3-1 (disk-dom blocksread p disk)
:forall d :in disk-dom
:holds (forall-hinv2-3-1-1 (apply-m blocksread p d) p d disk))

(defall forall-hinv2-3-2-1 (blocksread-p-d p dblock)
:forall br :in blocksread-p-d
tholds (< (apply-m br "block' "mbal")
(apply-m dblock p "mbal")))

(defall forall-hinv2-3-2 (disk-dom blocksread p dblock)
:forall d :in disk-dom
:holds (forall-hinv2-3-2-1 (apply-m blocksread p d) p dblock))

(defall forall-hinv2-3 (proc phase dblock diskswritten blocksread disk output)
:forall p :in proc
:holds (and (implies (= (apply phase p) 0)
(and (= (apply dblock p) (initdb))
(= (apply diskswritten p) nil)

110 APPENDIX D. ACL2 EVENT FILES

(forall-hinv2-3-1 (disk) blocksread p disk)))
(implies (not (= (apply phase p) 0))
(and (mem (apply-m dblock p "mbal')
(ballot p))
(mem (apply-m dblock p "bal")
(union (ballot p) (brace 0)))
(forall-hinv2-3-2 (disk) blocksread p dblock)))
(implies (mem (apply phase p) (brace 2 3))
(= (apply-m dblock p "bal")
(apply-m dblock p "mbal')))
(= (apply output p)
(if (= (apply phase p) 3)
(apply-m dblock p "inp")
(notaninput)))))

(defall forall-hinv2-4 (proc input allinput chosen output)
:forall p :in proc
:holds (and (mem (apply input p) allinput)
(implies (= chosen (notaninput))
(= (apply output p) (notaninput)))))

(defstate hinv2-with-vars (allinput chosen)
(and (forall-hinv2-1 (proc) dblock disk blocksread)
(forall-hinv2-2 (proc) diskswritten phase disk dblock blocksread)
(forall-hinv2-3 (proc) phase dblock diskswritten blocksread disk output)
(mem chosen (union allinput (brace (notaninput))))
(forall-hinv2-4 (proc) input allinput chosen output)))

(defmacro hinv2 () ’(hinv2-with-vars allinput chosen))
(add-macro-alias hinv2 _hinv2-with-vars)

; End of file ----------------—---------»------—-----——

D.10 hinv3.lisp

; hinv3.lisp

; I used the following command to certify this book:
; (1d "defpkg.lisp")

; (certify-book "hinv3" 1)

(in-package "S")

D.10. HINV3.LISP 111

(include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
(include-book "translations")

; HInv3 == :forall: p,q :in: Proc, d :in: Disk :
; /\ phase[p] :in: {1,2}

; /\ phaselq] :in: {1,2}

; /\ hasRead(p,d,q)

5 /\ hasRead(q,d,p)

; => \/ [block |-> dblock[q]l, proc |-> gq] :in: blocksRead[p] [d]
; \/ [block |-> dblock[p], proc |-> p] :in: blocksRead[q] [d]

(defun hinv3.1 (phase p d q blocksread)

(and (mem (apply phase p) (hide (brace 1 2)))
(mem (apply phase q) (hide (brace 1 2)))
(hasread p d q blocksread)

(hasread q d p blocksread)))

(defun hinv3.r (dblock blocksread p d q)
(or (mem (func ("block" (apply dblock q))
("proc" q))
(apply-m blocksread p d))
(mem (func ("block" (apply dblock p))
("proc" p))
(apply-m blocksread q d))))

; These congruences are proven for purposes of forall-hinv3-1-1-1
; below.

(defcong = equal (hinv3.r dblock blocksread p d q) 1)
(defcong = equal (hinv3.r dblock blocksread p d q) 2)
(defcong = equal (hinv3.r dblock blocksread p d q) 3)
(defcong = equal (hinv3.r dblock blocksread p d q) 4)
(defcong = equal (hinv3.r dblock blocksread p d q) 5)
(defcong = equal (hinv3.
(defcong = equal (hinv3.
(defcong = equal (hinv3.

phase p d q blocksread) 1)
phase p d q blocksread) 2)
phase p d q blocksread) 3)
(defcong = equal (hinv3.
(defcong = equal (hinv3.

phase p d q blocksread) 4)
phase p d q blocksread) 5)

H o

112 APPENDIX D. ACL2 EVENT FILES

(in-theory (disable hinv3.1 hinv3.r))

(defall forall-hinv3-1-1-1 (disk-dom p q phase dblock blocksread)

:forall d :in disk-dom
tholds (implies (hinv3.1 phase p d q blocksread)
(hinv3.r dblock blocksread p 4 q)))

(defall forall-hinv3-1-1 (proc p phase dblock blocksread)

:forall q :in proc
:holds (forall-hinv3-1-1-1 (disk) p q phase dblock blocksread))

(defall forall-hinv3-1 (proc phase dblock blocksread)

:forall p :in proc
:holds (forall-hinv3-1-1 (proc) p phase dblock blocksread))

(defun hinv3-with-vars (phase dblock blocksread)

(forall-hinv3-1 (proc) phase dblock blocksread))

(defmacro hinv3 ()

’ (hinv3-with-vars phase dblock blocksread))

(defmacro hinv3-n ()

> (hinv3-with-vars phase-n dblock-n blocksread-n))

(add-macro-alias hinv3 hinv3-with-vars)

3

End of file -----------------\"?-ro —0-H-H-—H—1-—---------\-\- - - : : b b :

D.11 newdefmap.lisp

3

newdefmap.lisp

(in-package "S")

3
3

3

3

3

I used these commands to certify this book:
(include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
(certify-book "newdefmap" 1)

This is a modified version of defmap, in which I put the :such-that
predicate inside a black box to prevent the predicate from

D.11. NEWDEFMAP.LISP 113

; interfering in the success of proofs, and so that proofs go

; faster. I also add a keyword to omit a theorem that fails if the
; :such-that predicate has an outermost conjunct of the form

; (= <variable> <term>).

; Initial i argument to newdefmap-pred-congruences should be 1.
(defun newdefmap-pred-congruences (vars call i)
(cond
((endp vars) nil)
(t (cons ‘(defcong = equal ,call ,i)
(newdefmap-pred-congruences (cdr vars) call (+ 1 i))))))

; Initial i argument to newdefmap-local-congruences should be 1.
(defun newdefmap-local-congruences (vars call sloc i)

(cond

((endp vars) nil)

(t (cons (if (equal sloc i)

‘(defx :strategy :congruence ,call ,i :method :subsetp)
‘(defx :strategy :congruence ,call ,i))
(newdefmap-local-congruences (cdr vars) call sloc (+ 1 i))))))

(defun compute-hint (name name-local theorem-name-local)
(declare (xargs :mode :program))
‘(:hints (("Goal" :use ((:instance PRED-EQUALS-BODY)
(:instance ,theorem-name-local))
:in-theory ’ ((:rewrite , (packn-in-pkg
(1list name "-EQUALS-" name-local)
’newdefmap)))))))

; Initial i argument to newdefmap-congruences should be 1.
(defun newdefmap-congruences (name name-local vars call i)
(declare (xargs :mode :program))
(cond
((endp vars) nil)
(t (cons ‘(defcong = = ,call ,i
,@(compute-hint name
name-local
(packn-in-pkg

(1list "=-IMPLIES-=-" name-local "-"
(string (code-char (+ 48 i))))
’newdefmap)))

(newdefmap-congruences name name-local (cdr vars) call (+ 1 i))))))

(defmacro newdefmap (name vars
&key

114 APPENDIX D. ACL2 EVENT FILES

(for ’nil forp)

(in ’nil inp)

(such-that ’nil such-thatp)
(map ’nil mapp)
(mem-corollary ’t))

(cond
((not (and (symbolp name)
(acl2::symbol-listp vars)
forp
(symbolp for)
(not (acl2::member-equal for vars))
inp
(symbolp in)
(acl2: :member-equal in vars)
(or (and such-thatp (not mapp))
(and (not such-thatp) mapp))))
“(acl2::er acl2::soft 'newdefmap "Not documented."))

(such-thatp
(let* ((x for)
(s in)
(sloc (- (length vars) (length (member s vars))))
(body such-that)
(s1 (gennamel s 1 (cons x vars)))
(call ‘(,name ,@vars))
(rcall ‘(,name ,@(put-nth ‘(scdr ,s) sloc vars)))
(pred-name (packn-in-pkg (list name "-PRED") ’newdefmap))
(name-local (packn-in-pkg (list name "-LOCAL") ’newdefmaplJ))
(call-local ‘(,name-local ,@vars))
(pred-call ‘(,pred-name ,@(substitute x s vars))))

‘ (encapsulate
nil

(local
(progn
(defun ,pred-name
, (substitute x s vars)
,body)

,0(newdefmap-pred-congruences (substitute x s vars) pred-call 1)

(in-theory (disable ,pred-name))

D.11. NEWDEFMAP.LISP 115

; We define name-local in terms of pred-name.

(defun ,name-local (,@vars)
(if (ur-elementp ,s)
nil
(let ((,x (scar ,s)))
(if ,pred-call
(scons (scar ,s) (,name-local ,@(put-nth ‘(scdr ,s)
sloc vars)))
(,name-local ,@(put-nth ‘(scdr ,s) sloc vars))))))

(defthm , (packn-in-pkg (list "SETP-" name-local) ’newdefmap)
(setp (,name-local ,@vars)))

(defthm , (packn-in-pkg (list "UR-ELEMENTP-" name-local) ’newdefmap)
(equal (ur-elementp ,call-local)
(equal ,call-local nil)))

(defthm , (packn-in-pkg (list "MEM-" name-local) ’newdefmap)
(equal (mem ,x ,call-local)
(and ,pred-call ; we write it this way in case body
(mem ,x ,s))) ; is not Boolean!
totf-flg t)

(defthm , (packn-in-pkg (list "SUBSETP-" name-local) ’newdefmap)
(subsetp ,call-local ,s))

,@(newdefmap-local-congruences vars call-local (+ sloc 1) 1)

,0(if mem-corollary
‘((defthm , (packn-in-pkg (list "MEM-" name-local "-CORROLLARY")
’newdefmap)
(implies (and (subsetp ,sl ,call-local)
(mem ,x ,s1))
,pred-call)))
nil)

(defthm , (packn-in-pkg (list "CARDINALITY-" name-local) ’newdefmap)
(<= (cardinality ,call-local)
(cardinality ,s))
:rule-classes :linear)

(defthm , (packn-in-pkg (list "UNION-" name-local) ’newdefmap)
(= (,name-local ,@(put-nth ‘(union ,sl ,s) sloc vars))

116 APPENDIX D. ACL2 EVENT FILES

(union (,name-local ,@(put-nth sl sloc vars))
,call-local)))

(defthm , (packn-in-pkg (list "INTERSECTION-" name-local) ’newdefmap)
(= (,name-local ,@(put-nth ‘(intersection ,sl ,s) sloc vars))
(intersection (,name-local ,@(put-nth sl sloc vars))
,call-local)))

(defthm , (packn-in-pkg (list "MEM-CHOOSE-" name-local "-1") ’newdefmap)
(iff (mem (choose ,call-local)
,call-local)
(not (ur-elementp ,call-local))))

(defthm , (packn-in-pkg (list "MEM-CHOOSE-" name-local "-2") ’newdefmap)
(implies (not (ur-elementp ,call-local))
(mem (choose ,call-local)

»8)))))

; Now comes the real function.
(defun ,name (,@vars)
(if (ur-elementp ,s)
nil
(let ((,x (scar ,s)))
(if ,body
(scons (scar ,s) ,rcall)
,rcall))))

; Now, we show that foo-local and foo are equal. Thus, any

; theorems that held for foo-local trivially hold for foo.

(local

(defthm , (packn-in-pkg (list name "-EQUALS-" name-local) ’newdefmap)
(equal (,name ,@vars) (,name-local ,@vars))
thints (("Goal" :in-theory (enable ,pred-name)))))

; We also show that pred-call and body are equal.
(local
(defthm PRED-EQUALS-BODY

(equal ,pred-call ,body)

thints (("Goal" :in-theory (enable ,pred-name)))))

(defthm , (packn-in-pkg (list "SETP-" name) ’newdefmap)
(setp ,call)
,@(compute—hint name name-local

(packn-in-pkg (list "SETP-" name-local) ’newdefmap)))

D.11. NEWDEFMAP.LISP 117

(defthm , (packn-in-pkg (list "UR-ELEMENTP-" name) ’newdefmap)
(equal (ur-elementp ,call)
(equal ,call nil))
,@(compute—hint name name-local
(packn-in-pkg (list "UR-ELEMENTP-" name-local) ’newdefmap)))

(defthm , (packn-in-pkg (list "MEM-" name) ’newdefmap)
(equal (mem ,x ,call)
(and ,body
(mem ,x ,s)))
,@(compute-hint name name-local
(packn-in-pkg (list "MEM-" name-local) ’newdefmap)))

(defthm , (packn-in-pkg (list "SUBSETP-" name) ’newdefmap)
(subsetp ,call ,s)
,@(compute-hint name name-local
(packn-in-pkg (list "SUBSETP-" name-local) ’newdefmap)))

,@(newdefmap—congruences name name-local vars call 1)

,0(if mem-corollary
‘((defthm , (packn-in-pkg (list "MEM-" name "-CORROLLARY")
’newdefmap)
(implies (and (subsetp ,s1 ,call)
(mem ,x ,s1))
,body)
,@(compute-hint name name-local
(packn-in-pkg (list "MEM-" name-local "-CORROLLARY")
’newdefmap))))
nil)

(defthm , (packn-in-pkg (list "CARDINALITY-" name) ’newdefmap)
(<= (cardinality ,call)
(cardinality ,s))
:rule-classes :linear
,@(compute—hint name name-local
(packn-in-pkg (list "CARDINALITY-" name-local) ’newdefmap)))

(defthm , (packn-in-pkg (list "UNION-" name) ’newdefmap)
(= (,name ,@(put-nth ‘(union ,sl1 ,s) sloc vars))
(union (,name ,@(put-nth sl sloc vars))

118 APPENDIX D. ACL2 EVENT FILES

,call))
,@(compute-hint name name-local
(packn-in-pkg (list "UNION-'" name-local) ’newdefmap)))

(defthm , (packn-in-pkg (list "INTERSECTION-" name) ’newdefmap)
(= (,name ,@(put-nth ‘(intersection ,sl ,s) sloc vars))
(intersection (,name ,@(put-nth sl sloc vars))
,call))
,@(compute—hint name name-local
(packn-in-pkg (list "INTERSECTION-'" name-local)
’newdefmap)))

(defthm , (packn-in-pkg (list "MEM-CHOOSE-'" name "-1") ’newdefmap)
(iff (mem (choose ,call)
,call)
(not (ur-elementp ,call)))
,@(compute-hint name name-local
(packn-in-pkg (list "MEM-CHOOSE-" name-local "-1")
’newdefmap)))

(defthm , (packn-in-pkg (list "MEM-CHOOSE-'" name "-2") ’newdefmap)
(implies (not (ur-elementp ,call))
(mem (choose ,call)
»8))
,@(compute—hint name name-local
(packn-in-pkg (list "MEM-CHOOSE-" name-local "-2")
’newdefmap)))

; I disable the exported function because I found out that it’s
; very expensive have it enabled, and the theorems proved should
; suffice to reason about it. The same holds for defall and

; defexists.

