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Abstract

We propose a general cryptographic primitive called lossy trapdoor functions (lossy TDFs), and use it
to develop new approaches for constructing several important cryptographic tools, including (injective)
trapdoor functions, collision-resistant hash functions, oblivious transfer, and chosen ciphertext-secure
cryptosystems (in the standard model). All of these constructions are simple, efficient, and black-box.

We realize lossy TDFs under a variety of different number-theoretic assumptions, including hardness
of the decisional Diffie-Hellman (DDH) problem, and the worst-case hardness of standard lattice problems
for quantum algorithms (alternately, under an average-case hardness assumption for classical algorithms).

Taken together, our results resolve some long-standing open problems in cryptography. They give the
first known injective trapdoor functions based on problems not directly related to integer factorization,
and provide the first known chosen ciphertext-secure cryptosystem based solely on worst-case complexity
assumptions.
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1 Introduction

A central goal in cryptography is to realize a variety of security notions based on plausible and concrete
computational assumptions. Historically, such assumptions have typically been concerned with problems
from three broad categories: those related to factoring integers, those related to computing discrete logarithms
in cyclic groups, and more recently, those related to computational problems on lattices.

For several reasons, it is important to design cryptographic schemes based on all three categories: first, to
act as a hedge against advances in cryptanalysis, e.g., improved algorithms for one class of problems or the
construction of a practical quantum computer; second, to justify the generality of abstract notions; third, to
develop new outlooks and techniques that can cross-pollinate and advance cryptography as a whole.

In public key cryptography in particular, two important notions are trapdoor functions (TDFs) and
security under chosen ciphertext attack (CCA security) [39, 45, 20]. Trapdoor functions, which (informally)
are hard to invert unless one possesses some secret “trapdoor” information, conceptually date back to the
seminal paper of Diffie and Hellman [18] and were first realized by the RSA function of Rivest, Shamir, and
Adleman [48]. Chosen-ciphertext security, which (again informally) guarantees confidentiality of encrypted
messages even in the presence of a decryption oracle, has become the de facto notion of security for public
key encryption under active attacks.

Unfortunately, it is still not known how to realize TDFs and CCA security (in the standard model) under
all types of assumptions described above. For CCA security, the main approach in the existing literature
relies on noninteractive zero-knowledge (NIZK) proofs [8, 23] (either for general NP statements or specific
number-theoretic problems); using NIZKs, cryptosystems have been constructed based on problems related
to factoring and discrete logs [39, 20, 50, 16, 17], but not lattices. For trapdoor functions, the state of the
art is even less satisfactory: though TDFs are widely viewed as a general primitive, they have so far been
realized only from problems related to factoring [48, 44, 40].

In this paper, we make the following contributions:

• We introduce a new general primitive called lossy trapdoor functions, and give realizations based on
the conjectured hardness of the decisional Diffie-Hellman (DDH) problem in cyclic groups, and the
conjectured worst-case hardness of certain lattice problems.

• We show that lossy trapdoor functions imply injective (one-to-one) trapdoor functions in the traditional
sense. This yields the first known trapdoor functions based on computational problems that are not
directly related to integer factorization.

• We present a black-box construction of a CCA-secure cryptosystem based on lossy TDFs. Notably, our
decryption algorithm is witness recovering, i.e., it first recovers the randomness that was used to create
the ciphertext, and then tests the validity of the ciphertext simply by reencrypting the message under
the retrieved randomness. Until now, witness-recovering CCA-secure cryptosystems were known to
exist only in the random oracle model [6, 24].

Our approach has two main benefits: first, our construction is black-box, making it more efficient
than those that follow the general NIZK paradigm [39, 20, 50].1 Second, it yields the first known
CCA-secure cryptosystem based entirely on (worst-case) lattice assumptions, resolving a problem that
had remained open since the seminal work of Ajtai [1] and Ajtai and Dwork [2].

1We note that Cramer and Shoup [16, 17] gave efficient CCA-secure constructions based on NIZK proofs for specific number-
theoretic problems.
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• We further demonstrate the utility of lossy TDFs by constructing pseudorandom generators, collision-
resistant hash functions, and oblivious transfer (OT) protocols, in a black-box manner and with simple
and tight security reductions. Using standard (but non-black box) transformations [30, 31], our OT
protocols additionally imply general secure multiparty computation for malicious adversaries.

1.1 Trapdoor Functions and Witness-Recovering Decryption

One interesting and long-standing question in cryptography is whether it is possible to construct trapdoor
functions from any cryptosystem that is secure under a chosen-plaintext attack (CPA-secure) [5]. A tempting
approach is to encrypt the function’s random input x using x itself as the randomness, so that decrypting
with the secret key (i.e., the trapdoor) returns x. This method has several potential benefits. First, the
construction is very straightforward and efficient. Second, the technique could potentially be extended to
build a CCA-secure cryptosystem: the encryption algorithm would simply choose a random string r and
encrypt it along with the “true” message m, also using r as the randomness to the encryption. The decryption
algorithm would check for well-formedness of a ciphertext by first decrypting, yielding the message m and
randomness r, and then would simply recompute the ciphertext to verify that it matches the input ciphertext.
Indeed, approaches like these have proved fruitful in the random oracle model [5, 6, 24].

Unfortunately, the technique of encrypting a ciphertext’s own randomness has so far met with less success
in the standard model, because CPA security is guaranteed only if the randomness is chosen independently of
the encrypted message. For example, consider a (pathological) encryption algorithm E′, which is built from
another (secure) encryption algorithm E: the algorithm E′(m; r) normally returns E(m; r), except if m = r
it simply outputs r. Then the candidate trapdoor function f(x) = E′(x;x) is simply the identity function,
which is trivial to invert.

While the above is just a contrived counterexample for one particular attempt, Gertner, Malkin, and
Reingold [27] demonstrated a black-box separation between (poly-to-one) trapdoor functions and CPA-secure
encryption. The chief difficulty is that inverting a trapdoor function requires the recovery of its entire input,
whereas decrypting a ciphertext recovers the input message, but not necessarily the randomness. For similar
reasons, there is also some evidence that achieving CCA security from CPA security (in a black-box manner)
would be difficult [26].

Perhaps for these reasons, constructions of CCA-secure encryption in the standard model [39, 20, 50, 16,
17] have followed a different approach. As explained in [21], all the techniques used so far have employed
a “two-key” construction, where the well-formedness of a ciphertext is guaranteed by a (simulation-sound)
non-interactive zero knowledge (NIZK) proof. A primary benefit of zero-knowledge is that the decryption
algorithm can be sure that a ciphertext is well-formed without needing to know a witness to that fact
(e.g., the input randomness). The two-key/NIZK paradigm has led to CCA-secure encryption based on
general assumptions, such as trapdoor permutations [20], and efficient systems based on specific number
theoretic assumptions [16, 17], such as the decisional Diffie-Hellman (DDH) [11] and decisional composite
residuosity [40] assumptions. However, the NIZK approach has two significant drawbacks. First, the
constructions from general assumptions are inefficient, as they are inherently non-black-box. Second, while
CPA-secure public key cryptosystems based on worst-case lattice assumptions are known [2, 46, 47], there
are still no known CCA-secure systems, because it is unknown how to realize NIZKs for all of NP (or for
appropriate specific lattice problems) under such assumptions.
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1.2 The Power of Losing Information

In this paper we revisit the idea of building trapdoor functions and witness-recovering CCA-secure encryption,
in the standard model. As discussed above, past experience seems to suggest that a stronger notion than
chosen-plaintext security might be needed.

We introduce a new approach that is centered around the idea of losing information. Specifically, we
introduce a new primitive called a lossy trapdoor function, which is a public function f that is created to
behave in one of two ways. The first way matches the usual completeness condition for an (injective) trapdoor
function: given a suitable trapdoor for f , the entire input x can be efficiently recovered from f(x). In the
second way, f statistically loses a significant amount of information about its input, i.e., every output of f
has many preimages. Finally, the two behaviors are indistinguishable: given just the description of f (i.e., its
code), no efficient adversary can tell whether f is injective or lossy.

Using lossy trapdoor functions as a general tool, we develop new techniques for constructing standard
trapdoor functions and CCA-secure cryptosystems, and for proving their security. In essence, lossy TDFs
allow for proving security via indistinguishability arguments over the public parameters of a scheme (e.g., the
public key of a cryptosystem), as opposed to the adversary’s challenge value (e.g., the challenge ciphertext in
a chosen-ciphertext attack).

In more detail, the public parameters of our schemes will include some function f that is either injective
or lossy. In the injective case (typically corresponding to the real system), the invertibility of f permits
recovery of its entire input and ensures correctness of the system. In the lossy case (typically corresponding
to a “thought experiment” in the security proof), one typically shows that the loss of information by f implies
statistical security of the system. The advantage of this approach is that when distinguishing between injective
and lossy f in the security reduction, the simulator can always create the adversary’s challenge “honestly,”
i.e., by choosing the underlying randomness itself.

In the following, we demonstrate the utility of lossy TDFs by informally sketching constructions of
standard TDFs, CPA-secure encryption, and CCA-secure encryption. Later in the paper we also demonstrate
simple constructions of pseudorandom generators, collision-resistant hash functions, and oblivious transfer
protocols that enjoy tight and elementary security reductions. (Formal definitions, constructions, and proofs
are given in Sections 3 and 4.)

1.2.1 Trapdoor Functions and CPA-Secure Encryption

Suppose we have a collection of lossy TDFs having domain {0, 1}n, where the lossy functions “lose” (say)
k = n/2 bits of the input. Then the injective functions from this collection make up a collection of standard
trapdoor functions. To see this, first consider the behavior of a hypothetical inverter I for an injective
function f . If we choose x← {0, 1}n uniformly and invoke I on f(x), it must output (with some noticeable
probability) the same value x, because f is injective. Now consider the same experiment when f is replaced
by a lossy function f ′. Observe that f ′(x) statistically hides the value of x, because there are on average
about 2k = 2n/2 other values x′ such that f ′(x′) = f ′(x), and all are equally likely. Therefore even an
unbounded inverter I cannot guess the hidden value x, except with negligible probability. We conclude
that no efficient inverter can exist for the injective functions, unless the injective and lossy functions are
distinguishable.

Using the fact that lossy TDFs imply standard injective TDFs, we could construct a CPA-secure cryp-
tosystem by standard techniques, e.g., by using a generic Goldreich-Levin hard-core predicate [29] to conceal
the message bit and using the trapdoor to recover it. However, it is instructive (and a useful warm-up for our
CCA-secure construction) to see that lossy TDFs admit hard-core functions, via a very simple and direct
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proof of security.
LetH be a family of pairwise independent hash functions from {0, 1}n to {0, 1}`, where {0, 1}n is the

domain of the lossy TDFs and ` < n is essentially the number of bits lost by the lossy functions (we defer
details for the purposes of this sketch). Then a hash function h chosen at random fromH acts as a hard-core
function for the injective TDFs of the collection. This follows from the fact that h is a strong randomness
extractor, by an average-case variant of the leftover hash lemma [33, 19].

In more detail, consider an adversary that attempts to distinguish h(x) ∈ {0, 1}` from uniform, given h
and f(x) for injective f and uniformly random x ∈ {0, 1}n. The adversary’s advantage must be essentially
the same if f is replaced with a lossy function f ′. In this case, the value of x is statistically well-hidden given
f ′(x) (more precisely, x has large min-entropy on the average). Because h is a good extractor, it follows that
h(x) is statistically close to uniform over {0, 1}` given f ′(x) and h, so even an unbounded adversary has
negligible advantage.

1.2.2 CCA-Secure Encryption

The construction of CCA-secure cryptosystems is more challenging, because the adversary is allowed to make
decryption (i.e., inversion) queries. If we simply replace an injective function with a lossy function, then the
simulator will not be able to answer (even well-formed) decryption queries, because the plaintext information
is lost. Therefore, we introduce a richer abstraction called all-but-one (ABO) trapdoor functions, which can
be constructed from a collection of sufficiently lossy TDFs, or more directly from similar underlying concrete
assumptions.

An ABO collection is associated with a large set B that we call branches. The generator of an ABO
function takes an extra parameter b∗ ∈ B, called the lossy branch, and outputs a function g(·, ·) and a trapdoor
t. The function g has the property that for any branch b 6= b∗, the function g(b, ·) is injective (and can be
inverted with t), but the function g(b∗, ·) is lossy. Moreover, the lossy branch is hidden (computationally) by
the description of g.

Cryptosystem. Our construction of a CCA-secure cryptosystem uses a collection of lossy TDFs and a
collection of ABO TDFs, both having domain {0, 1}n. As before, we use a pairwise independent family
of hash functionsH from {0, 1}n to {0, 1}`, where ` is the length of the plaintext. For full CCA2 security
and non-malleability (as opposed to CCA1, or “lunchtime,” security), we also use a strongly unforgeable
one-time signature scheme in which verification keys can be interpreted as branches of the ABO function.2

In this sketch we give only the main ideas, and defer the exact selection of parameters to Section 4.
The key generator of the cryptosystem chooses an injective function f from the lossy TDF collection,

along with its trapdoor f−1. Next, it chooses an ABO function g whose lossy branch is arbitrarily set to
b∗ = 0 (the decrypter does not need the trapdoor for g, so it can be discarded). Finally, it selects a hash
function h at random from H. The public key is pk = (f, g, h), and the trapdoor f−1 is kept as the secret
decryption key (along with pk itself).

The encryption algorithm encrypts a message m ∈ {0, 1}` as follows: it first generates a verification key
vk and corresponding signing key skσ for the one-time signature scheme. It then chooses an x ∈ {0, 1}n
uniformly at random. The ciphertext is generated as

c = (vk, c1 = f(x), c2 = g(vk, x), c3 = m⊕ h(x), σ),

2Strongly unforgeable one-time signatures are implied by one-way functions, and in particular by lossy trapdoor functions. A
variant of our system remains CCA1-secure without the signature, but it is trivially malleable and thus not CCA2-secure.
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where σ is a signature of (c1, c2, c3) under the signing key skσ. We emphasize that both f and g are evaluated
on the same x, and that g is evaluated on the branch corresponding to vk.

The decryption algorithm attempts to decrypt a ciphertext c = (vk, c1, c2, c3, σ) as follows: it begins by
checking that the signature σ is valid relative to vk, and aborts if not. Next, it computes x′ = f−1(c1) using
the trapdoor, obtaining an encryption witness x′. Then the decrypter “recomputes” the ciphertext to verify
that it is well formed, by checking that c1 = f(x′) and c2 = g(vk, x′), and aborting if not. Finally, it outputs
the message m′ = h(x′)⊕ c3.

Security. The proof of security follows a hybrid two key-type argument, but without zero knowledge
(due to the recovery of the encryption witness). The proof involves several hybrid experiments that are
indistinguishable to any efficient adversary. In the first hybrid, the ABO lossy branch b∗ is instead set to
b∗ = vk∗, where vk∗ is a verification key that eventually appears in the challenge ciphertext. In the next
hybrid, the decryption oracle decrypts using the trapdoor g−1 for the ABO function, rather than f−1. The
decryption oracle is thus able to decrypt successfully for all branches but one, namely, the vk∗ branch —
but by unforgeability of the signature scheme, any query involving vk∗ has an invalid signature and can be
rejected out of hand. The final step of the hybrid involves replacing the injective function f with a lossy one.
At this point, we observe that both components c1 = f(x) and c2 = g(vk∗, x) of the challenge ciphertext
lose information about x. Therefore, h(x) is statistically close to uniform (given the rest of the view of
the adversary), so even an unbounded adversary has only negligible advantage in guessing the encrypted
message.

We conclude this summary with a few remarks. First, we note that in practice one would likely use our
techniques as a public-key key encapsulation mechanism (KEM) where the key would be derived using the
hash function as h(x). Second, while our system falls outside the NIZK paradigm, we do rely on some
techniques that are reminiscent of previous work. Our construction uses a two-key strategy originally due to
Naor and Yung [39], where during hybrid experiments the simulator uses one key to decrypt the ciphertext,
while it participates in a distinguishing experiment related to the other key. The major difference is that
in the NIZK paradigm, the distinguishing experiment is on a ciphertext encrypted under the other key. In
contrast, our simulation participates in a distinguishing experiment on the other key itself. Additionally, our
use of one-time signatures for CCA2 security inherits from the work of Dolev, Dwork and Naor [20], and
is technically most similar to the method of Canetti, Halevi, and Katz [15] for constructing CCA-secure
encryption from identity-based encryption. Finally, we point out that our decryption algorithm does not
strictly recover all the randomness of the ciphertext, because it does not recover the randomness used to
generate the one-time signing key or the signature itself. This is a minor technical point, as the decrypter
does recover enough randomness to check validity of the ciphertext (the signature is publicly verifiable).
Additionally, for the weaker notion of CCA1 (or “lunchtime”) security, the one-time signature is unnecessary;
vk can be replaced with a random choice of branch, and the decrypter does recover all of the randomness.