(in-theory (disable ,name)))))

(t ;;; :map

(let* ((x for)

(s in)
(sloc (- (length vars) (length (member s vars))))
(body map)

(fx (gennamel x 1 (cons x vars)))
(s1 (gennamel s 1 (cons fx (cons x vars))))

D.11. NEWDEFMAP.LISP 119

(call ‘(,name ,@vars))
(rcall ‘(,name ,@(put-nth ‘(scdr ,s) sloc vars))))
‘ (encapsulate
nil
(defun ,name (,@vars)
(if (ur-elementp ,s)
nil
(let ((,x (scar ,s)))
(scons ,body ,rcall))))

(defthm , (packn-in-pkg (list "SETP-" name) ’newdefmap)
(setp ,call))

(defthm , (packn-in-pkg (list "UR-ELEMENTP-" name) ’newdefmap)
(equal (ur-elementp ,call)
(ur-elementp ,s)))

(defthm , (packn-in-pkg (list "WEAK-MEM-" name) ’newdefmap)
(implies (and (mem ,x ,s)
(= ,fx ,body))
(mem ,fx ,call)))

(defthm , (packn-in-pkg (list "SUBSETP-" name) ’newdefmap)
(implies (subsetp ,sl ,s)
(subsetp (,name ,@(put-nth sl sloc vars))
,call)))

,@(defmap-congruences vars call (+ sloc 1) 1)

(defthm , (packn-in-pkg (list "CARDINALITY-" name) ’newdefmap)
(<= (cardinality ,call)
(cardinality ,s))
:rule-classes :linear)

(defthm , (packn-in-pkg (list "UNION-" name) ’newdefmap)
(= (,name ,@(put-nth ‘(union ,sl1l ,s) sloc vars))
(union (,name ,@(put-nth sl sloc vars))
,call)))

; This comment is J’s.

; Once I thought that

; (image (intersection s1 s)) = (intersection (image s1) (image s))
; But this is wrong. Consider

; st ={(0 . 1) (0. 2)}

120 APPENDIX D. ACL2 EVENT FILES

;s ={(1 . 1) (1. 2)}

; let (body e) = (cdr e) (or (tl e) if the elements are pairps)
; Then the lhs is nil because the two sets are disjoint, but the
; rhs is {1 2}.

(defthm , (packn-in-pkg (list "INTERSECTION-" name) ’newdefmap)
(subsetp (,name ,@(put-nth ‘(intersection ,sl1 ,s) sloc vars))
(intersection (,name ,@(put-nth sl sloc vars))
,call)))

; I disable the exported function because I found out that it’s
; very expensive have it enabled, and the theorems proved should
; suffice to reason about it. The same holds for defall and

; defexists.

(in-theory (disable ,name))
)

; End of file ---------------------------- - - - - - : i i : i b

D.12 newpowerset.lisp

; newpowerset.lisp

; To certify this book: (1d "defpkg.lisp") (certify-book
; "powerset-examples" 1)

(in-package "S")

; I used these commands to certify this book:
; (include-book "/home/pacheco/acl2-sources/books/finite-set-theory/carlos")
; (certify-book "newpowerset'" 1)

; Here is the definition of powerset.
(defmap scons-to-every (e s)
:for x :in s :map (scons e x))

(defun powerset (s)
(cond ((ur-elementp s) (brace nil))
(t (union (powerset (scdr s))
(scons-to-every (scar s)

D.12. NEWPOWERSET.LISP 121

(powerset (scdr s)))))))
; Powerset builds a set.
(defthm setp-powerset
(setp (powerset s)))

; In fact, it builds a set of sets. We have to define that concept
; and prove that it admits = as a congruence.

(defun set-of-setsp (p)
(if (ur-elementp p)
t
(and (setp (scar p))
(set-of-setsp (scdr p)))))

; Since set-of-setsp is a predicate, we use the canonicalize method.
(defx :strategy :congruence (set-of-setsp p) 1 :method :canonicalize)

; Powerset builds a set of sets.
(defthm set-of-setsp-powerset
(set-of-setsp (powerset b)))

; Here is the fundamental fact about membership in scons-to-every.
(defthm mem-scons—-to-every
(implies (and (setp p)
(set-of-setsp p)
(setp s1))
(iff (mem sl (scons-to-every e p))
(and (mem e s1)
(or (mem s1 p)
(mem (diff s1 (brace e)) p))))))

; The following function is used to tell ACL2 how to induct in the
; next theorem. It says: induct on b and assume two inductive hypotheses.
(defun induction-hint (a b)
(if (ur-elementp b)
(1ist a b)
(1list (induction-hint a (scdr b)) ; hyp 1
(induction-hint (diff a (brace (scar b))) (scdr b))))) ; hyp 2

; The powerset contains precisely the subsets.
(defthm powerset-property
(implies (setp e)
(iff (mem e (powerset s))
(subsetp e s)))
:hints (("Goal" :induct (induction-hint e s))))

122 APPENDIX D. ACL2 EVENT FILES

; The next lemma is needed for the final defx command.
(defthm subsetp-scons-to-every-powerset
(implies (and (set-of-setsp s)
(subsetp s (powerset b))
(mem e b))
(subsetp (scons-to-every e s)
(powerset b)))
:hints (("Goal" :induct (scons-to-every e s))))

; This command establishes that powerset admits = as a congruence.
(defx :strategy :congruence (powerset s) 1 :method :subsetp)

; Stuff below added by Carlos.

; Powerset’s key property established (theorem powerset-property), we
; disable its definition.
(in-theory (disable powerset))

; This encapsulate exports equal-mem-powerset. I am unhappy with the
; clunkiness of the events. A good exercise would be to obtain better
; proofs.

(encapsulate nil

(local (defthm mem-set-of-setsp
(implies (and (set-of-setsp s)
(mem e s))
(setp e))
:rule-classes nil))

(local (defthm mem-powerset-setp

(implies (mem e (powerset s))
(setp e))

:hints (("Goal"
:use ((:instance mem-set-of-setsp (s (powerset s)))

(:instance set-of-setsp-powerset (b s)))

:in-theory nil))

:rule-classes nil))

(local (defthm rewrite-equal-to-iff
(implies (and (booleanp (mem e (powerset s)))
(booleanp (and (setp e) (subsetp e s))))
(equal
(equal (mem e (powerset s)) (and (setp e) (subsetp e s)))

D.12. NEWPOWERSET.LISP 123

(iff (mem e (powerset s)) (and (setp e) (subsetp e s)))))))

(local (defthm iff-mem-powerset
(iff (mem e (powerset s))
(and (setp e)
(subsetp e s)))
:hints (("Goal"
:use ((:instance mem-powerset-setp)
(:instance powerset-property))))))

(defthm equal-mem-powerset
(equal (mem e (powerset s))
(and (setp e)
(subsetp e s)))
:instructions ((rewrite rewrite-equal-to-iff)
(dv 1)
(rewrite iff-mem-powerset)
top
s)))

; Now, some obvious theorems.

(defthm union-powerset
(implies (and (mem a (powerset s)) (mem b (powerset s)))
(mem (union a b) (powerset s))))

(defthm intersection-powerset
(implies (and (mem a (powerset s)) (mem b (powerset s)))
(mem (intersection a b) (powerset s))))

(defthm scons-powerset
(implies (and (mem a s) (mem b (powerset s)))
(mem (scons a b) (powerset s))))

(defthm mem-nil-powerset
(mem nil (powerset s)))

(defthm weak-powerset-property
(implies (mem e (powerset s))
(subsetp e s)))

; Three theorems in this file represent different approaches to
; handling powerset reasoning. The user should choose the approach
; desired by enabling the corresponding theorem.

124 APPENDIX D. ACL2 EVENT FILES

(in-theory (disable powerset-property))
(in-theory (disable equal-mem-powerset))
(in-theory (disable weak-powerset-property))

; End of file -----------—----—-—1-—1---+-----—---——--—---——

D.13 tla-translation-macros.lisp

; tla-translation-macros.lisp

; I used the following command to certify this book:
; (1d "defpkg.lisp")
; (certify-book "tla-translation-macros" 1)

(in-package "S")

; Unchanged

(defmacro unchanged (&rest args)
(cond ((endp args) t)
(t ‘(and (= , (intern-in-package-of-symbol
(coerce (append (coerce (symbol-name
(car args))
’list)
(coerce "-N" ’list))
’string)
’unchanged)
, (car args))
(unchanged ,@(cdr args))))))

; Apply-m (m for Multiple arguments)

; Apply-m must be provided at least two arguments. The first argument
; 1s always the function being applied to.

(defmacro apply-m (&rest args)
(cond ((equal (length args) 2) ‘(apply ,(car args) ,(cadr args)))
(t ‘(apply (apply-m ,@(butlast args 1)) ,@(last args)))))

D.13. TLA-TRANSLATION-MACROS.LISP 125

Except-m (m for Multiple arguments)

(except-m f a b c¢) corresponds to [f EXCEPT ![a][b] = c]
(except-m f a b c) becomes (except f a (except (apply f a) b c))

Except-m must be provided at least three arguments. The first
argument is always the function being operated on, and the last
argument is the new value introduced.

We follow the (except—m f abc) example in binding variables. This
binding is done purely for purposes of clarity in the code.

(defmacro except-m (&rest args)

3

(let ((f (car args))
(a (cadr args))
(b (caddr args))
(c (cdddr args)))
(cond ((equal (length args) 3) ‘(except ,f ,a ,b))
(t ‘(except ,f ,a (except-m (apply ,f ,a) ,b ,@c))))))

Except-and
(except-and £ (a b ¢) (x y z)) corresponds to [f EXCEPT ![a][b] = ¢
'[x]1 [yl = z]
(except-and f (a b ¢c) (x y z)) translates to
(except (except f x (except (apply f x) y 2z))
?except (apply (except f x (except (apply f x) y z))

a)
b c))

Except-and must be provided at least two arguments.

I’1]1 better explain this macro later.

(defmacro except-and (f &rest args)

3

(cond ((equal (length args) 1) ‘(except-m ,f ,@(car args)))
(t ‘(except-m (except-and ,f ,@(cdr args)) ,@(car args)))))

deftla (a first shot)

126 APPENDIX D. ACL2 EVENT FILES

; End of this file ------------------ - -\-----------\- - : : : - b : i F i

D.14 translations.lisp

; translations.lisp

; Disk Paxos translations

; I used these commands to certify this book:
; (include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
; (certify-book "translations" 1)

(in-package "S")

(include-book "additions'")
(include-book "newdefmap")
(include-book "/home/pacheco/acl2-sources/books/finite-set-theory/records")

; CONSTANT N, Inputs
; ASSUME (N \in Nat) /\ (N > 0)

(encapsulate ((n1 () t))
(local (defun n1 () 1))
(defthm nl-constraint
(and (integerp (nl))
(< 0 (n1)))

:rule-classes :type-prescription))

(defstub inputs () t)

D.14. TRANSLATIONS.LISP 127

(defun Proc () (dot-dot 1 (nl1)))
(in-theory (disable (:executable-counterpart Proc)))
(in-theory (disable proc))

3 NotAnInput == CHOOSE c : c notin Inputs

(encapsulate ((notaninput () t))
(local (defun notaninput () (inputs)))
(local (defthm notaninput-helper
(equal (acl2::hide (notaninput))
(inputs))
:hints (("Goal" :expand (acl2::hide (notaninput))
:in-theory
(disable
(:executable-counterpart notaninput))))))

(defthm notaninput-constraint
(not (mem (notaninput) (inputs)))))

; CONSTANTS Ballot(), Disk, IsMajority()

; ASSUME /\ \A p \in Proc : Ballot(p) \subset {n \in Nat : n > 0} |
; /\ \A g \in Proc \ p : Ballot(p) \cap Ballot(q) = {}

; /\ \A S,T \in SUBSET Disk : |
; IsMajority(S) /\ IsMajority(T) => (S \cap T # {})

(encapsulate ((ballot (p) t))
(local (defun ballot (p) (declare (ignore p)) nil))

; There is more than one way to express the first
; constraint.

; (local (defall forall-p-in-proc (proc e)
; :forall p :in proc

128 APPENDIX D. ACL2 EVENT FILES

; :holds (implies (mem e (ballot p))
: (and (integerp e) (> e 0)))))

; (local (defall forall-p-in-proc-minus-p (proc-minus-p p)
s :forall q :in proc-minus-p
; :holds (= (intersection (ballot p) (ballot g)) nil)))

; This is the rule we really want. And it doesn’t depend
; on the defalls above. Perhaps an additional theorem to
; prove for

; (defall (s ...) :forall x :in s :holds (implies p q))

; is (implies (and (mem x s) p) q). But do we always want
; to produce such a theorem? And when do we want to
; forward chain or not?

(defthm ballot-is-set-of-nats
(implies (and (mem b (ballot p))
(mem p (Proc)))
(and (integerp b)
(> Db 0)))
:rule-classes ((:forward-chaining
:trigger-terms ((mem b (ballot p))))))

(defcong = equal (ballot p) 1)

; Here might be another example of TLA statements that

; might be better expressed otherwise in ACL2. I suspect
; that this theorem might be used to prove a != b, given
; that a = (ballot p), b = (ballot q), and p != q. But

; the way the theorem is stated, I’m not sure ACL2 will
; be able to figure things out (the vagueness of this

; statement reflects my own uncertainty of what I’m

; saying!)

(defthm ballot-partitions-nats
(implies (mem q (diff (proc) (brace p)))
(ur-elementp (intersection (ballot p) (ballot q))))))

; this constraint is stronger than paxos: it applies to any s and t,
; whereas the Paxos statement applies only to elements of SUBSET Disk.

(encapsulate ((disk () t)
(ismajority (s) t))

D.14. TRANSLATIONS.LISP 129

(local (defstub disk () t))
(local (defun ismajority (s) (declare (ignore s)) nil))
(defcong = equal (ismajority s) 1)

; Once again, I deviate from the TLA statement.
(defthm is-majority-thml
(implies (and (ismajority s)
(ismajority s2)
(subsetp s (disk))
(subsetp s2 (disk)))
(not (ur-elementp (intersection s s2))))))

; The translation of the above ASSUME statement repeatedly raises the
; question: "how do we get from a TLA assumption to an effective ACL2
; rule?"