1.3 Realizing Lossy TDFs

We now sketch our basic framework for constructing lossy and all-but-one trapdoor functions. To illuminate
the main principles, we assume a generic CPA-secure cryptosystem having a few special (but informally
described) properties. We then sketch how to obtain such properties under concrete assumptions.

The first property we assume is that the underlying cryptosystem is additively homomorphic. A function
f (whether injective or lossy) on {0, 1}n is specified by an entry-wise encryption of some n × n matrix
M. To evaluate f(x), view the input x ∈ {0, 1}n as an n-dimensional binary vector x, and compute an
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(entry-wise) encryption of the linear product x ·M by applying the homomorphic operation to the encrypted
entries of M.

For an injective function, the encrypted matrix M is the identity matrix I, and the trapdoor is the
decryption key for the cryptosystem. The function f is therefore injective and invertible with the trapdoor,
because f(x) is an entry-wise encryption of x · I = x, which can be decrypted to recover each bit of x.

For a lossy function, the encrypted matrix M is the all-zeros matrix M = 0. Then for every input x, the
value f(x) is an entry-wise encryption of the all-zeros vector, so f intuitively “loses” x. However, this alone
is not enough to ensure lossiness, because the output ciphertexts still carry some internal randomness that
might leak information about the input. Therefore, we need some additional ideas to control the behavior of
this randomness.

We rely on two other special properties of the cryptosystem. First, we require that it remains secure to
reuse randomness when encrypting under different keys. Second, we require that the homomorphic operation
isolates the randomness, i.e., that the randomness of the output ciphertext depends only on the randomness of
the input ciphertexts (and not, say, on the public key or the encrypted messages). Many known cryptosystems
are even homomorphic with respect to randomness, which certainly suffices for our purposes.

With these two properties, we encrypt the matrix M in a special way. Each column j of the matrix is
associated with a different key pkj , and the trapdoor is the set of corresponding decryption keys. Across each
row i, we encrypt entry mi,j under key pkj and the same randomness ri (using fresh randomness for each
row). By hypothesis, it is secure to reuse randomness across keys pkj , so the matrix M is computationally
hidden. Additionally, because the homomorphism isolates randomness, all the ciphertexts in the output vector
f(x) are also encrypted under the same randomness R (which depends only on r1, . . . , rn and x).

When M = I, we can still invert the function (given the trapdoor) by decrypting each ciphertext entry of
f(x). On the other hand, when M = 0, the function output is always a vector of encrypted zero messages,
where each entry is encrypted under the same randomness (but under a different fixed key). Therefore the
number of possible outputs of f is bounded by the number of possible random strings that can arise. By
choosing the dimension n so that the number of inputs 2n is significantly larger than the number of random
strings, we can guarantee that the function is lossy.

The construction of all-but-one trapdoor functions is similar, but somewhat more general. Each branch b
of the function simply corresponds to a different matrix Mb, whose encryption can be derived from the public
description of the function. The function is generated so that Mb is an invertible matrix (and is computable
with the trapdoor) for all the injective branches b, whereas Mb∗ = 0 for the lossy branch b∗.

Concrete assumptions. Under the decisional Diffie-Hellman assumption, it is relatively straightforward
to implement the above framework for constructing lossy and all-but-one TDFs (see Section 5). On the
other hand, when instantiating lossy TDFs under worst-case lattice assumptions via known lattice-based
cryptosystems [2, 46, 47], many additional technical difficulties arise. In fact, we only know how to construct
lossy TDFs based on the “learning with errors” (LWE) problem as defined by Regev [47], which is a
generalization of the famous “learning parity with noise” problem to larger moduli. The LWE problem can
be seen as an average-case “bounded-distance decoding” problem on a certain family of random lattices, and
appears (like the learning parity with noise problem) to be hard. Moreover, Regev gave a reduction showing
that LWE is indeed hard on the average if standard lattice problems are hard in the worst case for quantum
algorithms [47]. Quantum algorithms are not known to have any advantage over classical algorithms for the
worst-case lattice problems in question. Moreover, it may be that the reduction can be “dequantized,” i.e.,
that the hardness of LWE could be based on a classical worst-case assumption.

There are two main reasons why our lattice-based constructions seem to be limited to LWE. First, the
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LWE problem involves some public randomness that can be securely reused, whereas the underlying hard
problems in the prior lattice-based cryptosystems of Ajtai and Dwork [2] and Regev [46] involve secret
randomness that is not apparently reusable in a secure way. The second difficulty is that lattice-based
cryptosystems involve some non-reusable error terms, which leak additional information in our constructions.
The error terms in the problems of [2, 46] come from an exponentially large domain, therefore they may
leak more bits than we are able to lose via our matrix construction. In contrast, the error terms in the LWE
problem come from a polynomial-sized domain, so their leakage can be bounded appropriately (this requires
careful trade-offs and some additional techniques; see Section 6 for details).

1.4 Lossy Trapdoors in Context

It is informative to consider lossy trapdoors in the context of previous systems. A crucial technique in the
use of lossy trapdoors is that security is typically demonstrated via indistinguishability arguments over a
scheme’s public parameters, as opposed to its outputs. Prior constructions of CPA-secure lattice-based
cryptosystems [2, 46, 47] (among others) used this style of argument, but to our knowledge it has never been
employed in the context of chosen-ciphertext security.

The present approach can be contrasted with the oblivious transfer (OT) construction of Even, Goldreich,
and Lempel [22]. They construct (semi-honest) oblivious transfer protocols from any public key cryptosystem
in which a public key can be sampled without knowing its corresponding decryption key (or equivalent). In
the OT protocol, one of the messages is encrypted under such a public key, thereby hiding it computationally
from the receiver. Lossy TDFs can be employed to construct OT in a similar way, but the security properties
are reversed: one can sample a lossy public key that is only computationally indistinguishable from a “real”
one, but messages encrypted under the lossy key are statistically hidden.

Another interesting comparison is to the techniques used to construct CCA-secure cryptosystems from
identity-based encryption (IBE) [53] that were introduced by Canetti, Halevi, and Katz [15] and improved in
later work [13, 14, 12]. Our construction and simulation share some techniques with these works, but also
differ in important ways. In the constructions based on IBE, the simulator is able to acquire secret keys for all
identities but one special identity ID∗, and can therefore answer decryption queries in the CCA experiment.
The special identity ID∗ is hidden statistically by the public key, while the challenge ciphertext encrypted
under ID∗ hides its message only computationally. In our simulation, the security properties are once again
reversed: the lossy branch b∗ is hidden only computationally by the public key, but the challenge ciphertext
hides its message statistically.

Our concrete constructions of lossy TDFs under the DDH assumption (by reusing randomness across
many encryption keys) are technically similar to the ElGamal-like cryptosystems of Bellare et al. [4] that reuse
randomness for efficiency, and to constructions of pseudorandom synthesizers by Naor and Reingold [37]. In
particular, indistinguishability of injective and lossy functions follows directly from the pseudorandomness
property of the synthesizer. The novelty in our constructions is in the use of additional homomorphic structure
to compute encrypted linear products, and to bound the number of possible outputs in the lossy case.

1.5 Subsequent Work

Additional work on lossy trapdoor functions and related concepts has appeared since the initial publication of
this work in [43]. Rosen and Segev [49] and Boldyreva, Fehr, and O’Neill [10] independently gave simple
and compact constructions of lossy and ABO TDFs under the decisional composite residuosity assumption,
based on the natural trapdoor function of Paillier [40]. (The preliminary version of this work [43] constructed
somewhat more complex lossy and ABO TDFs under a variant of Paillier’s assumption.) Additionally,
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Boldyreva et al. [10] constructed CCA-secure deterministic cryptosystems for high-entropy messages using
lossy and ABO TDFs.

Using entirely different techniques, Gentry, Peikert, and Vaikuntanathan [25] recently demonstrated two
“natural” collections of trapdoor functions under worst-case lattice assumptions. One collection (which relies
on essentially the same quantum worst-case assumption as ours) consists of functions that are injective, but
not known to be lossy; the other collection (which is based only on classical worst-case assumptions) contains
functions that are many-to-one (non-injective), and seem best suited for complementary cryptographic
applications such as signatures schemes and identity-based encryption.

2 Preliminaries

Here we review some standard notation and cryptographic definitions. We also give relevant background
relating to entropy of distributions and extraction of randomness from weakly-random sources.

2.1 Basic Concepts

We let N denote the natural numbers. For any k ∈ N, [k] denotes the set {1, . . . , k}. Unless described
otherwise, all quantities are implicitly functions of a security parameter denoted λ ∈ N, except in Section 6,
where we use d. We use standard asymptotic notation O, o, Ω, and ω to denote the growth of functions.
We say that f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) logc λ) for some constant c. We let poly(λ) denote an
unspecified function f(λ) = O(λc) for some constant c.

We let negl(λ) denote some unspecified function f(λ) such that f = o(λ−c) for every constant c, saying
that such a function is negligible (in λ). We say that a probability is overwhelming if it is 1 − negl(λ).
Throughout the paper, a probabilistic polynomial-time (PPT) algorithm is a randomized algorithm that runs
in time poly(λ), and is implicitly given λ (represented in unary) as an input.

For convenience, we often identify random variables with their probability distributions. Let X and Y be
two random variables over some countable set S. The statistical distance between X and Y is defined as

∆(X,Y ) = 1
2

∑
s∈S
|Pr[X = s]− Pr[Y = s]| .

Statistical distance is a metric; in particular, it obeys the triangle inequality.
Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of random variables indexed by λ. We say

that X and Y are statistically indistinguishable and write X
s
≈ Y if ∆(Xλ, Yλ) is negligible as a function of

λ. Given an algorithm A, define its advantage in distinguishing between X and Y as

|Pr[A(Xλ) = 1]− Pr[A(Yλ) = 1]| ,

where the probability is taken over the random values Xλ and Yλ, and the randomness of A. We say that X
and Y are computationally indistinguishable and write X

c
≈ Y if the advantage of any PPT algorithm A is

negligible as a function of λ.3 It is routine to see that statistical indistinguishability implies computational
indistinguishability. When the ensembles are clear from context, we often say that two random variables are
statistically/computationally indistinguishable.

3For simplicity, throughout the paper we opt to define security against uniform adversaries; all our results can be easily adapted to
a non-uniform treatment.
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It is a standard fact that the outputs of any algorithm (respectively, any PPT algorithm) on two statistically
(resp., computationally) indistinguishable variables are themselves statistically (resp., computationally)
indistinguishable. Moreover, it is straightforward to prove (via a hybrid argument) that statistical and
computational indistinguishability are transitive under polynomially-many steps. More precisely, if X1

s
≈

X2
s
≈ · · ·

s
≈ Xk (respectively, X1

c
≈ · · ·

c
≈ Xk) is any sequence of k = poly(λ) ensembles, then X1

s
≈ Xk

(resp., X1
c
≈ Xk).

In the following, we frequently define security notions in terms of interactive experiments (sometimes
called “games”) involving an adversary algorithm A (formally, an interactive Turing machine). The view of
the adversary in such an experiment is the ensemble of random variables, indexed by the security parameter
λ, where each variable includes the random coins of A and all its inputs over the course of the experiment
when run with security parameter λ.

2.2 Trapdoor Functions

We recall one standard definition of a collection of injective trapdoor functions. For generality, let n =
n(λ) = poly(λ) denote the input length of the trapdoor functions as a function of the security parameter.
A collection of injective trapdoor functions is given by a tuple of PPT algorithms (S, F, F−1) having the
following properties:

1. Easy to sample, compute, and invert with trapdoor: S outputs (s, t) where s is a function index and t
is its trapdoor, F (s, ·) computes an injective (deterministic) function fs(·) over the domain {0, 1}n,
and F−1(t, ·) computes f−1

s (·).

2. Hard to invert without trapdoor: for any PPT inverter I, the probability that I(s, fs(x)) outputs x
is negligible, where the probability is taken over the choice of (s, t) ← S, x ← {0, 1}n, and I’s
randomness.

2.3 Cryptosystems and Security Notions

We recall the definition of a public-key cryptosystem and the standard notions of security, including security
under chosen-plaintext attack (CPA) and under chosen-ciphertext attack (CCA). A cryptosystem consists of
three PPT algorithms that are modeled as follows:

• G outputs a public key pk and secret key sk.

• E(pk,m) takes as input a public key pk and a message m ∈ M (whereM is some message space,
possibly depending on λ), and outputs a ciphertext c.

• D(sk, c) takes as input a secret key sk and a ciphertext c, and outputs a message m ∈ M ∪ {⊥},
where ⊥ is a distinguished symbol indicating decryption failure.

The standard completeness requirement is that for any (pk, sk) ← G and any m ∈ M, we have
D(sk, E(pk,m)) = m. We relax this notion to require that decryption is correct with overwhelming
probability over all the randomness of the algorithms.

A basic notion of security for a public key cryptosystem is indistinguishability under a chosen plaintext
attack, called CPA security. A cryptosystem is said to be CPA-secure if the views of any PPT adversary A in
the following two experiments indexed by a bit b ∈ {0, 1} are computationally indistinguishable: a key pair

10



(pk, sk)← G is generated and pk is given to A. Then A outputs two messages m0,m1 ∈M, and is given a
ciphertext c∗ ← E(pk,mb), i.e., an encryption of message mb.

A much stronger notion of security for a public key cryptosystem is indistinguishability under an adaptive
chosen ciphertext attack, or CCA security. This notion is similarly defined by two experiments as described
above, where the adversary A is additionally given access to an oracle O that computes D(sk, ·) during
part or all of the game. In a variant called CCA1 (or “lunchtime”) security, the oracle O computes D(sk, ·)
before the ciphertext c∗ is given to A, and outputs ⊥ on all queries thereafter. In the stronger and more
standard notion of CCA2 security, the oracle O computes D(sk, ·) throughout the entire experiment, with the
exception that it returns ⊥ if queried on the particular challenge ciphertext c∗ (this condition is necessary,
otherwise the definition is trivially impossible to realize).

2.4 Strongly Unforgeable One-Time Signatures

We now review standard definitions of signature schemes and a security notion called strong (one-time)
unforgeability. A signature system consists of three PPT algorithms Gen, Sign, and Ver, which are modeled
as follows:

• Gen outputs a verification key vk and a signing key skσ.

• Sign(skσ,m) takes as input a signing key skσ and a message m ∈ M (where M is some fixed
message space, possibly depending on λ) and outputs a signature σ.

• Ver(vk,m, σ) takes as input a verification key vk, a message m ∈M, and a signature σ, and outputs
either 0 or 1.

The standard completeness requirement is that for any (vk, skσ) ← Gen and any m ∈ M, we have
Ver(vk,m, Sign(skσ,m)) = 1. We relax this notion to require that the verification algorithm succeeds (i.e.,
outputs 1) with overwhelming probability over the randomness of the algorithms.

The security notion of strong existential unforgeability under a one-time chosen message attack is defined
in terms of the following experiment between a challenger and a PPT adversary algorithm A: the challenger
first generates a key pair (vk, skσ) ← G, and gives vk to A. Then A queries an oracle that computes
Sign(skσ, ·) on a message m ∈M of its choice. Finally, A outputs a pair (m′, σ′), and is said to succeed if
Ver(vk,m′, σ′) = 1 and (m′, σ′) 6= (m,σ). The advantage of A is the probability that A succeeds, taken
over all the randomness of the experiment; a signature scheme is strongly unforgeable under a one-time
chosen message attack if every PPT adversary A has only negligible advantage in the above game.

Strongly unforgeable one-time signatures can be constructed from any one-way function [28], and more
efficiently from collision-resistant hash functions [34]. As we show later, both primitives have black-box
constructions from lossy trapdoor functions.

2.5 Hashing

A family of functionsH = {hi : D → R} from a domain D to range R is called pairwise independent [54]
if, for every distinct x, x′ ∈ D and every y, y′ ∈ R,

Pr
h←H

[h(x) = y and h(x′) = y′] = 1/ |R|2 .

The familyH is called universal if, for every distinct x, x′ ∈ D, Prh←H[h(x) = h(x′)] = 1/ |R|. Pairwise
independence is a strictly stronger property than universality. Families satisfying either notion can be
efficiently constructed and computed [54].
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A collection of collision-resistant hash functions from length `(λ) to length `′(λ) < `(λ) is modeled by
a pair of PPT algorithms (Scrh, Fcrh), where

1. Scrh outputs a function index i,

2. Fcrh(i, ·) computes a (deterministic) function Hi : {0, 1}`(λ) → {0, 1}`
′(λ),

3. for every PPT adversary A, the probability (over the choice of i and the randomness of A) that A(i)
outputs distinct x, x′ ∈ {0, 1}`(λ) such that Hi(x) = Hi(x′) is negligible in λ.