; DiskBlock == [mbal : (UNION {Ballot(p) : p \in Proc }) \cup {0},
; bal : (UNION {Ballot(p) : p \in Proc }) \cup {0},
; inp : Inputs \cup {NotAnInput}

(newdefmap diskblock-mapl (proc) :for p :in proc :map (ballot p))
(in-theory (disable (:executable-counterpart diskblock-map1l)))

(defrec diskblock
("mbal" (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
("bal" (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
("inp" (hide (union (inputs) (brace (notaninput))))))

(in-theory (disable diskblock-property))

(defthm diskblock-def
(iff (mem db (diskblock))
(and (functionp db)
(= (domain db) (brace "mbal" "bal" "inp"))
(mem (apply db "mbal")
(hide (union (union* (diskblock-mapl (proc)))
(brace 0))))

130 APPENDIX D. ACL2 EVENT FILES

(mem (apply db "bal")
(hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem (apply db "inp")
(hide (union (inputs) (brace (notaninput)))))))
thints (("Goal" :use diskblock-property
:in-theory (disable diskblock-property))))

(defthm mem-ballot
(implies (and (mem e (ballot p))
(mem p (proc)))
(mem e (union* (diskblock-mapl (proc))))))

(defthm hide-lemma-1
(implies (= e 0)
(mem e (hide (union (union#* (diskblock-mapl (proc))) (brace 0)))))
thints (("Goal" :expand (hide (union (union* (diskblock-mapl (proc))) (brace 0))))))

(defthm hide-lemma-2
(implies (mem e (union#* (diskblock-mapl (proc))))
(mem e (hide (union (union#* (diskblock-mapl (proc))) (brace 0)))))
thints (("Goal" :expand (hide (union (union* (diskblock-mapl (proc))) (brace 0))))))

(defthm hide-lemma-3
(implies (mem e (inputs))
(mem e (hide (union (inputs) (brace (notaninput))))))
thints (("Goal" :expand (hide (union (inputs) (brace (notaninput)))))))

(defthm hide-lemma-4
(implies (= e (notaninput))
(mem e (hide (union (inputs) (brace (notaninput))))))
thints (("Goal" :expand (hide (union (inputs) (brace (notaninput)))))))

; Instead of proving all the following '"nil" rules, I should establish
; a discipline of, whenever explicitly declaring a diskblock record,
; using a prescribed order for entering the fields.

(defthm diskblock-nil-1
(implies (and (mem mb (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem b (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem i (hide (union (inputs) (brace (notaninput))))))
(mem (except (except (except nil "mbal" mb) "bal" b) "inp" i)

(diskblock))))

D.14. TRANSLATIONS.LISP 131

(defthm diskblock-nil-2
(implies (and (mem mb (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem b (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem i (hide (union (inputs) (brace (notaninput))))))
(mem (except (except (except nil "mbal" mb) "inp" i) "bal" b)

(diskblock))))

(defthm diskblock-nil-3
(implies (and (mem mb (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem b (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem i (hide (union (inputs) (brace (notaninput))))))
(mem (except (except (except nil "bal" b) "mbal" mb) "inp" i)

(diskblock))))

(defthm diskblock-nil-4
(implies (and (mem mb (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem b (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem i (hide (union (inputs) (brace (notaninput))))))
(mem (except (except (except nil "bal" b) "inp" i) '"mbal" mb)

(diskblock))))

(defthm diskblock-nil-5
(implies (and (mem mb (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem b (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem i (hide (union (inputs) (brace (notaninput))))))
(mem (except (except (except nil "inp" i) "bal" b) '"mbal" mb)

(diskblock))))

(defthm diskblock-nil-6
(implies (and (mem mb (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem b (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))
(mem i (hide (union (inputs) (brace (notaninput))))))
(mem (except (except (except nil "inp" i) "mbal" mb) "bal" b)

(diskblock))))

132 APPENDIX D. ACL2 EVENT FILES

(defthm diskblock-except-inp
(implies (and (mem f (diskblock))
(mem e (hide (union (inputs) (brace (notaninput))))))
(mem (except f "inp" e) (diskblock)))
thints (("Goal" :expand (hide (union (inputs) (brace (notaninput)))))))

(defthm diskblock-except-bal
(implies (and (mem f (diskblock))
(mem e (hide (union (union* (diskblock-mapl (proc)))
(brace 0)))))
(mem (except f "bal" e) (diskblock)))
:hints (("Goal" :expand (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))))

(defthm diskblock-except-mbal
(implies (and (mem f (diskblock))
(mem e (hide (union (union* (diskblock-mapl (proc)))
(brace 0)))))
(mem (except f "mbal" e) (diskblock)))
thints (("Goal" :expand (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))))

; I cannot introduce these rules in my defmaps. See "-IMPLIES". So I
; have to do them one by one as I need them. But this is silly.

(defthm sillyl
(implies (mem s (diskblock))
(mem (apply s '"inp")
(hide (union (inputs)
(brace (notaninput))))))
thints (("goal" :expand (hide (union (inputs) (brace (notaninput)))))))

(defthm silly?2
(implies (mem s (diskblock))
(mem (apply s "mbal")
(hide (union (union* (diskblock-mapl (proc)))
(brace 0)))))
thints (("goal" :expand (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))))

(defthm silly3
(implies (mem s (diskblock))
(mem (apply s "bal")
(hide (union (union* (diskblock-mapl (proc)))

D.14. TRANSLATIONS.LISP 133

(brace 0)))))
:hints (("goal" :expand (hide (union (union* (diskblock-mapl (proc)))
(brace 0))))))

(defthm silly4
(implies (and (subsetp s (diskblock))
(not (ur-elementp s)))
(mem (choose s) (diskblock)))
:hints (("goal" :use (:instance mem-subsetp
(e (choose s))
(a s)
(b (diskblock))))))

(in-theory (disable diskblock-def))
; blockproc ~--———-----------"-——-—

(defrec blockproc
("block" (diskblock))
("proc" (proc)))

(defthm blockproc-except-block
(implies (and (mem f (blockproc))
(mem y (diskblock)))
(mem (except f "block" y) (blockproc))))

(defthm blockproc-except-proc
(implies (and (mem f (blockproc))
(mem y (proc)))
(mem (except f "proc" y) (blockproc))))

(defthm blockproc-apply-block
(implies (mem f (blockproc))
(mem (apply f "block") (diskblock))))

(defthm blockproc-apply-proc
(implies (mem f (blockproc))
(mem (apply f "proc") (proc))))

(defthm blockproc-nil-subsetp
(subsetp nil (blockproc)))

(defthm block-proc-nil-1
(implies (and (mem p (proc))
(mem d (diskblock)))

134 APPENDIX D. ACL2 EVENT FILES

(mem (except (except nil "proc" p) "block" d)
(blockproc))))

(defthm block-proc-nil-2
(implies (and (mem p (proc))
(mem d (diskblock)))
(mem (except (except nil "block" d) "proc" p)
(blockproc))))

(in-theory (disable blockproc-property))

(include-book "newpowerset")
(include-book "additions")
(include-book '"choose-max")
(include-book '"defall')

(include-book 'defexists'")
(include-book "tla-translation-macros')

; Defaction and Defstate

(defmacro defaction (name args body)

‘ (progn
(defun , (packn-in-pkg (list "_" name) ’defaction) (,@args input input-n
output output-n disk disk-n phase
phase-n dblock dblock-n diskswritten
diskswritten-n blocksread blocksread-n)
,body)

(defmacro ,name ,args
(1ist (quote , (packn-in-pkg (list "_" name) ’defaction))
,@args ’input ’input-n
’output ’output-n ’disk ’disk-n ’phase
’phase-n ’dblock ’dblock-n ’diskswritten
‘diskswritten-n ’blocksread ’blocksread-n))

(add-macro-alias ,name ,(packn-in-pkg (list "_'" name) ’defaction))))

(defmacro defstate (name args body)
¢ (progn
(defun , (packn-in-pkg (list "_" name) ’defaction) (,@args input output disk phase dbloc!
blocksread)
,body)

D.14. TRANSLATIONS.LISP 135

(defmacro ,name ,args
(list (quote , (packn-in-pkg (list "_" name) ’defaction))
,Qargs ’input ’output ’disk ’phase
’dblock ’diskswritten ’blocksread))

(defmacro , (packn-in-pkg (list name "-N") ’defaction) ,args
(1ist (quote , (packn-in-pkg (list "_" name) ’defaction))
,@args ’input-n ’output-n ’disk-n ’phase-n
’dblock-n ’diskswritten-n ’blocksread-n))

(add-macro-alias ,name ,(packn-in-pkg (list "_'" name) ’defaction))))

; hasRead(p,d,q) == exists br in blocksRead[p][d] : br.proc = q

(defexists exists-hasread (blocksread-p-d q)
:exists br :in blocksread-p-d :such-that (= (apply br "proc") q))

(defun hasread (p d q blocksread)
(exists-hasread (apply-m blocksread p d) q))

(defcong = equal (hasread p d q blocksread) 1)
(defcong = equal (hasread p d g blocksread) 2)
(defcong = equal (hasread p d g blocksread) 3)

(defcong = equal (hasread p d q blocksread) 4)
; allBlocksRead(p) ==

; LET allRdBlks == UNION { blocksRead[p]l[d] : d in Disk }
; IN { br.block : br in allRdBlks }

(newdefmap allblocksread-map-2 (allrdblks)
:for br :in allrdblks :map (apply br "block"))

(newdefmap allblocksread-map-3 (disk p blocksread)
:for d :in disk :map (apply-m blocksread p d))

136 APPENDIX D. ACL2 EVENT FILES

(defun allblocksread (p blocksread)
(allblocksread-map-2 (union* (allblocksread-map-3 (disk) p blocksread))))

(defcong
(defcong

(allblocksread p blocksread) 1)
(allblocksread p blocksread) 2)

(defun InitDB ()
(func ("mbal" 0) ("bal" 0) ("inp" (NotAnInput))))

(in-theory (disable (:executable-counterpart initdb)))

; InitializePhase(p) ==
; /\ disksWritten’ = [disksWritten EXCEPT ! [p] = {}]
; /\ blocksRead’ = [blocksRead EXCEPT ![p] = [d \in Disk /-> {}]1]

(defmap-fn map-to-nil (dom)
:for x :in dom :map nil)

(defthm apply-map-to-nil
(= (apply (map-to-nil d) x) nil))

(defthm range-map-to-nil
(subsetp (range (map-to-nil d))
(powerset x)))

(defthm map-to-nil-all-fns-powerset
(mem (map-to-nil s)
(all-fns s (powerset x)))
:hints (("Goal" :in-theory (enable all-fns-def))))

(defun _initializephase (p
disksWritten diskswritten-n
blocksRead blocksread-n)

D.14. TRANSLATIONS.LISP 137

(and (= diskswritten-n (except disksWritten p nil))
(= blocksread-n (except blocksRead p (map-to-nil (disk))))))

(defcong = equal (_initializephase p a s d f) 1)
(defcong = equal (_initializephase p a s d f) 2)
(defcong = equal (_initializephase p a s d f) 3)
(defcong = equal (_initializephase p a s d f) 4)

(defmacro initializephase (p)
‘(_initializephase ,p disksWritten diskswritten-n
blocksRead blocksread-n))

(add-macro-alias initializephase _initializephase)

; StartBallot(p) ==

; /\ phaselp] :in: {1,2}

; /\ phase’ = [phase EXCEPT ![p] = 1]

; /\ :exists: b :in: Ballot(p)

; /\ b > dblock[p] .mbal

H /\ dblock’ = [dblock EXCEPT ! [p].mbal = bl
; /\ InitializePhase(p)

; /\ UNCHANGED <input,output,disk>

(defexists exists-startballot (ballot-p dblock dblock-n p)
texists b :in ballot-p
:such-that (and (> b (apply-m dblock p "mbal"))
(= dblock-n (except dblock p
(except (apply dblock p) "mbal" b))))

; mem-corollary nil must be used when the :such-that term is of the form
; (and ... (= <variable> <term>)). For more information, see newdefmap.lisp.

:mem-corollary nil)

(defaction startballot (p b-witness)
(and (mem (apply phase p) (brace 1 2))
(= phase-n (except phase p 1))
(mem b-witness (ballot p))
(> b-witness (apply-m dblock p "mbal"))
(= dblock-n (except dblock p

138 APPENDIX D. ACL2 EVENT FILES

(except (apply dblock p) "mbal" b-witness)))
; (exists-startballot (ballot p) dblock dblock-n p)
(initializephase p)
(unchanged input output disk)))

; Phaselor2Write(p,d) ==

; /\ phaselp]l :in: {1,2}

; /\ disk’ = [disk EXCEPT ![d][p] = dblock[pl]

; /\ disksWritten’ = [disksWritten EXCEPT ![p] = @ :cup: {d}]
; /\ UNCHANGED <input,output,phase,dblock,blocksRead>

(defaction phaselor2write (p d)
(and (mem (apply phase p) (brace 1 2))
(= disk-n (except-m disk d p (apply dblock p)))
(= diskswritten-n
(except diskswritten p (union (apply diskswritten p) (brace d))))
(unchanged input output phase dblock blocksread)))

; Phaselor2Read(p,d,q) ==

; /\ d :in: disksWritten[p]

; /\ IF disk[d][q].mbal < dblock[p].mbal

; THEN /\ blocksRead’ =

; [blocksRead EXCEPT ![p][d] =

; @ :cup: { [block /-> disk[d][ql], proc /-> ql } 1

; /\ UNCHANGED <input,output,disk,phase,dblock,disksWritten>
: ELSE

; StartBallot (p)

(defaction phaselor2read (p d q b-witness)
(and (mem d (apply diskswritten p))
(if (< (apply-m disk d q "mbal") (apply-m dblock p "mbal"))
(and (= blocksread-n
(except-m blocksread
p
d
(union (apply-m blocksread p d)
(brace (func ("block"

D.14. TRANSLATIONS.LISP 139

(apply-m disk d q))
("proc" q))))))
(unchanged input output disk phase dblock diskswritten))
(startballot p b-witness))))

; PhaseORead(p,d) ==

; /\ phasel[p] = 0

; /\ blocksRead’ = [blocksRead EXCEPT

; '[pl[d] = @ :cup: { [block /-> disk[d][p],
; proc /->p 1 } 1]

; /\ UNCHANGED <input,output,disk,phase,dblock,disksWritten>

(defaction phaseOread (p d)
(and (= (apply phase p) 0)
(= blocksread-n
(except-m blocksread
p
d
(union (apply-m blocksread p d)
(brace (func ("block" (apply-m disk d p))
("proc" p))))))
(unchanged input output disk phase dblock diskswritten)))

; Fail(p) ==

; /\ exists ip in Inputs : input’ = [input EXCEPT ! [p] = ip]
; /\ phase’ = [phase EXCEPT ![p] = 0]

; /\ dblock’ = [dblock EXCEPT ![p] = InitDB]

; /\ output’ = [output EXCEPT ![p] = NotAnInput]

; /\ InitializePhase (p)
H /\ UNCHANGED disk

(defexists exists-fail-1 (inputs input input-n p)
:exists ip :in inputs :such-that (= input-n (except input p ip))
:mem-corollary nil)

(defaction fail (p ip-witnessl)
(and (mem ip-witnessl (inputs))

140 APPENDIX D. ACL2 EVENT FILES

(= input-n (except input p ip-witness1))

(= phase-n (except phase p 0))

(= dblock-n (except dblock p (initdb)))

(= output-n (except output p (notaninput)))
(initializephase p)

(unchanged disk)))

; EndPhaseO(p) ==

; /\ phasel[p] = 0

; /\ isMajority({ d in Disk : hasRead(p,d,p) })

; /\ exists b in Ballot(p)