A collection of universal one-way hash functions (UOWHFs) [38] is similarly given by algorithms
(Suowhf, Fuowhf), with the following security property. Let A be a PPT adversary that participates in the
following experiment: A outputs an x ∈ {0, 1}`(λ), then a function index i← Suowhf is chosen and given to
A, then A outputs some x′ ∈ {0, 1}`(λ) distinct from x. Then the probability (over all the randomness of the
game) that Fuowhf(i, x) = Fuowhf(i, x′) is negligible (in λ).

2.6 Extracting Randomness

The min-entropy of a random variable X over a domain S is

H∞(X) = − lg(max
s∈S

Pr[X = s]).

In many natural settings, the variable X is correlated with another variable Y whose value is known to an
adversary. For our purposes, it is most convenient to use the notion of average min-entropy as defined by
Dodis et al. [19], which captures the remaining unpredictability of X conditioned on the value of Y :

H̃∞(X|Y ) := − lg
(

E
y←Y

[
2−H∞(X|Y=y)

])
= − lg

(
E

y←Y

[
max
s∈S

Pr[X = s]
])

.

The average min-entropy is the negative logarithm of the average predictability of X conditioned on the
random choice of Y ; that is, the average maximum probability of predicting X given Y . (See [19] for further
discussion and alternate notions.)

Lemma 2.1 ([19, Lemma 2.2]). If Y takes at most 2r possible values and Z is any random variable, then

H̃∞(X|(Y, Z)) ≥ H∞(X|Z)− r.

In our applications, we need to derive nearly-uniform bits from a weakly random source X . In general,
this can be done using any strong randomness extractor (see Shaltiel’s survey for details [52]). In our case,
pairwise independent hash functions [54] are sufficient, and as a bonus, they interact particularly well with
the notion of average min-entropy.

Lemma 2.2 ([19, Lemma 2.4]). Let X , Y be random variables such that X ∈ {0, 1}n and H̃∞(X|Y ) ≥ k.
LetH be a family of pairwise independent hash functions from {0, 1}n to {0, 1}`. Then for h← H, we have

∆((Y, h, h(X)), (Y, h, U`)) ≤ ε

as long as ` ≤ k − 2 lg(1/ε).
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3 Lossy and All-But-One Trapdoor Functions

3.1 Lossy TDFs

Here we define lossy trapdoor functions. Define the following quantities as functions of the security parameter:
n(λ) = poly(λ) represents the input length of the function and k(λ) ≤ n(λ) represents the lossiness of
the collection. For convenience, we also define the residual leakage r(λ) := n(λ) − k(λ). For all these
quantities, we often omit the dependence on λ.

A collection of (n, k)-lossy trapdoor functions is given by a tuple of PPT algorithms (Sltdf, Fltdf, F
−1
ltdf )

having the properties below. For notational convenience, define the algorithms Sinj(·) := Sltdf(·, 1) and
Sloss(·) := Sltdf(·, 0).

1. Easy to sample an injective function with trapdoor: Sinj outputs (s, t) where s is a function index and t
is its trapdoor, Fltdf(s, ·) computes an injective (deterministic) function fs(·) over the domain {0, 1}n,
and F−1

ltdf (t, ·) computes f−1
s (·). If a value y is not in the image of fs, i.e., if f−1

s (y) does not exist, then
the behavior of F−1

ltdf (t, y) is unspecified (because of this, the output of F−1
ltdf may need to be checked

for correctness in certain applications).

2. Easy to sample a lossy function: Sloss outputs (s,⊥) where s is a function index, and Fltdf(s, ·)
computes a (deterministic) function fs(·) over the domain {0, 1}n whose image has size at most
2r = 2n−k.

3. Hard to distinguish injective from lossy: the first outputs of Sinj and Sloss are computationally in-
distinguishable. More formally, let Xλ denote the distribution of s from Sinj, and let Yλ denote the
distribution of s from Sloss. Then {Xλ}

c
≈ {Yλ}.

Note that we make no explicit requirement that an injective function be hard to invert. As shown in
Lemma 3.3, this property is implied by combination of the lossiness and indistinguishability properties.

For our lattice-based constructions we need to consider a slightly relaxed definition of lossy TDFs,
which we call almost-always lossy TDFs. Namely, we require that with overwhelming probability over the
randomness of Sinj, the index s of Sinj describes an injective function fs that F−1

ltdf inverts correctly on all
values in the image of fs. In other words, there is only a negligible probability (over the choice of s) that
fs(·) is not injective or that F−1

ltdf (t, ·) incorrectly computes f−1
s (·) for some input. Furthermore, we require

that with overwhelming probability, the lossy function fs generated by Sloss has image size at most 2r. In
general, the function sampler cannot check these conditions because they refer to “global” properties of the
generated function. The use of almost-always lossy TDFs does not affect security in our applications (e.g.,
CCA-secure encryption) because the adversary has no control over the generation of trapdoor/lossy functions.
Therefore the potential advantage of the adversary due to sampling an improper function is bounded by a
negligible quantity.

3.2 All-But-One TDFs

For our CCA applications, it is convenient to work with a richer abstraction that we call all-but-one (ABO)
trapdoor functions. In an ABO collection, each function has an extra input called its branch. All of the
branches are injective trapdoor functions (having the same trapdoor value), except for one branch which
is lossy. The lossy branch is specified as a parameter to the function sampler, and its value is hidden
(computationally) by the resulting function description.
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We retain the same notation for n, k, r as above, and also let B = {Bλ}λ∈N be a collection of sets whose
elements represent the branches. Then a collection of (n, k)-all-but-one trapdoor functions with branch
collection B is given by a tuple of PPT algorithms (Sabo, Gabo, G

−1
abo) having the following properties:

1. Sampling a trapdoor function with given lossy branch: for any b∗ ∈ Bλ, Sabo(b∗) outputs (s, t), where
s is a function index and t is its trapdoor.

For any b ∈ Bλ distinct from b∗, Gabo(s, b, ·) computes an injective (deterministic) function gs,b(·)
over the domain {0, 1}n, and G−1

abo(t, b, ·) computes g−1
s,b (·). As above, the behavior of G−1

abo(t, b, y) is
unspecified if g−1

s,b (y) does not exist.

Additionally, Gabo(s, b∗, ·) computes a function gs,b∗(·) over the domain {0, 1}n whose image has size
at most 2r = 2n−k.

2. Hidden lossy branch: for any b∗0, b
∗
1 ∈ Bλ, the first output s0 of Sabo(b∗0) and the first output s1 of

Sabo(b∗1) are computationally indistinguishable.

Just as with lossy TDFs, we also need to consider an “almost-always” relaxation of the ABO definition.
Specifically, the injective, invertible, and lossy properties need only hold with overwhelming probability over
the choice of the function index s. For similar reasons, using an almost-always ABO collection does not
affect security in our applications.

3.3 Basic Relations

Lossy and ABO trapdoor functions are equivalent for appropriate choices of parameters and degrees of
lossiness. We first show an easy equivalence between the two notions for ABOs with binary branch sets.

Lemma 3.1. A collection of (n, k)-ABO TDFs having exactly two branches is equivalent to a collection of
(n, k)-lossy TDFs.

Proof. Suppose the existence of an (n, k)-ABO collection having branch set {0, 1} (without loss of gener-
ality). We construct a collection of (n, k)-lossy TDFs as follows: Sinj generates an ABO function having
lossy branch b∗ = 1 (retaining the trapdoor), and Sloss samples an ABO function having lossy branch b∗ = 0
(discarding the trapdoor). The evaluation algorithm Fltdf simply always computes the function on branch
b = 0. It is clear that F−1

ltdf can invert any injective function (using the trapdoor) because it is evaluated on a
non-lossy branch, whereas Sloss generates a lossy function having image size at most 2n−k.

Now consider the converse direction, supposing a collection of (n, k)-lossy TDFs. We construct an (n, k)-
ABO collection having branch set B = {0, 1} as follows: the generator Sabo(b∗) outputs (s, t) = ((s0, s1), t)
where (s0, t0) ← Sltdf(b∗), (s1, t1) ← Sltdf(1 − b∗), and t = t1−b∗ . The evaluation algorithm Gabo, given
index s = (s0, s1), branch b and value x outputs Fltdf(sb, x). The inversion algorithm G−1

abo, given trapdoor t,
branch b = 1− b∗, and input y outputs F−1

ltdf (t, y). It is straightforward to verify the required properties of
this construction.

We can also construct an ABO collection for larger branch sets from one with just a binary branch set.
Our construction involves some degradation in lossiness (i.e., additional leakage) because it invokes several
functions on the same input. It is an interesting question whether this can be improved.

Lemma 3.2. An (n, n−r)-ABO collection for branch setB = {0, 1} implies an (n, n−` ·r)-ABO collection
for branch set B = {0, 1}`.
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Proof. We construct the claimed ABO collection as follows: Sabo, given the desired lossy branch b∗ ∈ {0, 1}`,
constructs ` individual functions g(i) each having lossy branch b∗i ∈ {0, 1} (the ith bit of b∗) using the
hypothesized collection, and keeps all the trapdoors. The evaluation algorithm Gabo, on branch b ∈ {0, 1}`
and input x, outputs b and the tuple of values g(i)(bi, x). When b 6= b∗, the branches differ at some position
j ∈ [`], so x can be recovered from the corresponding value g(j)(bj , x) (using the corresponding trapdoor).
When b = b∗, then all ` functions are evaluated on their lossy branches, and the total number of possible
outputs is at most (2r)` = 2`·r.

3.4 Implications of Lossy TDFs

Here we show that lossy TDFs (having appropriate parameters) can be used for simple, black-box con-
structions of other important cryptographic primitives, including standard (injective) trapdoor functions,
pseudorandom generators, and collision-resistant hash functions. We stress that most of the applications in
this section do not require a trapdoor, but only indistinguishability between injective and lossy functions
(the only exception is in obtaining standard trapdoor functions). It seems plausible that realizing this weaker
notion of “lossy functions” could be achieved more simply or efficiently than the full definition of lossy
TDFs; we leave an investigation of this question to future work.

3.4.1 Trapdoor Functions

First we show that the injective functions from a lossy collection are indeed trapdoor functions in the standard
sense (i.e., easy to invert with a trapdoor, and hard to invert otherwise).

Lemma 3.3. Let (Sltdf, Fltdf, F
−1
ltdf ) give a collection of (n, k)-lossy trapdoor functions with k = ω(log λ).

Then (Sinj, Fltdf, F
−1
ltdf ) give a collection of injective trapdoor functions. (The analogous result applies for

almost-always collections.)

Proof. By definition, fs(·) = Fltdf(s, ·) is injective for any s generated by Sinj, and F−1
ltdf inverts fs(·) given

the trapdoor t. Therefore the completeness conditions hold.
Suppose by way of contradiction that I is a PPT inverter, i.e., that I(s, fs(x)) outputs xwith nonnegligible

probability over the choice of (s, t) ← Sinj, x ← {0, 1}n, and I’s randomness. We use I to build a
distinguisher D between injective functions (those generated by Sinj) and lossy ones (those generated by
Sloss). D works as follows: on input a function index s, choose x ← {0, 1}n and compute y = Fltdf(s, x).
Let x′ ← I(s, y). If x′ = x, output “injective,” otherwise output “lossy.”

We now analyze D. First, if s is generated by Sinj, then by assumption on I, we have x′ = x with
nonnegligible probability, and D outputs “injective.” Now, suppose s is generated by Sloss. Then the
probability (over the choice of s and x) that even an unbounded I predicts x is given by the average min-
entropy of x conditioned on (s, fs(x)), i.e., the prediction probability is at most 2−H̃∞(x|(s,fs(x))). Because
fs(·) takes at most 2n−k values, Lemma 2.1 and the independence of x from s implies that

H̃∞(x|(s, fs(x))) ≥ H∞(x|s)− (n− k) = n− (n− k) = k.

Because k = ω(lg λ), the probability that I(s, y) outputs x, and D outputs “injective,” is negl(λ). We
conclude that D distinguishes injective functions from lossy ones, a contradiction of the hypothesis.
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3.4.2 Hard-Core Functions and Pseudorandom Generators

Here we show that lossy TDFs admit simple “hard-core” predicates (and more generally, multibit functions)
with tight and elementary security reductions. Informally, a hard-core function for a function f : {0, 1}n →
{0, 1}∗ is a function h : {0, 1}n → {0, 1}`, where h(x) is computationally indistinguishable from a uniform
and independent string r ← {0, 1}`, given knowledge of f(x) for x← {0, 1}n.

Our results here can be contrasted with that of Goldreich and Levin [29], who demonstrated a “universal”
hard-core predicate for every one-way function. On one hand, their result applies to any one-way function (or
collection thereof), whereas ours relies crucially on lossy functions. On the other hand, their proof relies
on a highly non-trivial security reduction whose running time depends on the success probability of the
distinguisher; our proof is entirely elementary and the security reduction is tight (i.e., the running time and
success probability of our distinguisher between lossy and injective functions are essentially the same as
those of the distinguisher between the value of the hard-core function and a uniform string).

In the following, let (Sltdf, Fltdf, F
−1
ltdf ) give a collection of (n, k)-lossy TDFs (in fact, we only need a

collection of lossy functions; F−1
ltdf is unnecessary). LetH be a family of pairwise independent hash functions

from {0, 1}n to {0, 1}`, where ` ≤ k − 2 lg(1/ε) for some negligible ε = negl(λ). Define the following
random variables that are sampled by the experiments described below, which are implicitly indexed by the
security parameter λ.

Variable X0: choose (s, t)← Sinj, h← H, and x← {0, 1}n. The value of X0 is (s, h, Fltdf(s, x), h(x)).

Variable X1: choose (s, t)← Sloss, h← H, and x← {0, 1}n. The value of X1 is (s, h, Fltdf(s, x), h(x)).

Variable X2: choose (s, t) ← Sloss, h ← H, x ← {0, 1}n, and r ← {0, 1}`. The value of X2 is
(s, h, Fltdf(s, x), r).

Variable X3: choose (s, t) ← Sinj, h ← H, x ← {0, 1}n, and r ← {0, 1}`. The value of X3 is
(s, h, Fltdf(s, x), r).

Lemma 3.4. Let X0, X1, X2, X3 be as defined above. Then

{X0}
c
≈ {X1}

s
≈ {X2}

c
≈ {X3} .

In particular,H is a family of hard-core functions for the lossy collection.

Proof. The fact that {X0}
c
≈ {X1} follows immediately from the indistinguishability of injective and lossy

functions: a PPT algorithm, given as input an s generated either by Sinj or Sloss, can sample h ← H,
x← {0, 1}n, and compute Fltdf(s, x), h(x) on its own and output (s, h, Fltdf(s, x), h(x)). Because the two
distributions of s are computationally indistinguishable by hypothesis, the resulting output distributions X0

and X1 are likewise. A virtually identical argument shows that {X2}
c
≈ {X3} as well.

It remains to show that {X1}
s
≈ {X2}. Let s be any fixed function index generated by Sloss. Because

fs(·) = Fltdf(s, ·) has at most 2n−k outputs and x← {0, 1}n is independent of s, by Lemma 2.1 we have

H̃∞(x|s, fs(x)) ≥ H∞(x|s)− (n− k) = k.

Therefore, by Lemma 2.2, the hypothesis that ` ≤ k − 2 lg(1/ε), and the definition of X1, X2, we have

∆(X1, X2) ≤ ε(λ) = negl(λ),

as desired.
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A pseudorandom generator is a deterministic function G : {0, 1}n → {0, 1}n
′

for some n′ > n ≥ 1
such that the uniform distribution over {0, 1}n

′
is computationally indistinguishable from G(x), where

x ← {0, 1}n is chosen uniformly at random. Hard-core predicates (and hard-core functions) have played
an integral role in the construction of pseudorandom generators [9, 55, 33]. In particular, Håstad et al. [33]
constructed pseudorandom generators from any one-way function; their construction is much simpler (and
the security reduction is tighter) when the one-way function is also injective. Their approach is first to apply
the Goldreich-Levin hard-core predicate of an injective one-way function to construct an object called a
pseudoentropy generator, which, informally, is a deterministic function G such that G(x) is computationally
indistinguishable from some distribution having more entropy than x. They then construct a pseudorandom
generator from any pseudoentropy generator; see Sections 4.3 and 4.6 of [33] for details. We observe
that because pairwise independent hash functions are hard-core for the injective functions of a lossy TDF
collection, they can be used in lieu of the Goldreich-Levin predicate in the construction of [33], yielding a
tight security reduction for the resulting construction of pseudoentropy generators.