; /\ forall r in allBlocksRead(p) : b > r.mbal

; /\ dblock’ = [dblock EXCEPT

; '[p] = [(CHOOSE r in allBlocksRead(p)
; forall s in allBlocksRead(p)
; r.bal >= s.bal)

; EXCEPT !.mbal = b]]

; /\ InitializePhase(p)

; /\ phase’ = [phase EXCEPT ![p] = 1]

H /\ UNCHANGED <input,output,disk>

(newdefmap epO-mapl (disk p blocksread)
:for d :in disk
:such-that (hasread p d p blocksread))

(defall forall-endphaseO-1 (allblocksread-p b)
:forall r :in allblocksread-p
tholds (> b (apply r '"mbal")))

(defexists exists-endphaseO-1 (ballot-p p blocksread dblock-n dblock)
texists b :in ballot-p
:such-that
(and (forall-endphaseO-1 (allblocksread p blocksread) b)
(= dblock-n
(except dblock p
(except (choose-max-bal (allblocksread p blocksread))
"mbal" b))))
:mem-corollary nil)

(defaction endphaseO (p b-wit)

D.14. TRANSLATIONS.LISP 141

(and (= (apply phase p) 0)
(ismajority (epO-mapl (disk) p blocksread))
(mem b-wit (ballot p))
(forall-endphaseO-1 (allblocksread p blocksread) b-wit)
(= dblock-n
(except dblock p
(except (choose-max-bal (allblocksread p blocksread))
"mbal" b-wit)))
(initializephase p)
(= phase-n (except phase p 1))
(unchanged input output disk)))

; EndPhaselor2(p) ==

; /\ IsMajority({ d in disksWritten[p]

; forall q in Proc \ {p} : hasRead(p,d,q)})
; /\ \/ /\ phaselp] = 1

; /\ dblock’ =

; [dblock EXCEPT

; ! [p] .bal = dblock[p].mbal,

; '[p].inp =

; LET blocksSeen == allBlocksRead(p) cup { dblock[p] }
; nonInitBlks ==

; { bs in blocksSeen : bs.inp # NotAnInput }

; maxBlk ==

H CHOOSE b in nonInitBlks :

; forall ¢ in nonInitBlks : b.bal >= c.bal
H IN

; IF nonInitBlks = {} THEN input [p]

; ELSE maxBlk.inp]

; /\ UNCHANGED output

; \/ /\ phaselp] = 2
; /\ output’ = [output EXCEPT ![p] = dblock[p].inp]
; /\ UNCHANGED dblock

; /\ phase’ = [phase EXCEPT ![p] = @ + 1]

; /\ InitializePhase (p)
; /\ UNCHANGED <input, disk>

(defall forall-epl2-1 (proc-minus-p p d blocksread)

142 APPENDIX D. ACL2 EVENT FILES

:forall q :in proc-minus-p
:holds (hasread p d q blocksread))

(defexists exists-epl2-1 (blocksseen)
:exists bs :in blocksseen
:such-that (not (= (apply bs "inp") (notaninput))))

(newdefmap map-epl12-1 (diskswritten-p p blocksread)
:for d :in diskswritten-p
:such-that (forall-epl2-1 (diff (proc) (brace p)) p d blocksread))

(newdefmap noninitblks (blocksseen)
:for bs :in blocksseen
:such-that (not (= (apply bs "inp") (notaninput))))

(defaction endphaselor2 (p)
(and (ismajority (map-ep12-1 (apply diskswritten p) p blocksread))
(or (and (= (apply phase p) 1)
(= dblock-n
(except-and dblock
(p "bal" (apply-m dblock p "mbal"))
(p "inp" (if (= (noninitblks
(union (allblocksread p
blocksread)
(brace
(apply dblock p))))
nil)
(apply input p)
(apply (choose-max-bal
(noninitblks
(union (allblocksread p
blocksread)
(brace
(apply dblock p)))))
"inp")))))
(unchanged output))
(and (= (apply phase p) 2)
(= output-n (except output p (apply-m dblock p "inp")))
(unchanged dblock)))
(= phase-n (except phase p (+ (apply phase p) 1)))
(initializephase p)
(unchanged input disk)))

D.14. TRANSLATIONS.LISP 143

; MajoritySet == { D in SUBSET Disk : IsMajority(D) }

; blocks0f (p)

1]
1]

; LET rdBy(q,d) == {br in blocksRead[q][d] : br.proc = p }

; IN { dblock[p] } cup { disk[d][p] : d in Disk }

; cup { br.block : br in UNION {rdBy(q,d) : q in Proc,

; d in Disk }}

; allBlocks == UNION { blocks0f(p) : p in Proc

(newdefmap majorityset (powset-disk)
:for d :in powset-disk
:such-that (ismajority d))

; Translation problem. In spec, we have rdBy(q,d). But here, we can’t
; pass q and d as parameters, they have to be given in the call.
(newdefmap rdby (p blocksread-q-d)

:for br :in blocksread-q-d

:such-that (= (apply br "proc") p))

(newdefmap rdby-proc-disk-1-1 (disk-dom p q blocksread)
:for d :in disk-dom
:map (rdby p (apply-m blocksread q d)))

(newdefmap rdby-proc-disk-1 (proc-dom disk-dom p blocksread)
:for q :in proc-dom
:map (rdby-proc-disk-1-1 disk-dom p q blocksread))

(newdefmap br-block (union-rdby-proc-disk-1)
:for br :in union-rdby-proc-disk-1
:map (apply br "block"))

(newdefmap disk-d-p (disk-dom disk p)
:for d :in disk-dom :map (apply-m disk d p))

(defun blocksof (p dblock disk blocksread)
(union (apply dblock p)
(union (disk-d-p (disk) disk p)
(br-block (union* (rdby-proc-disk-1 (proc) (disk) p blocksread))))))

(defcong
(defcong

(blocksof p dblock disk blocksread) 1)
(blocksof p dblock disk blocksread) 2)

I
1]

144 APPENDIX D. ACL2 EVENT FILES

(defcong
(defcong

(blocksof p dblock disk blocksread) 3)
(blocksof p dblock disk blocksread) 4)

I
1]

(newdefmap blocks-of-p-map (proc-dom dblock disk blocksread)
:for p :in proc-dom
:map (blocksof p dblock disk blocksread))

(defun allblocks (dblock disk blocksread)
(union* (blocks-of-p-map (proc) dblock disk blocksread)))

s exists p in Proc :

H \/ StartBallot(p)

; \/ exists d in Disk : \/ PhaseORead(p,d)

H \/ Phaselor2Write(p,d)

; \/ exists q in Proc \ {p}

; Phaselor2Read(p,d,q)

; \/ EndPhaselor2(p)

; \/ Fail(p)

; \/ EndPhaseO(p)

3

3

(defaction next (p ; witness for next
d ; witness for next
q ; witness for next
b-witnessi ; witness for startballot
ip-witnessli ; witness for fail
b-witness) ; witness for endphaseO

(and (mem p (proc))
(or (startballot p b-witnessl)
(and (mem d (disk))
(or (phaseOread p d)
(phaselor2write p d)
(and (mem q (diff (proc) (brace p)))
(phaselor2read p d q b-witness1))))
(endphaselor2 p)
(fail p ip-witnessl)
(endphaseO p b-witness))))

D.14. TRANSLATIONS.LISP 145

; /\ Next

; /\ chosen’ = LET hasOutput(p) == output’[p] # NotAnInput

; IN IF \/ chosen # NotAnInput

; \/ forall p in Proc : -hasOutput(p)

; THEN chosen

; ELSE output’ [CHOOSE p in Proc : hasQOutput(p)]
; /\ allInput’ = allInput cup { input’[p] : p in Proc }

(defall forall-hnext (proc output-n)
:forall p :in proc :holds (= (apply output-n p) (notaninput)))

(newdefmap map-hnext (proc output-n)
:for p :in proc :such-that (not (= (apply output-n p) (notaninput))))

(defthm hnext-forall-map-property-
(implies (not (forall-hnext proc output-n))
(not (ur-elementp (map-hnext proc output-n))))
:hints (("Goal" :in-theory
(enable forall-hnext map-hnext forall-hnext-predicate))))

(newdefmap map2-hnext (proc input-n)
:for p :in proc :map (apply input-n p))

(defun _chosen-allinput-action (chosen chosen-n
allinput allinput-n
input-n
output-n)
(and (= chosen-n (if (or (not (= chosen (notaninput)))
(forall-hnext (proc) output-n))
chosen
(apply output-n
(choose (map-hnext (proc) output-n)))))
(= allinput-n (union allinput (map2-hnext (proc) input-n)))))

(defmacro chosen-allinput-action ()
> (_chosen-allinput-action chosen chosen-n allinput allinput-n

input-n output-n))

(add-macro-alias chosen-allinput-action _chosen-allinput-action)

146 APPENDIX D. ACL2 EVENT FILES

(defaction hnext-with-vars (p d q b-witnessl ip-witnessl b-witness
chosen chosen-n allinput allinput-n)
(and (next p d q b-witnessl ip-witnessl b-witness)
(chosen-allinput-action)))

(defmacro hnext (p d q b-witnessl ip-witnessl b-witness)
‘ (hnext-with-vars ,p ,d ,q ,b-witnessl ,ip-witnessl ,b-witness
chosen chosen-n allinput allinput-n))

(add-macro-alias hnext _hnext-with-vars)

; what about the other arguments for the following functions?
(defcong = equal (startballot p b-witness) 1)
(defcong = equal (phaseOread p d) 1)

(defcong = equal (phaseOread p d) 2)

(defcong = equal (phaselor2read p d q b-witness) 1)
(defcong = equal (phaselor2read p d q b-witness) 2)
(defcong = equal (phaselor2read p d q b-witness) 3)
(defcong = equal (endphaseO p b-wit) 1)

(defcong = equal (endphaselor2 p) 1)

(defcong = equal (phaselor2write p d) 1)

(defcong = equal (phaselor2write p d) 2)

(defcong = equal (fail p ip-witnessl) 1)

; End of file -----------------------------"b - : : : \i i b b

D.15 i2a/i2a.lisp

; (include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
; (certify-book "i2a" 1)

(in-package "S")

(include-book "i2a-1")
(include-book "../common-all")

; LEMMA I2a. Hinv1l /\ HNext => HInv1’

(disable-all-actions)

D.16. I2A/I2A-1.LISP 147

(in-theory (disable hinv1))
(in-theory (enable hnext next))

(defthm i2a
(implies (and (hnext p d q b-witnessl ip-witnessl b-witness) (hinv1))
(hinvi-n)))

; End of file ------------------------------ - -\ : :i i i i b

D.16 i2a/i2a-1.lisp

; 12a-1.1lisp

; I used the following command to certify this book:
; (include-book '"/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
; (certify-book "i2a-1" 1)

(in-package "S")

(include-book "../translations")
(include-book "../hinvi")

; next time you certify all-fns, make sure to disable this theorem.
(in-theory (disable main))

; 12a-1.1isp ——— - — - oo

; I forgot to include this one in hinvl.lisp. This should be
; automatically generated once I have a better version of defaction.
(defmacro hinvi-n ()

> (hinvl-with-vars-n allinput-n chosen-n))

(encapsulate
nil

(local
(defthm map2-hnext-subsetp-1
(implies (not (ur-elementp proc))
(iff (mem x (map2-hnext proc input-n))
(or (= x (apply input-n (scar proc)))

148 APPENDIX D. ACL2 EVENT FILES

(mem x (map2-hnext (scdr proc) input-n)))))
:hints (("Goal" :induct (map2-hnext proc input-n)
:in-theory (enable map2-hnext)))))

(local
(defthm map2-hnext-subsetp-2
(implies (and (mem input-n (all-fns proc2 inputs))
(subsetp proc proc2)
(mem x (map2-hnext proc input-n)))
(mem x inputs))
thints (("Goal" :induct (map2-hnext proc input-n)
:in-theory (enable map2-hnext)))))

(local
(defthm map2-hnext-subsetp-3
(implies (and (mem input-n (all-fns (proc) (inputs)))
(mem x (map2-hnext (proc) input-n)))
(mem x (inputs)))
thints (("Goal" :use ((:instance map2-hnext-subsetp-2 (proc2 (proc)) (proc (proc))
(inputs (inputs)))
(:instance subsetp-x-x (x (proc))))))))

(local
(defx map2-hnext-subsetp-4
(implies (mem input-n (all-fns (proc) (inputs)))
(subsetp (map2-hnext (proc) input-n) (inputs)))
:strategy subset-relation))

(defthm map2-hnext-subsetp
(implies (mem input-n (all-fns (proc) (inputs)))
(mem (map2-hnext (proc) input-n) (powerset (inputs))))
thints (("Goal" :in-theory (enable powerset-property)))))

; (enable-all-actions)
(local (in-theory (enable hinvl)))

(defthm hinvl-startballot
(implies
(and (startballot p b-witness)
(chosen-allinput-action)
(hinv1)
(mem p (proc)))
(hinvi-n)))

(defthm hinvi-phaselor2write

D.16. I2A/I2A-1.LISP 149

(implies (and (phaselor2write p d)
(chosen-allinput-action)
(hinv1)
(mem p (proc))
(mem d (disk)))
(hinvi-n)))

(defthm hinvi-phaselor2read
(implies (and (phaselor2read p d q b-witness)

(chosen-allinput-action)
(hinvl)
(mem p (proc))
(mem q (proc))
(mem d (disk)))

(hinvi-n)))

(defthm hinvli-phaseOread
(implies (and (phaseOread p d)
(chosen-allinput-action)
(hinv1)
(mem p (proc))
(mem d (disk)))
(hinvi-n)))

(defthm hinvi-fail
(implies (and (fail p ip-witnessl)
(chosen-allinput-action)
(hinvl)
(mem p (proc)))
(hinvi-n)))

(encapsulate
nil

(local (defthm allblocksread-map-3-subsetp-1
(implies (not (ur-elementp disk))
(iff (mem x (allblocksread-map-3 disk p blocksread))
(or (= x (apply-m blocksread p (scar disk)))
(mem x (allblocksread-map-3 (scdr disk) p blocksread)))))
:hints (("Goal" :induct (allblocksread-map-3 disk p blocksread)
:in-theory (enable allblocksread-map-3)))))

(local (defthm allblocksread-map-3-subsetp-2
(implies (and (mem blocksread (all-fns proc (all-fns disk2 powerset-blockproc)))
(subsetp disk disk2)

150 APPENDIX D. ACL2 EVENT FILES

(mem p proc)
(mem x (allblocksread-map-3 disk p blocksread)))
(mem x powerset-blockproc))
:hints (("Goal" :induct (allblocksread-map-3 disk p blocksread)
:in-theory (enable allblocksread-map-3)))))

(local (defthm allblocksread-map-3-subsetp-3
(implies (and (mem blocksread (all-fns (proc) (all-fns (disk) (powerset (blockproc)))))
(mem x (allblocksread-map-3 (disk) p blocksread))
(mem p (proc)))
(mem x (powerset (blockproc))))
thints (("Goal" :use ((:instance allblocksread-map-3-subsetp-2
(disk2 (disk)) (disk (disk)) (proc (proc))
(powerset-blockproc (powerset (blockproc))))
(:instance subsetp-x-x (x (disk))))))))