3.4.3 Universal One-Way and Collision-Resistant Hashing

We now construct UOWHFs and collision-resistant hash functions from lossy TDFs. The construction is
quite simple: the hash function H is defined as H(x) := h(f(x)), where f is (say) a lossy function, and
h is selected from a universal family of hash functions. For an appropriate output length of the universal
family, H shrinks its input, and for appropriate degrees of lossiness, finding collisions (of the appropriate
type) implies the ability to distinguish injective functions from lossy ones.

The main idea behind the security proof (for both UOWHFs and CRHFs) is the following: if the function
H = h ◦ f is constructed using an injective f , then all collisions in H must occur in the “outer” application
of h. Now consider the function H = h ◦ f ′, where f ′ is lossy. For an appropriate level of lossiness,
with overwhelming probability the function h contains no collisions, either on the selected target point (for
UOWHFs) or over the entire image of f ′ (for CRHFs). Therefore all collisions in the alternate construction
must occur in the “inner” application of f ′. We can therefore distinguish between injective and lossy functions
by whether a given collision of H occurs in its outer or inner part. (Interestingly, the proof works equally
well regardless of whether the “true” construction uses an injective or lossy inner function.) We now proceed
more formally with the construction of CRHFs, which are themselves UOWHFs (see also the discussion
following the proof of Lemma 3.5).

Assume without loss of generality that the input length n(λ) = λ equals the security parameter. Let
(Sltdf, Fltdf, F

−1
ltdf ) give a collection of (n, k)-lossy trapdoor functions {fs : {0, 1}n → R} having arbitrary

rangeR and residual leakage r = n− k ≤ ρn for some constant ρ < 1/2. (An almost-always family also
suffices.) LetH = {hi : R → {0, 1}κn} be a universal family of hash functions where κ = 2ρ+ δ < 1 for
some constant δ ∈ (0, 1− 2ρ).4

The algorithms for the collection of collision-resistant hash functions are as follows:

• Generator Scrh chooses (s, t) ← Sinj and disposes of t. It also chooses h ← H. The index of the
generated hash function is i = (s, h).

• Evaluator Fcrh(i, x) on index i = (s, h) and input x ∈ {0, 1}n outputs h(Fltdf(s, x)) ∈ {0, 1}κn.

Lemma 3.5. The algorithms (Scrh, Fcrh) described above give a collection of collision-resistant hash func-
tions from {0, 1}n to {0, 1}κn.

4Technically, we require one familyHλ of hash functions for each value of the security parameter λ, but we omit this dependence
for clarity.
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Proof. Let C be an adversary that attempts to find collisions for the collection we described. Specifically, C
takes an index i = (s, h) and outputs a supposed collision x, x′ ∈ {0, 1}n. Let E be the event that the output
x, x′ is a valid collision. Let E′ be the event that x, x′ is a valid collision and Fltdf(s, x) 6= Fltdf(s, x′). In the
real game, because Fltdf(s, ·) is injective, the events E and E′ are equivalent.5 Then it suffices to show that
p0 = Pr[E′] in the real game is negligible, via an alternate game.

The alternate game proceeds as follows: C is given an index i = (s, h) where s is instead generated by
Sloss, and h is chosen as above. Then by indistinguishability of lossy and injective functions, p1 = Pr[E′]
in the alternate game is only negligibly different from p0. We now show that p1 is negligible (even if C is
unbounded).

Fix the s chosen in the alternate game, and let I = Fltdf(s, {0, 1}n) be the image of the lossy function.
By lossiness, |I| ≤ 2ρn. Now consider any fixed distinct pair y, y′ ∈ I: by universality of H, we have
Prh[h(y) = h(y′)] ≤ 2−κn. Summing over all the (at most) 22ρn such pairs via a union bound, we see that

Pr
h

[∃ distinct y, y′ ∈ I : h(y) = h(y′)] ≤ 2(2ρ−κ)n = 2−δn = negl(λ).

Now consider the event E′ in the alternate game: for x, x′ to be a valid collision and y = Fltdf(s, x) and
y′ = Fltdf(s, x′) to be distinct requires h(y) = h(y′). By above, the probability of such an event is negligible,
and we are done.

Discussion. The crucial hypothesis in the above proof is that the residual leakage ρn of the lossy TDF
collection is significantly less than n/2, so as to circumvent the birthday bound. For UOWHFs, the exact
same proof goes through as long as the leakage is bounded by ρn for some constant ρ < 1, because we only
need to rule out collisions for the specific input chosen by the adversary before the hash function is selected.

We also note that alternate constructions, in which s is generated by Sloss instead of Sinj, can also yield
UOWHFs and CRHFs. These constructions might seem more “natural,” because Fltdf(s, ·) can be seen as
“compressing” its input into a small image (of possibly long strings), followed by a “smoothing” step in
which h maps the image to a set of short strings. The proof is symmetric to the one above, with the event
E′ redefined to require that x, x′ be a valid hash collision and that Fltdf(s, x) = Fltdf(s, x′). Then in the real
game (the “lossy” case), events E and E′ are equivalent except when h contains a collision on the image I;
in the alternate game (the “injective” case), event E′ never occurs.

Finally, we point out again that the our construction of hash functions does not require a trapdoor, but
only a collection of lossy functions.

4 Cryptosystems and Oblivious Transfer

Here we show how to construct cryptosystems enjoying various notions of security using lossy and ABO
trapdoor functions. We start in Section 4.1 with a simple construction of a cryptosystem that is secure against
chosen-plaintext attacks, which illuminates some of the main ideas behind the main CCA-secure construction.
In Section 4.2 we sketch how the CPA-secure cryptosystem also implies oblivious transfer and multiparty
computation protocols. We conclude in Section 4.3 with our CCA-secure construction and its proof of
security.

5In the almost-always case, comparable events are equivalent if we add the constraint that Fltdf(s, ·) is actually injective, which
fails with negligible probability.
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4.1 CPA-Secure Construction

We first describe our basic CPA-secure cryptosystem. All of the parameters in the system depend upon the
security parameter λ; for notational convenience we often omit this explicit dependence.

Let (Sltdf, Fltdf, F
−1
ltdf ) give a collection of (n, k)-lossy trapdoor functions. (Almost-always lossy TDFs

are also sufficient.) LetH be a family of pairwise independent hash functions from {0, 1}n to {0, 1}`, where
` ≤ k − 2 lg(1/ε) for some negligible ε = negl(λ). Our cryptosystem has message space {0, 1}`.

• Key generation. G first generates an injective trapdoor function: (s, t)← Sinj. It also chooses a hash
function h← H.

The public key pk = (s, h) consists of the injective function index and the hash function. The secret
key sk = (t, h) consists of the trapdoor and the hash function.

• Encryption. E takes as input (pk,m) where pk = (s, h) is a public key and m ∈ {0, 1}` is the
message.

It first chooses x← {0, 1}n uniformly at random. The ciphertext is c = (c1, c2), where

c1 = Fltdf(s, x), c2 = m⊕ h(x).

• Decryption. D takes as input (sk, c) where sk = (t, h) is the secret key and c = (c1, c2) is a
ciphertext.

The decryption algorithm computes x = F−1
ltdf (t, c1) and outputs c2 ⊕ h(x).

Theorem 4.1. The algorithms (G, E ,D) described above give a CPA-secure cryptosystem.

Proof. Correctness of decryption is immediate from correctness of F−1
ltdf . (If the lossy TDF collection is

almost-always, then decryption may fail with only negligible probability.)
Security under chosen plaintext attack essentially follows immediately from the fact that pairwise

independent hash functions are hard-core for lossy TDFs, as established by Lemma 3.4 in Section 3.4.2.
We show that the view of the adversary in either of the CPA experiments (in which mb is encrypted, for
b ∈ {0, 1}) is computationally indistinguishable from a common “hybrid” experiment, from which it follows
that the two CPA experiments are themselves computationally indistinguishable.

In more detail, consider a hybrid chosen-plaintext attack experiment in which pk = (s, h) is generated
by choosing (s, t)← Sloss and h← H, and the ciphertext (c1, c2) = (Fltdf(s, x), r ⊕mb) for x← {0, 1}n
and r ← {0, 1}`. Note that the view of the adversary is identical for either value of b and any choice of
messages m0,m1, because r is uniform and independent of all other variables. By Lemma 3.4, this hybrid
view is computationally indistinguishable from the view in the CPA experiment when mb is encrypted. This
completes the proof.