(defx allblocksread-map-3-subsetp
(implies (and (mem blocksread (all-fns (proc) (all-fns (disk) (powerset (blockproc)))))
(mem p (proc)))
(subsetp (allblocksread-map-3 (disk) p blocksread)
(powerset (blockproc))))
:strategy subset-relation)
) ; end of encapsulate

; I like this theorem.
(defthm union*-powerset
(implies (subsetp s (powerset a))
(subsetp (union* s) a))
:hints (("Goal" :in-theory (enable union* powerset-property))
("Subgoal *1/3.1" :in-theory (enable weak-powerset-property))))

(encapsulate
nil

(local
(defthm subsetp-allblocksread-map-2-diskblock-1
(implies (not (ur-elementp dom))
(iff (mem x (allblocksread-map-2 dom))
(or (= x (apply (scar dom) "block"))
(mem x (allblocksread-map-2 (scdr dom))))))
:hints (("Goal" :induct (allblocksread-map-2 dom)
:in-theory (enable allblocksread-map-2)))))

(local
(defthm subsetp-allblocksread-map-2-diskblock-2

D.16. I2A/I2A-1.LISP 151

(implies (and (subsetp dom (blockproc))
(mem x (allblocksread-map-2 dom)))
(mem x (diskblock)))
:hints (("Goal" :induct (allblocksread-map-2 dom)
:in-theory (enable allblocksread-map-2)))))

(defx subsetp-allblocksread-map-2-diskblock
(implies (subsetp dom (blockproc))
(subsetp (allblocksread-map-2 dom) (diskblock)))
:strategy subset-relation)

) ; end of encapsulate

(defthm subsetp-choose-max-bal
(implies (and (subsetp s s2)
(not (ur-elementp s)))
(mem (choose-max-bal s) s2))
:hints (("Goal" :use (:instance mem-subsetp (e (choose-max-bal s))

(a s) (bs2)))))

(defthm subsetp-noninitblks-2
(implies (subsetp s s2)
(subsetp (noninitblks s) s2))
:hints (("Goal" :in-theory (enable noninitblks))))

(defthm goodorbadrule?
(implies (setp s)
(iff (= s nil) (ur-elementp s))))

; (defthm goodorbad?2
; (implies (setp x)
; (iff (not (ur-elementp x)) x)))

(defthm subsetp-nil-x
(subsetp nil x))

(defthm hinvl-endphaselor2
(implies (and (endphaselor2 p)
(chosen-allinput-action)
(hinv1)
(mem p (proc)))
(hinvi-n)))

; add to set theory?

152 APPENDIX D. ACL2 EVENT FILES

(defthm intersection-s-s
(implies (setp s)
(= (intersection s s) s)))

(local
(progn

(defthm is-majority-implies-not-ur-elementp
(implies (and (ismajority s)
(subsetp s (disk)))
(not (ur-elementp s)))
thints (("Goal" :use ((:instance is-majority-thml (s s) (s2 s))
(:instance intersection-s-s))
:in-theory (disable intersection-s-s is-majority-thml))))

(defthm stepl
(iff (not (ur-elementp (epO-mapl disk p blocksread)))
(mem (choose (epO-mapl disk p blocksread))
(epO-mapl disk p blocksread))))

(in-theory (disable mem-choose-epO-mapl-1))

(defthm step2
(implies (not (ur-elementp (epO-mapl disk p blocksread)))
(hasread p (choose (epO-mapl disk p blocksread)) p blocksread))
:instructions ((:DV 1) (:REWRITE STEP1)
(:REWRITE MEM-EPO-MAP1) top bash))

(defthm step3
(implies (not (ur-elementp (epO-mapl disk p blocksread)))
(exists-hasread
(apply-m blocksread p (choose (epO-mapl disk p blocksread))) p))
thints (("Goal" :use (:instance step2))))

(defthm step4
(implies (exists-hasread dom p)
(not (ur-elementp dom)))
thints (("Goal" :in-theory (enable exists-hasread exists-hasread-map)))
:rule-classes nil)

(defthm stepb
(implies (exists-hasread
(apply-m blocksread p (choose (epO-mapl disk p blocksread))) p)
(not (ur-elementp
(apply-m blocksread p (choose (epO-mapl disk p blocksread))))))

D.16. I2A/I2A-1.LISP 153

thints (("Goal" :by step4)))

(defthm step5andahalf
(implies (and (mem d disk)
(not (= (apply-m blocksread p d)
(scar (allblocksread-map-3 disk p blocksread)))))
(mem (apply-m blocksread p d)
(scdr (allblocksread-map-3 disk p blocksread))))
:hints (("Goal" :in-theory (enable allblocksread-map-3))))

(defthm step6
(implies (and (not (ur-elementp (apply-m blocksread p d)))
(mem d disk))
(not (ur-elementp (union* (allblocksread-map-3 disk p blocksread)))))
thints (("Goal" :induct (allblocksread-map-3 disk p blocksread)
:in-theory (enable allblocksread-map-3))))

)) ; end local progn

; yuck.
(defthm
ismajority-implies—not-ur-elementp-allblocksread
(implies
(ismajority (epO-mapl (disk) p blocksread))
(not
(ur-elementp
(allblocksread-map-2 (union#* (allblocksread-map-3 (disk)
p blocksread))))))
:instructions
(:promote (:dv 1)
(:rewrite ur-elementp-allblocksread-map-2)
(:rewrite step6
((d (choose (epO-mapl (disk) p blocksread)))))
(:change-goal nil t)
:bash (:dv 1)
(:rewrite stepb)
(:rewrite step3)
(:rewrite stepl)
:bash))

(local (in-theory (enable powerset-property)))

(defthm hinvl-endphase0
(implies (and (endphaseO p b-wit)

154 APPENDIX D. ACL2 EVENT FILES

(chosen-allinput-action)

(hinv1)

(mem p (proc)))
(hinvi-n)))

; End of file ----------—-—-—---—1-1—--—1----—1---—-—--—-—--—---—— -

D.17 i2¢/common-i2c.lisp

; common-i2c.lisp

; I used the following command to certify this book:
; (1d "defpkg.lisp")
; (certify-book "common-i2c" 1)

(in-package "S")

(include-book "/home/pacheco/acl2-sources/books/finite-set-theory/set-theory")
(include-book "../translations")

(include-book "../hinvi1")

(include-book "../hinv2")

(include-book "../hinv3")

(include-book "../common-all")

(disable-all-actions)
(in-theory (disable hinvl hinv2 hinv3))

; (defthm exists-hasread-nil
; (equal (exists-hasread nil q) nil))

; The next three in order of usefulness (I think).

; (defexists exists-hasread (blocksread-p-d q)
; :exists br :in blocksread-p-d :such-that (= (apply br "proc") q))

(defthm not-exists-hasread-nil
(not (exists-hasread nil q))
:hints (("Goal" :in-theory (enable exists-hasread
exists-hasread-map))))

(defthm initphase-hasread-2
(implies (initializephase p2)

D.17. 12C/COMMON-I2C.LISP 155

(not (hasread p2 d q blocksread-n)))
:hints (("Goal" :in-theory (enable initializephase hasread))))

(defthm initphase-hasread
(implies (and (initializephase p)
(= p2 p))
(not (hasread p2 d q blocksread-n)))
:hints (("Goal" :use initphase-hasread-2
:in-theory (disable initphase-hasread-2))))

(defthm wb-initializephase
(implies (and (initializephase p2)
(not (= p2 p)))
(and (= (apply diskswritten-n p) (apply diskswritten p))
(= (apply blocksread-n p) (apply blocksread p))
(= (apply-m blocksread-n p d) (apply-m blocksread p d))))
thints (("Goal" :in-theory (enable initializephase))))

(defthm initializephase-hasread
(implies (and (initializephase p2)
(not (= p2 p)))
(iff (hasread p d q blocksread-n)
(hasread p d q blocksread)))
:hints (("Goal" :in-theory (enable hasread))))

(local
(DEFTHM
FORALL-HINV3-1-1-MEM-painful
(IMPLIES
(AND (FORALL-HINV3-1-1 PROC P PHASE DBLOCK BLOCKSREAD)
(MEM Q PROC))
(FORALL-HINV3-1-1-1 (DISK)
P Q PHASE DBLOCK BLOCKSREAD))
:hints (("Goal" :use (forall-hinv3-1-1-mem
forall-hinv3-1-1-predicate)
:in-theory nil))))

(local
(DEFTHM
FORALL-HINV3-1-Mem-painful
(IMPLIES
(AND (FORALL-HINV3-1 PROC PHASE DBLOCK BLOCKSREAD)
(MEM P PROC))
(FORALL-HINV3-1-1 (PROC)

156 APPENDIX D. ACL2 EVENT FILES

P PHASE DBLOCK BLOCKSREAD))
:hints (("Goal" :use (forall-hinv3-1-mem
forall-hinv3-1-predicate)
:in-theory nil))))

(local
(DEFTHM
HINV3-IMPLIES-PARTICULARO
(IMPLIES (AND (HINV3)
(MEM P (PROC))
(MEM Q (PROC))
(MEM D (DISK)))
(FORALL-HINV3-1-1-1-PREDICATE D P Q PHASE DBLOCK BLOCKSREAD))
: INSTRUCTIONS
(:PROMOTE (:REWRITE FORALL-HINV3-1-1-1-MEM
((DISK-DOM (DISK))))
(:REWRITE FORALL-HINV3-1-1-MEM-PAINFUL
((PROC (PROC))))
(:REWRITE FORALL-HINV3-1-MEM-PAINFUL
((PROC (PROC))))
:DEMOTE (:DV 1 1)
:EXPAND :TOP :BASH)))

(defthm hinv3-implies-particular
(implies (and (hinv3) (mem p (proc)) (mem q (proc)) (mem d (disk))
(hinv3.1 phase p d q blocksread))
(hinv3.r dblock blocksread p 4 q))
thints (("goal" :use (hinv3-implies-particular0)
:in-theory ’ (forall-hinv3-1-1-1-predicate))))

; End of file -----------------------------b b " b : b b

D.18 i2¢/common-p12r.lisp

; common-pl2r.lisp
; I used the following command to certify this book:
; (1d "defpkg.lisp")

; (certify-book "common-pl12r" 1)

(in-package "S")

D.19. I12C/EP0.LISP 157

(include-book '"common-i2c")
(include-book "startballot')

; Follows from startballot
(defthm pl2r-trivial-on-else-branch
(implies (and (hinvl) (hinv2) (hinv3)
(phaselor2read p2 d2 g2 b-witness)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(not (< (apply-m disk d2 g2 "mbal")
(apply-m dblock p2 "mbal')))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable phaselor2read))))

(defthm wb-phaselor2read
(implies (and (phaselor2read p2 d2 g2 b-witness)
(not (= p2 p)))
(and (= (apply input-n p) (apply input p))
(= (apply output-n p) (apply output p))
= (apply-m disk-n d p) (apply-m disk d p))
= (apply phase-n p) (apply phase p))
= (apply dblock-n p) (apply dblock p))
= (apply diskswritten-n p) (apply diskswritten p))
(= (apply-m blocksread-n p d) (apply-m blocksread p d))
= (apply blocksread-n p) (apply blocksread p))))
:hints (("Goal" :in-theory (enable phaselor2read startballot))))

(defthm wb-phaselor2read-hasread
(implies (and (phaselor2read p2 d2 q2 b-witness)
(not (= p2 p)))
(iff (hasread p d q blocksread-n)
(hasread p d q blocksread)))
thints (("Goal" :in-theory (enable hasread))))

; End of file --------------------------- -\ - - :: : b b b

D.19 i2c¢/ep0.lisp

; ep0.lisp

(in-package "S")

158 APPENDIX D. ACL2 EVENT FILES

; I used the following command to certify this book:
; (1d "defpkg.lisp")
; (certify-book "epO" 1)

(include-book '"common-i2c")

(local
(progn

(defthm wb-endphaseO
(implies (and (endphase0O p2 b-wit)
(not (= p2 p)))
(and (= (apply input-n p) (apply input p))
= (apply output-n p) (apply output p))
= (apply-m disk-n d p) (apply-m disk d p))
= (apply phase-n p) (apply phase p))
= (apply dblock-n p) (apply dblock p))
= (apply diskswritten-n p) (apply diskswritten p))
= (apply-m blocksread-n p d) (apply-m blocksread p d))
= (apply blocksread-n p) (apply blocksread p))))
thints (("Goal" :in-theory (enable endphase0))))

(defthm i2c-ep0-0
(implies (and (hinv1l) (hinv2) (hinv3) (endphaseO p2 b-wit)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 p)
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable hinv3.l hinv3.r endphase0))))

(defthm i2c-ep0O-1
(implies (and (hinvl) (hinv2) (hinv3) (endphase0 p2 b-wit)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 @
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable hinv3.l hinv3.r endphase0))))

(defthm i2c-ep0-2
(implies (and (hinvl) (hinv2) (hinv3) (endphase0 p2 b-wit)
(mem p (proc))

D.19. I12C/EP0.LISP 159

(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))
(iff (hasread p d q blocksread-n)
(hasread p d q blocksread)))
thints (("Goal" :in-theory (enable hasread))))

(defthm i2c-ep0-3

(implies (and (hinvl) (hinv2) (hinv3) (endphase0 p2 b-wit)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.1 phase-n p d q blocksread-n)

(hinv3.1 phase p d gq blocksread)))

thints (("Goal" :in-theory (enable hinv3.1))))

(defthm i2c-ep0-4

(implies (and (hinvl) (hinv2) (hinv3) (endphase0 p2 b-wit)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.r dblock-n blocksread-n p d q)

(hinv3.r dblock blocksread p d q)))

:hints (("Goal" :in-theory (enable hinv3.r))))

)) ; end local progn

(defthm i2c-ep0
(implies (and (hinvl) (hinv2) (hinv3) (endphase0 p2 b-wit)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :cases ((and (not (= p2 p)) (not (= p2 q)))))))

; End of file -----------------------------b\ bt -\ - —

160 APPENDIX D. ACL2 EVENT FILES

D.20 i2c/epl2.lisp

; epl2.1lisp

; (1d "defpkg.lisp")
; (certify-book "epl2" 1)

(in-package "S")
(include-book '"common-i2c")

(local
(progn

(defthm endphaselor2-hasread
(implies (and (endphaselor?2 p)
(= p2 p))
(not (hasread p2 d q blocksread-n)))
thints (("Goal" :in-theory (enable endphaselor2))))

(defthm endphaselor2-hasread-2
(implies (endphaselor2 p2)
(not (hasread p2 d q blocksread-n)))
thints (("Goal" :in-theory (enable endphaselor2))))

(defthm wb-endphaselor2
(implies (and (endphaselor2 p2)
(not (= p2 p)))
(and (= (apply input-n p) (apply input p))
= (apply output-n p) (apply output p))
= (apply-m disk-n d p) (apply-m disk d p))
= (apply phase-n p) (apply phase p))
= (apply dblock-n p) (apply dblock p))
= (apply diskswritten-n p) (apply diskswritten p))
= (apply-m blocksread-n p d) (apply-m blocksread p d))
= (apply blocksread-n p) (apply blocksread p))))
:hints (("Goal" :in-theory (enable endphaselor2))))

(defthm i2c-ep12-0
(implies (and (hinvl) (hinv2) (hinv3) (endphaselor2 p2)
(mem p (proc))
(mem q (proc))

D.20. 12C/EP12.LISP 161

(mem d (disk))
(= p2 p)
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :in-theory (enable hinv3.1l hinv3.r endphase0))))

(defthm i2c-epl12-1
(implies (and (hinv1l) (hinv2) (hinv3) (endphaselor2 p2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 @
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable hinv3.l hinv3.r endphase0))))

(defthm i2c-ep12-2

(implies (and (hinvl) (hinv2) (hinv3) (endphaselor2 p2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hasread p d q blocksread-n)

(hasread p d q blocksread)))

:hints (("Goal" :in-theory (enable hasread))))

(defthm i2c-ep12-3

(implies (and (hinv1l) (hinv2) (hinv3) (endphaselor2 p2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.1 phase-n p d q blocksread-n)

(hinv3.1 phase p d q blocksread)))

thints (("Goal" :in-theory (enable hinv3.1))))

(defthm i2c-ep12-4
(implies (and (hinv1l) (hinv2) (hinv3) (endphaselor2 p2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 9)))

162 APPENDIX D. ACL2 EVENT FILES

(iff (hinv3.r dblock-n blocksread-n p d q)
(hinv3.r dblock blocksread p d q)))
:hints (("Goal" :in-theory (enable hinv3.r))))

)) ;end local progn

(defthm i2c-ep12
(implies (and (hinv1l) (hinv2) (hinv3) (endphaselor2 p2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :cases ((and (not (= p2 p)) (not (= p2 q)))))))

; End of file ---------------—-1-—----+---+------—--—-o--—

D.21 i2c/fail.lisp

; fail.lisp
(in-package "S")

; (1d "defpkg.lisp")
; (certify-book "fail" 1)

"common-i2c")

(include-book
(local
(progn

(defthm fail-hasread
(implies (and (fail p ip-witnessl1)
(= p2 p))
(not (hasread p2 d q blocksread-n)))
:hints (("Goal" :in-theory (enable fail))))

(defthm fail-hasread-2
(implies (fail p2 ip-witnessl)
(not (hasread p2 d q blocksread-n)))
:hints (("Goal" :in-theory (enable fail))))

D.21. I2C/FAIL.LISP 163

(defthm wb-fail
(implies (and (fail p2 ip-witnessl)
(not (= p2 p)))
(and (= (apply input-n p) (apply input p))
= (apply output-n p) (apply output p))
= (apply-m disk-n d p) (apply-m disk d p))
= (apply phase-n p) (apply phase p))
= (apply dblock-n p) (apply dblock p))
= (apply diskswritten-n p) (apply diskswritten p))
= (apply-m blocksread-n p d) (apply-m blocksread p d))
= (apply blocksread-n p) (apply blocksread p))))
:hints (("Goal" :in-theory (enable fail))))

(defthm i2c-fail-0
(implies (and (hinvl) (hinv2) (hinv3) (fail p2 ip-witnessl)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 p)
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :in-theory (enable hinv3.1l hinv3.r endphase0))))

(defthm i2c-fail-1
(implies (and (hinv1l) (hinv2) (hinv3) (fail p2 ip-witnessl)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 q
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :in-theory (enable hinv3.1l hinv3.r endphase0))))

(defthm i2c-fail-2

(implies (and (hinv1l) (hinv2) (hinv3) (fail p2 ip-witnessl)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hasread p d q blocksread-n)

(hasread p d q blocksread)))

thints (("Goal" :in-theory (enable hasread))))

164 APPENDIX D. ACL2 EVENT FILES

(defthm i2c-fail-3

(implies (and (hinv1l) (hinv2) (hinv3) (fail p2 ip-witnessl)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.1 phase-n p d q blocksread-n)

(hinv3.1 phase p d q blocksread)))

thints (("Goal" :in-theory (enable hinv3.1))))

(defthm i2c-fail-4

(implies (and (hinv1l) (hinv2) (hinv3) (fail p2 ip-witnessl)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.r dblock-n blocksread-n p d q)

(hinv3.r dblock blocksread p d q)))

thints (("Goal" :in-theory (enable hinv3.r))))

)) ;end local progn

(defthm i2c-fail

(implies (and (hinv1l) (hinv2) (hinv3) (fail p2 ip-witnessl)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :cases ((and (not (= p2 p)) (not (= p2 q)))))))

; End of file

D.22 i2c/i2c.lisp

; 12c.lisp
(in-package "S")

; (1d "defpkg.lisp")

D.22. I12C/I12C.LISP 165

; (certify-book "i2c" 1)

(include-book "startballot')
(include-book "pOr")
(include-book "ep0")
(include-book "pl2w")
(include-book "pl2r")
(include-book "ep12")
(include-book "fail')

(encapsulate
((p (x) ©)
(hyps O t)
(s O %))
(local (defun p (x) (declare (ignore x)) t))
(local (defun hyps () nil))
(local (defun s () t))
(defcong = equal (p x) 1)

(defthm mem-foo (implies (and (hyps)
(mem x (s)))
(p x)))
)

(defall foo2 (s)
:forall x :in s :holds (p x))

(defthm foo-main-helper
(implies
(and (hyps)
(subsetp s1 (s)))
(foo2 s1))
thints (("Goal" :in-theory (enable fo002))))

(defthm main-foo (implies (hyps)
(foo2 (s))))

(defthm i2c-1
(implies (and (hinvl) (hinv2) (hinv3) (hnext p2 d2 g2
b-witnessl ip-witnessl b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))

166 APPENDIX D. ACL2 EVENT FILES

thints (("Goal" :in-theory (enable hnext next))))

(defthm i2c-2
(implies (and (hinvl) (hinv2) (hinv3) (hnext p2 d2 g2
b-witnessl ip-witnessl b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk)))
(forall-hinv3-1-1-1-predicate d p q phase-n dblock-n blocksread-n)))

(in-theory (enable forall-hinv3-1-1-1))

(defthm i2c-3
(implies (and (hinv1l) (hinv2) (hinv3) (hnext p2 d2 g2
b-witnessl ip-witnessl b-witness)
(mem p (proc))
(mem q (proc)))
(forall-hinv3-1-1-1 (disk) p q phase-n dblock-n blocksread-n))
thints (("Goal" :by (:functional-instance
main-foo
(s (lambda () (disk)))
(foo2-predicate (lambda (x)
(forall-hinv3-1-1-1-predicate x p q phase-n dblock-n blocksread-n)))
(hyps (lambda ()
(and (hinvl) (hinv2) (hinv3) (hnext p2 d2 g2
b-witnessl ip-witnessl b-witness)
(mem p (proc)) (mem q (proc)))))
(p (lambda (x)
(forall-hinv3-1-1-1-predicate x p q phase-n dblock-n blocksread-n)))
(foo2 (lambda (dom)
(forall-hinv3-1-1-1 dom p q phase-n dblock-n blocksread-n))))))
totf-flg t)

(in-theory (enable forall-hinv3-1-1))

(defthm i2c-4
(implies (and (hinvl) (hinv2) (hinv3) (hnext p2 d2 g2
b-witnessl ip-witnessl b-witness)
(mem p (proc)))
(forall-hinv3-1-1 (proc) p phase-n dblock-n blocksread-n))
thints (("Goal" :by (:functional-instance
main-foo
(s (lambda () (proc)))
(foo2-predicate (lambda (x)
(forall-hinv3-1-1-predicate x p phase-n dblock-n blocksread-n)))

D.23. 12C/POR.LISP 167

(hyps (lambda ()
(and (hinv1l) (hinv2) (hinv3) (hnext p2 d2 g2
b-witnessl ip-witnessl b-witness)
(mem p (proc)))))
(p (lambda (x)
(forall-hinv3-1-1-predicate x p phase-n dblock-n blocksread-n)))
(foo2 (lambda (dom)
(forall-hinv3-1-1 dom p phase-n dblock-n blocksread-n))))))
totf-flg t)

(in-theory (enable forall-hinv3-1))

(defthm i2c-5
(implies (and (hinv1l) (hinv2) (hinv3) (hnext p2 d2 g2
b-witnessl ip-witnessl b-witness))
(forall-hinv3-1 (proc) phase-n dblock-n blocksread-n))
thints (("Goal" :by (:functional-instance
main-foo
(s (lambda () (proc)))
(foo2-predicate (lambda (x)
(forall-hinv3-1-predicate x phase-n dblock-n blocksread-n)))
(hyps (lambda ()
(and (hinv1l) (hinv2) (hinv3) (hnext p2 d2 g2 b-witnessl ip-witnessl b-witness))))
(p (lambda (x)
(forall-hinv3-1-predicate x phase-n dblock-n blocksread-n)))
(foo2 (lambda (dom)
(forall-hinv3-1 dom phase-n dblock-n blocksread-n))))))
totf-flg t)

(in-theory (enable hinv3))
(defthm i2c
(implies (and (hinvl) (hinv2) (hinv3)
(hnext p2 d2 g2 b-witnessl ip-witnessl b-witness))

(hinv3-n)))

; End of file ----------—-—-—---—-1--—1----—---—---——--——-—--——

D.23 i2¢/pOr.lisp

; pOr.lisp

168 APPENDIX D. ACL2 EVENT FILES

(in-package "S")

; (1d "defpkg.lisp")
; (certify-book "pOr" 1)

(include-book '"common-i2c")

(local
(progn

(defthm phaseOread-hasread
(implies (and (phaseOread p d)
(= p2 p))
(not (mem (apply phase-n p2) (hide (brace 1 2)))))
:hints (("Goal" :in-theory (enable phaseOread))))

(defthm phaseOread-hasread-2
(implies (phaseOread p2 d)
(not (mem (apply phase-n p2) (hide (brace 1 2)))))
:hints (("Goal" :in-theory (enable phaseOread))))

(defthm wb-phaseOread
(implies (and (phaseOread p2 d42)
(not (= p2 p)))
(and (= (apply input-n p) (apply input p))
= (apply output-n p) (apply output p))
= (apply-m disk-n d p) (apply-m disk d p))
= (apply phase-n p) (apply phase p))
= (apply dblock-n p) (apply dblock p))
= (apply diskswritten-n p) (apply diskswritten p))
= (apply-m blocksread-n p d) (apply-m blocksread p d))
= (apply blocksread-n p) (apply blocksread p))))
thints (("Goal" :in-theory (enable phaseOread))))

(defthm i2¢c-pOr-0
(implies (and (hinvl) (hinv2) (hinv3) (phaseOread p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 p)
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :in-theory (enable hinv3.1l hinv3.r endphase0))))

D.23. 12C/POR.LISP 169

(defthm i2c-pOr-1
(implies (and (hinvl) (hinv2) (hinv3) (phaseOread p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 @
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable hinv3.l hinv3.r endphase0))))

(defthm i2c-pOr-2

(implies (and (hinvl) (hinv2) (hinv3) (phaseOread p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hasread p d q blocksread-n)

(hasread p d q blocksread)))

:hints (("Goal" :in-theory (enable hasread))))

(defthm i2c-pOr-3

(implies (and (hinvl) (hinv2) (hinv3) (phaseOread p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.1 phase-n p d q blocksread-n)

(hinv3.1 phase p d q blocksread)))

:hints (("Goal" :in-theory (enable hinv3.1))))

(defthm i2c-pOr-4

(implies (and (hinvl) (hinv2) (hinv3) (phaseOread p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.r dblock-n blocksread-n p d q)

(hinv3.r dblock blocksread p d q)))

:hints (("Goal" :in-theory (enable hinv3.r))))

(defthm i2¢c-pOr-5

170 APPENDIX D. ACL2 EVENT FILES

(implies (and (hinvl) (hinv2) (hinv3) (phaseOread p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :use hinv3-implies-particular
:in-theory (disable hinv3-implies-particular))))

)) ; end local progn

(defthm i2c-pOr
(implies (and (hinvl) (hinv2) (hinv3) (phaseOread p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :cases ((and (not (= p2 p)) (not (= p2 q)))))))

; End of file ---------------—-—-—1----+------------—-----— "

D.24 i2¢/pl2r-d2=d.lisp

; pl2r-d2=d.lisp
(in-package "S")

; (1d "defpkg.lisp")
; (certify-book "pl2r-d2=4" 1)

(include-book '"common-i2c")
(include-book "common-pl2r")
(include-book "startballot')
(include-book "pl2r-p2=p")
(include-book "pl2r-p2=q")

; case: (and (nmot (= p2 p) (= p2 q)))

D.24. 12C/P12R-D2=D.LISP

(defthm pl2r-p2not=p-p2not=q-hinv3.1

(implies (and (hinv1l) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 92 b-witness)
(= d2 4)
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.1 phase-n p d q blocksread-n)

(hinv3.1l phase p d q blocksread)))

thints (("Goal" :in-theory (enable hinv3.1))))

(defthm pl2r-p2not=p-p2not=q-hinv3.r
(implies (and (hinv1l) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 92 b-witness)
(= 42 4)
(not (= p2 p))
(not (= p2 q)))
(iff (hinv3.r dblock-n blocksread-n p d q)
(hinv3.r dblock blocksread p d q)))
thints (("Goal" :in-theory (enable hinv3.r))))

(defthm pl2r-p2not=p-p2not=q

(implies (and (hinv1l) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 g2 b-witness)
(= d2 4)
(not (= p2 p))
(not (= p2 q))
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :use hinv3-implies-particular)))

; case: (= p2 p)

; case: (= p2 q)

(defthm p12r-d2=4
(implies (and (hinvl) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))

171

172 APPENDIX D. ACL2 EVENT FILES

(phaselor2read p2 d2 g2 b-witness)
(= a2 4)
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :cases ((and (not (= p2 p)) (not (= p2 q)))))))

; End of file --------------—-—-—----+---+--—»+--—-—-—---——

D.25 i2¢c/pl2r-d2not=d.lisp

; pl2r-d2not=d.lisp

; (1d "defpkg.lisp")
; (certify-book "pl2r-d2not=4" 1)

(in-package "S")

(include-book '"common-i2c")
(include-book "startballot')

(local
(progn

(defthm pl2r-trivial-on-else-branch

(implies (and (hinvl) (hinv2) (hinv3)
(phaselor2read p2 d2 92 b-witness)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(not (< (apply-m disk d2 g2 "mbal")

(apply-m dblock p2 "mbal')))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable phaselor2read))))

(defthm disk-helper-maybe
(implies (and (phaselor2read p2 d2 g2 b-witness)
(< (APPLY-M DISK D2 Q2 "mbal")
(APPLY-M DBLOCK P2 "mbal"))
(not (= d2 d)))
(= (apply (apply blocksread-n p) d)
(apply (apply blocksread p) d)))
thints (("Goal" :in-theory (enable phaselor2read)
:cases ((= p2 p)))))

D.25. 12C/P12R-D2NOT=D.LISP 173

(defthm disk-helperil
(implies (and (phaselor2read p d2 g2 b-witness)
(< (APPLY-M DISK D2 Q2 "mbal")
(APPLY-M DBLOCK P "mbal"))
(not (= d2 d)))
(= (apply (apply blocksread-n q) d)
(apply (apply blocksread q) d)))
:hints (("Goal" :in-theory (enable phaselor2read))))

(defthm disk-helper2
(implies (and (phaselor2read p d2 g2 b-witness)
(< (APPLY-M DISK D2 Q2 "mbal")
(APPLY-M DBLOCK P "mbal"))
(not (= d2 d)))
(iff (hasread p d q blocksread-n)
(hasread p d q blocksread)))
thints (("Goal" :in-theory (enable hasread))))

(defthm disk-helper3
(implies (and (phaselor2read p2 d2 g2 b-witness)
(< (APPLY-M DISK D2 Q2 "mbal")
(APPLY-M DBLOCK P2 "mbal"))
(not (= 42 4)))
(iff (hinv3.1 phase-n p d q blocksread-n)
(hinv3.1 phase p d q blocksread)))
thints (("Goal" :in-theory (enable hinv3.l hasread phaselor2read))))

(defthm disk-helper4
(implies (and (phaselor2read p2 d2 q2 b-witness)
(< (APPLY-M DISK D2 Q2 "mbal")
(APPLY-M DBLOCK P2 "mbal"))
(not (= d2 d)))
(iff (hinv3.r dblock-n blocksread-n p d q)
(hinv3.r dblock blocksread p d q)))
:hints (("Goal" :in-theory (enable hinv3.r hasread phaselor2read))))

)) ; end local progn
(defthm p12r-d2not=d
(implies (and (hinv1l) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))

(phaselor2read p2 d2 g2 b-witness)
(not (= 42 d))

174

APPENDIX D. ACL2 EVENT FILES

(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))

:hints (("Goal" :cases ((< (APPLY-M DISK D2 (2 '"mbal")

(APPLY-M DBLOCK P2 "mbal"))))

("Subgoal 2" :in-theory (enable phaselor2read)))

totf-flg t)

; End of file

D.26

i2c¢/p12r-p2=p.lisp

; pl2r-d2=d.1lisp

(in-package "S")

; (1d "defpkg.

lisp")

; (certify-book "pl2r-p2=p" 1)

(include-book
(include-book
(include-book
(include-book
(include-book
(include-book

; case (= p q)

"common-i2c")
"common-p12r")
"startballot")
"pl2r-pdp")
"pl2r-pdq")
"pl2r-q2not=q")

q) -- leslie’s case

(defthm pl2r-p=q
(implies (and (hinv1l) (hinv2) (hinv3)

(mem p (proc)

) (mem q (proc)) (mem d (disk))

(phaselor2read p2 d2 g2 b-witness)

(= d2 4d)
(= p2 p)
(= 92 q)
(=p

(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q)))

D.26. 12C/P12R-P2=P.LISP 175

; end case (= p q)

; case (not (= p q))

(defthm pl2r-pnot=q
(implies (and (hinvl) (hinv2) (hinv3)

(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 g2 b-witness)
(= d2 4)
(= p2 p)
(= 92 q)
(not (= p q))
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q)))

; end case (not (= p q))

(defthm p1l2r-q2=q

(implies (and (hinv1l) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 g2 b-witness)
(= d2 4)
(= p2 p)
(= q2 q)
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :cases ((= p q)))))

; case: (not (= g2 q))

(defthm p12r-p2=p

3

(implies (and (hinvl) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 q2 b-witness)
(= d2 4)
(= p2 p)
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :cases ((= q2 q)))))

End of file ----------------""-~--—»—-—-1---------------------- - """ """

176 APPENDIX D. ACL2 EVENT FILES
D.27 i2c¢/pl2r-p2=q.lisp

; pl2r-d2=d.lisp
(in-package "S")

; (1d "defpkg.lisp")
; (certify-book "pl2r-p2=q" 1)

(include-book '"common-i2c")
(include-book "common-pl2r")
(include-book "startballot")
(include-book "pl2r-p2=p")

(local
(progn

(defthm hinv3.1l-p-q
(equal (hinv3.1l phase-n p d q blocksread-n)
(hinv3.1 phase-n q d p blocksread-n))
:hints (("Goal" :in-theory (enable hinv3.1)))
:rule-classes nil)

(defthm hinv3.r-p-q
(equal (hinv3.r dblock-n blocksread-n p d q)
(hinv3.r dblock-n blocksread-n q d p))
:hints (("Goal" :in-theory (enable hinv3.r))))

(defthm p12r-p2=q-0

(implies (and (hinv1l) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem 4 (disk))
(phaselor2read p2 d2 g2 b-witness)
(= 42 4d)
(= p2 q)
(hinv3.1 phase-n q d p blocksread-n))

(hinv3.r dblock-n blocksread-n q d p))
thints (("Goal" :by pl2r-p2=p)))

)) ; end local progn

(defthm p1l2r-p2=q
(implies (and (hinvl) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 92 b-witness)

D.28. 12C/P12R-PDP.LISP 177

(= d2 4)
(= p2 q
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :use (hinv3.r-p-q hinv3.1l-p-q p12r-p2=q-0)
:in-theory nil)))

; End of file ----------------------------- - - - i . \bko o

D.28 i2c¢/p12r-pdp.lisp

; case: phaselor2read(p,d,q), p=q

(in-package "S")

; I used the following command to certify this book:
; (1d "defpkg.lisp")
; (certify-book "pl2r-pdp" 1)

(include-book "common-i2c")
(include-book "common-pl2r'")
(include-book "startballot')
(include-book "../hinv2-exports")

(local
(progn

(defthm xxx4

(implies (and (mem p (proc))
(mem q (proc))
(mem d (disk))
(phaselor2read p d q b-witness)
(< (apply-m disk d q "mbal")

(apply-m dblock p "mbal"))
(= (apply-m disk d q) (apply dblock q)))
(hinv3.r dblock-n blocksread-n p d q))
thints (("goal" :in-theory (enable phaselor2read hinv3.r))))

(defthm xxx5
(implies (and (hinv2)

178 APPENDIX D. ACL2 EVENT FILES

(=pq

(mem p (proc))
(mem q (proc))
(mem d (disk))

(phaselor2read p d q b-witness)
(< (apply-m disk d q "mbal")
(apply-m dblock p "mbal")))

(hinv3.r dblock-n blocksread-n p d q))
:hints (("goal" :in-theory (enable phaselor2read))))

)) ; end local progn

(defthm p12r-pdp.lisp

(implies (and (hinv1l) (hinv2) (hinv3)

(=pq

(mem p (proc))
(mem q (proc))
(mem d (disk))

(phaselor2read p d q b-witness)

(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :cases ((< (apply-m disk d q "mbal")

; End of file - ----—-—-——--—-——--"------——-

D.29 i2c¢/pl2r-pdq.lisp

; case: phaselor2read(p,d,q), p#q

(in-package "S")

; (1d "defpkg.lisp")
; (certify-book "pl2r-pdq" 1)

(include-book "common-i2c'")
(include-book "common-pl2r")
(include-book "../hinv2-exports")

(local
(progn

(apply-m dblock p "mbal"))))))

D.29. 12C/P12R-PDQ.LISP 179

; Now I show that the theorem follows if the if branch is taken.

(defthm hasread-stays-hasread
(implies (and (phaselor2read p d q b-witness)
(< (apply-m disk d q "mbal") (apply-m dblock p "mbal"))
(not (= p q))
(hasread q d p blocksread-n))
(hasread q d p blocksread))
thints (("Goal" :in-theory (enable hasread phaselor2read))))

(defthm phase-stays-phase
(implies (and (phaselor2read p d q b-witness)
(< (apply-m disk d q "mbal") (apply-m dblock p "mbal"))
(not (= p q))
(mem (apply phase-n q) (brace 1 2)))
(mem (apply phase q) (brace 1 2)))
thints (("Goal" :in-theory (enable phaselor2read))))

(defthm phase-stays-phase-with-hide
(implies (and (phaselor2read p d q b-witness)
(< (apply-m disk d q "mbal") (apply-m dblock p "mbal"))
(not (= p q))
(mem (apply phase-n q) (hide (brace 1 2))))
(mem (apply phase q) (hide (brace 1 2))))
:hints (("Goal" :use phase-stays-phase
:expand ((hide (brace 1 2)))
:in-theory nil)))

(defthm hasread-blocksread-q-d-not-nil
(implies (hasread q d p blocksread)
(not (= (apply-m blocksread q d) nil)))
thints (("Goal" :in-theory (enable hasread))))

(defthm xxx4
(implies (and (mem p (proc))
(mem q (proc))
(mem d (disk))
(phaselor2read p d q b-witness)
(< (apply-m disk d q "mbal")
(apply-m dblock p "mbal"))
(= (apply-m disk d q) (apply dblock q)))
(hinv3.r dblock-n blocksread-n p d q))
thints
(("goal" :in-theory

180 APPENDIX D. ACL2 EVENT FILES

(enable phaselor2read hinv3.r))))
(in-theory (disable hinv2))

; at this point, i have everything i need to prove this theorem and i
; can do so with the proofchecker. i just need to figure out what goes
; wrong with acl2.

(defthm xxx5
(implies (and (hinv2)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(phaselor2read p d q b-witness)
(not (= p q))
(< (apply-m disk d q '"mbal")
(apply-m dblock p "mbal"))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:instructions
(:bash (:rewrite xxx4)
:bash :bash (:dv 1)
(:rewrite hinv2-lemma)
:top :bash :bash (:rewrite hinv2-lemma2)
:bash (:change-goal nil t)
(:dv 1)
(:rewrite hasread-blocksread-q-d-not-nil)
:demote (:dv 1 8)
:expand :top :bash
(:rewrite phase-stays-phase-with-hide)
:bash :bash :bash :demote (:dv 1 8)
:expand :top :bash))

)) ;end local progn

(defthm p12r-pdq
(implies (and (hinvl) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p d q b-witness)
(not (= p q))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :cases ((< (apply-m disk d q "mbal") (apply-m dblock p "mbal"))))))

; End of file ----------------------------- - - b : S} 'l /b b

D.30. 12C/P12R-PDX.LISP 181

D.30 i2¢/pl2r-pdx.lisp

; pl2r-pdx.lisp
(in-package "S")

; I used the following command to certify this book:
; (1d "defpkg.lisp")
; (certify-book "pl2r-pdx" 1)

(include-book "common-i2c'")
(include-book "common-pl2r")

(local
(progn

(newdefmap exists-hasread-map2 (blocksread-p-d q)
:for br :in blocksread-p-d :such-that (= (apply br "proc") q))

(defun exists-hasread2 (blocksread-p-d q)
(not (ur-elementp (exists-hasread-map2 blocksread-p-d q))))

(defun hasread2 (p d q blocksread)
(exists-hasread2 (apply-m blocksread p d) q))

(in-theory (enable exists-hasread-map2))

(defthm z
(implies (not (= q2 q))
(ur-elementp (exists-hasread-map2
(scons (func ("block" (apply-m disk d q))
("proc" q))
nil)
q2))))

(defthm one
(implies (and (= blocksread-n
(except-m blocksread p d
(union (apply-m blocksread p d)
(brace (func ("block" (apply-m disk d q))

182 APPENDIX D. ACL2 EVENT FILES

("proc" q))))))
(not (= q2 q))
(hasread2 p d g2 blocksread-n))
(hasread2 p d g2 blocksread)))

(defthm two
(implies (and (= blocksread-n
(except-m blocksread p d
(union (apply-m blocksread p d)
(brace (func ("block" (apply-m disk d q))

("proc" q))))))
(not (= q2 p))
(hasread2 q2 d p blocksread-n))
(hasread2 q2 d p blocksread)))

(defun hinv3.12 (phase p d q blocksread)

(and (mem (apply phase p) (hide (brace 1 2)))
(mem (apply phase q) (hide (brace 1 2)))
(hasread2 p d q blocksread)

(hasread2 q d p blocksread)))

(defthm three

(implies (and (phaselor2read p2 d2 g2 b-witness)

(< (apply-m disk d2 g2 '"mbal")
(apply-m dblock p2 '"mbal"))
(not (= q2 q))
(not (= q2 p))
(hinv3.12 phase-n p d q blocksread-n))
(hinv3.12 phase p d q blocksread))
:hints (("Goal" :in-theory (enable phaselor2read))))

(defthm exists-hasread-map2=exists-hasread-map
(equal (exists-hasread-map2 dom q)
(exists-hasread-map dom q))
:hints (("Goal" :in-theory (enable exists-hasread-map))))

(defthm hasread2=hasread
(equal (hasread2 p d q blocksread)
(hasread p d q blocksread))
:hints (("Goal" :in-theory (enable hasread exists-hasread))))

(defthm hinv3.12=hinv3.1
(equal (hinv3.12 phase p d g blocksread)
(hinv3.1 phase p d q blocksread))
:hints (("Goal" :in-theory (enable hinv3.1))))

D.30. 12C/P12R-PDX.LISP 183

(defthm four
(implies (and (MEM (FUNC ("block" (APPLY DBLOCK Q))
("proc" Q))
(APPLY-M BLOCKSREAD P D))
(phaselor2read p d 92 b-witness)
(< (apply-m disk d g2 "mbal")
(apply-m dblock p "mbal)))
(MEM (FUNC ("block" (APPLY DBLOCK-n Q))
("proc" Q))
(APPLY-M BLOCKSREAD-n P D)))
thints (("Goal" :in-theory (enable phaselor2read))))

(defthm five
(implies (and (MEM (FUNC ("block" (APPLY DBLOCK P))
("proc" P))
(APPLY-M BLOCKSREAD Q D))
(phaselor2read p d 92 b-witness)
(< (apply-m disk d g2 "mbal")
(apply-m dblock p "mbal)))
(MEM (FUNC ("block" (APPLY DBLOCK-n P))
("proc" P))
(APPLY-M BLOCKSREAD-n Q D)))
:hints (("Goal" :in-theory (enable phaselor2read))))

(defthm six
(implies (and (hinv3.r dblock blocksread p d q)
(phaselor2read p d 92 b-witness)
(< (apply-m disk d g2 "mbal")
(apply-m dblock p "mbal)))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable phaselor2read hinv3.r))))

(defthm seven

(implies (and (phaselor2read p2 d2 g2 b-witness)

(< (apply-m disk d2 g2 '"mbal")
(apply-m dblock p2 "mbal"))
(not (= q2 q))
(not (= q2 p))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.1 phase p d q blocksread))
thints (("Goal" :use three)))

(defthm eight
(implies (and (hinv3)

184 APPENDIX D. ACL2 EVENT FILES

(mem p (proc)) (mem q (proc)) (mem 4 (disk))
(phaselor2read p d q2 b-witness)
(< (apply-m disk d g2 "mbal")
(apply-m dblock p "mbal))
(not (= q2 q))
(not (= q2 p))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :use hinv3-implies-particular
:in-theory (disable hinv3-implies-particular))))

)) ; end local progn

(defthm pl2r-pdx
(implies (and (hinv1l) (hinv2) (hinv3)

(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p d g2 b-witness)
(not (= 92 q))
(not (= 92 p))
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q))

:hints (("Goal" :cases ((< (apply-m disk d q2 "mbal")
(apply-m dblock p "mbal"))))))

; End of file ------------------------------- - - 6 : i ' b F b

D.31 i2¢c/pl2r-q2=p-2.lisp

; pl2r-q2=p-2.1lisp
(in-package "S")

; (1d "defpkg.lisp")
; (certify-book "pl12r-q2=p-2" 1)

(include-book "common-i2c")
(include-book "common-pl2r")
(include-book "startballot')
(include-book "p1l2r-pdx")
(include-book "p1l2r-pdp")

D.31. 12C/P12R-Q2=P-2.LISP 185

(local
(progn

(newdefmap exists-hasread-map2 (blocksread-p-d q)
:for br :in blocksread-p-d :such-that (= (apply br "proc") q))

(defun exists-hasread2 (blocksread-p-d q)
(not (ur-elementp (exists-hasread-map2 blocksread-p-d q))))

(defun hasread2 (p d q blocksread)
(exists-hasread2 (apply-m blocksread p d) q))

(in-theory (enable exists-hasread-map2))

(defthm z
(implies (not (= q2 q))
(ur-elementp (exists-hasread-map2
(scons (func ("block" (apply-m disk d q))
("proc" q))
nil)
92))))

(defthm one
(implies (and (= blocksread-n
(except-m blocksread p d
(union (apply-m blocksread p d)
(brace (func ("block" (apply-m disk d q))
("proc" q))))))
(not (= q2 q))
(hasread2 p d g2 blocksread-n))
(hasread2 p d g2 blocksread)))

(defthm two
(implies (and (= blocksread-n
(except-m blocksread p d
(union (apply-m blocksread p d)
(brace (func ("block" (apply-m disk d q))
("proc" q))))))
(not (= g2 p))
(hasread2 q2 d p blocksread-n))
(hasread2 q2 d p blocksread)))

(defun hinv3.12 (phase p d q blocksread)
(and (mem (apply phase p) (hide (brace 1 2)))
(mem (apply phase q) (hide (brace 1 2)))

186 APPENDIX D. ACL2 EVENT FILES

(hasread2 p d q blocksread)
(hasread2 q d p blocksread)))

(defthm three
(implies (and (phaselor2read p2 d2 g2 b-witness)
(< (apply-m disk d2 g2 "mbal")
(apply-m dblock p2 "mbal"))
(= 42 4)
(= p2 p)
(= 92 p)
(not (= 92 q))
(not (= p q))
(hinv3.12 phase-n p d q blocksread-n))
(hinv3.12 phase p d q blocksread))
:hints (("Goal" :in-theory (enable phaselor2read))))

(defthm exists-hasread-map2=exists-hasread-map
(equal (exists-hasread-map2 dom q)
(exists-hasread-map dom q))
:hints (("Goal" :in-theory (enable exists-hasread-map))))

(defthm hasread2=hasread
(equal (hasread2 p d q blocksread)
(hasread p d q blocksread))
:hints (("Goal" :in-theory (enable hasread exists-hasread))))

(defthm hinv3.12=hinv3.1
(equal (hinv3.12 phase p d g blocksread)
(hinv3.1 phase p d q blocksread))
:hints (("Goal" :in-theory (enable hinv3.1))))

(defthm four
(implies (and (MEM (FUNC ("block" (APPLY DBLOCK Q))
("proc" Q))
(APPLY-M BLOCKSREAD P D))
(phaselor2read p d q2 b-witness)
(< (apply-m disk d g2 "mbal")
(apply-m dblock p "mbal")))
(MEM (FUNC ("block" (APPLY DBLOCK-n Q))
("proc" Q))
(APPLY-M BLOCKSREAD-n P D)))
:hints (("Goal" :in-theory (enable phaselor2read))))

(defthm five
(implies (and (MEM (FUNC ("block" (APPLY DBLOCK P))

D.31. 12C/P12R-Q2=P-2.LISP 187

("proc" P))
(APPLY-M BLOCKSREAD Q D))
(phaselor2read p d q2 b-witness)
(< (apply-m disk d g2 "mbal")
(apply-m dblock p "mbal")))
(MEM (FUNC ("block" (APPLY DBLOCK-n P))
("proc" P))
(APPLY-M BLOCKSREAD-n Q D)))
:hints (("Goal" :in-theory (enable phaselor2read))))

(defthm six
(implies (and (hinv3.r dblock blocksread p d q)
(phaselor2read p d q2 b-witness)
(< (apply-m disk d g2 "mbal")
(apply-m dblock p "mbal)))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable phaselor2read hinv3.r))))

(defthm seven
(implies (and (phaselor2read p2 d2 g2 b-witness)
(< (apply-m disk d2 g2 "mbal")
(apply-m dblock p2 "mbal"))
(= d2 4d)
(= p2 p)
(= q2 p)
(not (= 92 q))
(not (= p q))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.1 phase p d q blocksread))
:hints (("Goal" :use three)))

(defthm eight
(implies (and (hinv3)
(mem p (proc)) (mem q (proc)) (mem 4 (disk))
(phaselor2read p d q2 b-witness)
(< (apply-m disk d g2 "mbal")
(apply-m dblock p "mbal))
(= d2 4)
; (= p2 p)
(= q2 p)
(not (= 92 q))
(not (= p q))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :use hinv3-implies-particular

188 APPENDIX D. ACL2 EVENT FILES

:in-theory (disable hinv3-implies-particular))))

)) ;end local progn

(defthm p12r-q2=p-2
(implies (and (hinvl) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 92 b-witness)
(= d2 4)
(= p2 p)
(= 92 p)
(not (= 92 q))
(not (= p q))
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))

:hints (("Goal" :cases ((< (apply-m disk d g2 "mbal")

(apply-m dblock p "mbal"))))))

; End of file ---------—-—----—-—1-—1---1+-----—---——--—---——

D.32 i2¢c/pl2r-gq2not=q.lisp

; pl2r-q2not=q.lisp
(in-package "S")

; (1d "defpkg.lisp")
; (certify-book "pl2r-q2not=q" 1)

(include-book "common-i2c")
(include-book "common-pl2r")
(include-book "startballot')
(include-book "p1l2r-pdx")
(include-book "p1l2r-pdp")
(include-book "pl2r-q2=p-2")

D.32. 12C/P12R-Q2NOT=Q.LISP 189

; case: (= p q) -- then we’re back to pl2r(p,d,p)

(local
(progn

(defthm p12r-q2=p
(implies (and (hinvl) (hinv2) (hinv3)

(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 92 b-witness)
(= d2 4)
(= p2 p)
(= 92 p)
(=pa
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q)))

; case: (not (= p q))

(defthm p1l2r-q2=p-2
(implies (and (hinv1l) (hinv2) (hinv3)

(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 g2 b-witness)
(= d2 4)
(= p2 p)
(= q2 p)
(not (= 92 q))
(not (= p q))
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q)))

; case: (not (= g2 p))

(defthm p12r-q2not=q-3
(implies (and (hinv1l) (hinv2) (hinv3)

(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 g2 b-witness)
(= d2 4)
(= p2 p)
(not (= 92 q))
(not (= 92 p))
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q)))

)) ; end local progn

190 APPENDIX D. ACL2 EVENT FILES

(defthm pl2r-q2not=q

(implies (and (hinv1l) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 g2 b-witness)
(= d2 4)
(= p2 p)
(not (= 92 q))
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :cases ((= g2 p)))))

; End of file ------------------------------ - : b " : i; ik b b

D.33 i2c/p12r.lisp

; pl2r.lisp
(in-package "S")

; (1d "defpkg.lisp")
; (certify-book "p12r" 1)

; case: (= 42 d)

(include-book "p1l2r-d2=4")

; case: (not (= 42 d))

3

(defthm p12r
(implies (and (hinv1l) (hinv2) (hinv3)
(mem p (proc)) (mem q (proc)) (mem d (disk))
(phaselor2read p2 d2 g2 b-witness)
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))

D.34. 12C/P12W.LISP 191

:hints (("Goal" :cases ((= d2 d)))))

; End of file ------------------------------ - -\ : 6 : : i i i

D.34 i2¢/pl2w.lisp

; pl2w.lisp
(in-package "S")

; (1d "defpkg.lisp")
; (certify-book "p1l2w" 1)

(include-book '"common-i2c")

(local
(progn

(defthm phaselor2write-hasread-3
(implies (and (not (hasread p d q blocksread))
(phaselor2write p2 d2))
(not (hasread p d q blocksread-n)))
thints (("Goal" :in-theory (enable phaselor2write))))

(defthm phaselor2write-hasread-4
(implies (and (not (mem (apply phase p) (hide (brace 1 2))))
(phaselor2write p2 d2))
(not (mem (apply phase-n p) (hide (brace 1 2)))))
thints (("Goal" :in-theory (enable phaselor2write))))

(defthm wb-phaselor2write
(implies (and (phaselor2write p2 d2)
(not (= p2 p)))
(and (= (apply input-n p) (apply input p))
= (apply output-n p) (apply output p))
= (apply-m disk-n d p) (apply-m disk d p))
(= (apply phase-n p) (apply phase p))
= (apply dblock-n p) (apply dblock p))
= (apply diskswritten-n p) (apply diskswritten p))
= (apply-m blocksread-n p d) (apply-m blocksread p d))
= (apply blocksread-n p) (apply blocksread p))))
:hints (("Goal" :in-theory (enable phaselor2write))))

192 APPENDIX D. ACL2 EVENT FILES

(defthm wb-phaselor2write-2
(implies (phaselor2write p2 d2)
(and (= (apply input-n p) (apply input p))
= (apply output-n p) (apply output p))
= (apply phase-n p) (apply phase p))
= (apply dblock-n p) (apply dblock p))
= (apply-m blocksread-n p d) (apply-m blocksread p d))
= (apply blocksread-n p) (apply blocksread p))))
thints (("Goal" :in-theory (enable phaselor2write))))

(defthm i2c-p1l2w-1

(implies (and (hinv1l) (hinv2) (hinv3) (phaselor2write p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk)))

(iff (hasread p d gq blocksread-n)

(hasread p d q blocksread)))

:hints (("Goal" :in-theory (enable hasread))))

(defthm i2¢c-p12w-3

(implies (and (hinvl) (hinv2) (hinv3) (phaselor2write p2 d42)
(mem p (proc))
(mem q (proc))
(mem d (disk)))

(iff (hinv3.1 phase-n p d q blocksread-n)

(hinv3.1 phase p d q blocksread)))

thints (("Goal" :in-theory (enable hinv3.1))))

(defthm i2c-pl2w-4

(implies (and (hinvl) (hinv2) (hinv3) (phaselor2write p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk)))

(iff (hinv3.r dblock-n blocksread-n p d q)

(hinv3.r dblock blocksread p d q)))

thints (("Goal" :in-theory (enable hinv3.r))))

)) ; end local progn

(defthm i2c-pl2w
(implies (and (hinv1l) (hinv2) (hinv3) (phaselor2write p2 d2)
(mem p (proc))
(mem q (proc))
(mem d (disk))

D.35. I12C/STARTBALLOT.LISP 193

(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
thints (("Goal" :cases ((and (not (= p2 p)) (not (= p2 q)))))))

; End of file -------------------—-------------------———-"""

D.35 i2c/startballot.lisp

; startballot.lisp

; I used the following command to certify this book:
; (1d "defpkg.lisp")
; (certify-book "startballot" 1)

(in-package "S")

(include-book '"common-i2c")

(local
(progn

(defthm startballot-hasread
(implies (and (startballot p b-witness)
(= p2 p))
(not (hasread p2 d q blocksread-n)))
:hints (("Goal" :in-theory (enable startballot))))

(defthm startballot-hasread-2
(implies (startballot p2 b-witness)
(not (hasread p2 d q blocksread-n)))
:hints (("Goal" :in-theory (enable startballot))))

(defthm wb-startballot
(implies (and (startballot p2 b-witness)

(not (= p2 p)))

(and (= (apply input-n p) (apply input p))
(= (apply output-n p) (apply output p))
(= (apply-m disk-n d p) (apply-m disk d p))
(= (apply phase-n p) (apply phase p))
(= (apply dblock-n p) (apply dblock p))

194 APPENDIX D. ACL2 EVENT FILES

(= (apply diskswritten-n p) (apply diskswritten p))

(= (apply-m blocksread-n p d) (apply-m blocksread p d))

(= (apply blocksread-n p) (apply blocksread p))))
:hints (("Goal" :in-theory (enable startballot))))

(in-theory (disable startballot))

(defthm i2c-startballot-0

(implies (and (hinvl) (hinv2) (hinv3) (startballot p2 b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 p)
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable hinv3.1l hinv3.r))))

(defthm i2c-startballot-1

(implies (and (hinvl) (hinv2) (hinv3) (startballot p2 b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 q)
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable hinv3.1l hinv3.r))))

(defthm i2c-startballot-2

(implies (and (hinvl) (hinv2) (hinv3) (startballot p2 b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hasread p d q blocksread-n)

(hasread p d q blocksread)))

:hints (("Goal" :in-theory (enable hasread))))

; this is not needed
(defthm i2c-startballot-3
(implies (and (hinvl) (hinv2) (hinv3) (startballot p2 b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))

D.35. I12C/STARTBALLOT.LISP 195

(not (= p2 q)))
(iff (hasread q d p blocksread-n)
(hasread q d p blocksread)))
:hints (("Goal" :in-theory (enable hasread))))

(in-theory (disable hinvl hinv3))

(defthm i2c-startballot-4

(implies (and (hinvl) (hinv2) (hinv3) (startballot p2 b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.1 phase-n p d q blocksread-n)

(hinv3.1 phase p d gq blocksread)))

thints (("Goal" :in-theory (enable hinv3.1))))

(defthm i2c-startballot-5

(implies (and (hinvl) (hinv2) (hinv3) (startballot p2 b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(not (= p2 p))
(not (= p2 q)))

(iff (hinv3.r dblock-n blocksread-n p d q)

(hinv3.r dblock blocksread p d q)))

:hints (("Goal" :in-theory (enable hinv3.r))))

(defthm i2c-startballot-6

(implies (and (hinvl) (hinv2) (hinv3) (startballot p2 b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(= p2 p)
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable hinv3.r hinv3.1))))

(defthm i2c-startballot-7
(implies (and (hinvl) (hinv2) (hinv3) (startballot p2 b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))

196 APPENDIX D. ACL2 EVENT FILES

(= p2 q)
(hinv3.1 phase-n p d q blocksread-n))
(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :in-theory (enable hinv3.r hinv3.1))))

)) ; end local progn

(defthm i2c-startballot

(implies (and (hinvl) (hinv2) (hinv3) (startballot p2 b-witness)
(mem p (proc))
(mem q (proc))
(mem d (disk))
(hinv3.1 phase-n p d q blocksread-n))

(hinv3.r dblock-n blocksread-n p d q))
:hints (("Goal" :cases ((= p2 p) (= p2 q))))
totf-flg t)

; End of file ----------------------+----------------————--""-