4.2 Interlude: Oblivious Transfer and Multiparty Computation

One interesting property of our CPA-secure scheme is that it can be used to create an oblivious transfer
protocol (secure against semi-honest, or “honest-but-curious,” adversaries) in a manner that roughly follows
the approach of Even, Goldreich, and Lempel [22]. This approach relies on a CPA-secure cryptosystem that
allows sampling a public key in two different but indistinguishable ways: first, in a “normal” way together
with the corresponding decryption key, and second, in an “oblivious” way so that messages encrypted under
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the public key remain hidden even given the random coins of the sampler. As shown in [22], the following is
an `-out-of-m (semi-honest) oblivious transfer protocol: the receiver generates ` public keys normally (with
decryption keys) and m− ` public keys obliviously, and delivers all m public keys to the sender, where the
normal public keys correspond to the ` desired messages. The sender encrypts each of the m messages under
the corresponding public key, and returns the m ciphertexts, of which the receiver can decrypt exactly the
desired `.

In our CPA-secure cryptosystem, one can sample a public key obliviously simply by generating a lossy
function rather than an injective one, letting (s,⊥) ← Sloss instead of (s, t) ← Sinj. By the proof of
Theorem 4.1, public keys sampled in this way are computationally indistinguishable from normal ones, and
messages encrypted under such keys are statistically hidden. We remark that these security properties are a
reversal of those obtained previously in the EGL paradigm (using, e.g., trapdoor permutations), where the
receiver’s security is statistical and the sender’s security is computational.

Oblivious transfer protocol secure against malicious adversaries can be constructed using the zero-
knowledge “compiler” paradigm of Goldreich, Micali, and Wigderson [30] or using a recent black-box
transformation of Haitner [32], and secure multiparty computation can be obtained using the (non-black-
box) compilation paradigm of Goldreich, Micali, and Wigderson [31]. However, these constructions are
inefficient and primarily of theoretical interest. Recent work by Peikert, Vaikuntanathan, and Waters [42]
constructs efficient (and “universally composable”) OT protocols against malicious adversaries under a
variety of assumptions, including those used in this work to instantiate lossy TDFs. We also point out that
semi-honest OT protocols are implicit in the existing literature on lattice-based cryptosystems [2, 46, 47];
these cryptosystems are proved secure by showing that it is possible to sample a (malformed) public key that
is indistinguishable from a valid public key, whose ciphertexts statistically hide the encrypted messages.

4.3 CCA-Secure Construction

We now describe our CCA-secure cryptosystem.
Let (Gen,Sign,Ver) be a strongly unforgeable one-time signature scheme where the public verification

keys are in {0, 1}v. Let (Sltdf, Fltdf, F
−1
ltdf ) give a collection of (n, k)-lossy trapdoor functions, and let

(Sabo, Gabo, G
−1
abo) give a collection of (n, k′)-ABO trapdoor functions having branches Bλ = {0, 1}v (which

contains the set of signature verification keys).6

We require that the total residual leakage over the lossy and ABO collections is

r + r′ = (n− k) + (n− k′) ≤ n− κ, (1)

for some κ = κ(n) = ω(log n). LetH be a family of pairwise independent hash functions from {0, 1}n to
{0, 1}`, where 0 < ` ≤ κ− 2 lg(1/ε) for some negligible ε = negl(λ). Our cryptosystem has message space
{0, 1}`.

• Key generation. G generates an injective trapdoor function via (s, t) ← Sinj, an ABO trapdoor
function having lossy branch 0v via (s′, t′)← Sabo(0v), and a hash function h← H.

The public key consists of the two function indices and the hash function:

pk = (s, s′, h).

The secret decryption key consists of the two trapdoors, along with the public key:

sk = (t, t′, pk).
6Almost-always lossy and ABO TDFs are also sufficient.
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(In practice, the ABO trapdoor t′ may be discarded, but we retain it here for convenience in the security
proof.)

• Encryption. E takes as input (pk,m) where pk = (s, s′, h) is a public key and m ∈ {0, 1}` is the
message.

It generates a keypair for the one-time signature scheme via (vk, skσ) ← Gen, then chooses x ←
{0, 1}n uniformly at random. It computes

c1 = Fltdf(s, x), c2 = Gabo(s′, vk, x), c3 = m⊕ h(x).

Finally, it signs the tuple (c1, c2, c3) as σ ← Sign(skσ, (c1, c2, c3)).

The ciphertext c is output as
c = (vk, c1, c2, c3, σ).

• Decryption. D takes as input (sk, c) where sk = (t, t′, pk = (s, s′, h)) is the secret key and c =
(vk, c1, c2, c3, σ) is a ciphertext.

The decryption algorithm first checks that Ver(vk, (c1, c2, c3), σ) = 1; if not, it outputs ⊥. It then
computes x = F−1

ltdf (t, c1), and checks that c1 = Fltdf(s, x) and c2 = Gabo(s′, vk, x); if not, it outputs
⊥.

Finally, it outputs m = c3 ⊕ h(x).

Theorem 4.2. The algorithms (G, E ,D) described above give a CCA2-secure cryptosystem.

4.4 Proof of Theorem 4.2

First we argue the correctness of the cryptosystem. Consider decryption of some properly generated ciphertext
c = (vk, c1, c2, c3, σ) of a message m. By completeness of the one-time signature, Ver(vk, (c1, c2, c3), σ) =
1. The function fs(·) = Fltdf(s, ·) is injective (with overwhelming probability over the choice of s, in
the almost-always case), therefore F−1

ltdf (t, c1) = x, where x is the randomness used in the encryption.
By construction, c1 = Fltdf(s, x) and c2 = Gabo(s′, vk, x). Therefore the decryption algorithm outputs
c3 ⊕ h(x) = m⊕ h(x)⊕ h(x) = m.

We prove CCA-security by describing a sequence of experiments Game1, . . . ,Game6, where Game1 is
the real chosen ciphertext attack experiment in which mb is encrypted, for an arbitrary choice of b ∈ {0, 1}.
Then we show that for all i = 1, . . . , 5, the adversary’s views in Gamei and Gamei+1 are indistinguishable
(either computationally or statistically). Finally, it follows immediately from the definition of Game6 that
the adversary’s view is identical for either value of b ∈ {0, 1}. It follows by transitivity that the two chosen-
ciphertext attack experiments for b ∈ {0, 1} are computationally indistinguishable, hence the cryptosystem is
CCA-secure.

We now define the sequence of games we use to prove security. An experiment is entirely specified
by three algorithms (which keep joint state) that interact with the adversary in the manner described in the
definition of the CCA experiment:

• Setup. Outputs a public key pk.

• Decrypt. On input a ciphertext c from the adversary, outputs an m ∈ {0, 1}` ∪ {⊥}.

• Challenge. On input two messages m0,m1 ∈ {0, 1}` from the adversary, outputs a ciphertext c∗.
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When referring to an implementation of these algorithms in a specific experiment i, we use a subscript i,
e.g., Setup1.

Before defining these algorithms for the individual experiments, we define two “global” aspects of the
algorithms that remain the same in all the games. First, Setup always first chooses a one-time signature
keypair (vk∗, sk∗σ) ← Gen, and then proceeds as we define below. Second, whenever Challenge(m0,m1)
produces a challenge ciphertext c∗ by calling E(pk,mb), instead of generating a one-time signature keypair
(vk, skσ) on its own, it uses (vk, skσ) = (vk∗, sk∗σ) as generated in the first step of Setup. We stress that
Challenge operates this way in all the games we define.

When making these changes to the real CCA game (Game1), the view of the adversary remains identical,
because Challenge is invoked exactly once. We make these changes merely for the convenience of having
vk∗ defined throughout both query phases, which aids the analysis.

Game1: Algorithms Setup1, Decrypt1, and Challenge1 are identical to those in the CCA2 experiment
described in Section 2.3, with the above-noted changes. That is, Setup1 calls (pk, sk)← G and outputs
pk; Decrypt1(c) calls m← D(sk, c) and outputs m.

In particular, note that G chooses the ABO lossy branch to be 0v, and D inverts c1 using the injective
function trapdoor t.

Game2: In this game, Setup2 = Setup1 and Challenge2 = Challenge1. The only change is in Decrypt2,
which is defined as follows: on input a ciphertext c = (vk, c1, c2, c3, σ), if vk = vk∗ (as chosen by
Setup2), then output ⊥. Otherwise return Decrypt1(c). (Note that by defining vk∗ in Setup, this new
rule is well-defined during both query phases.)

Game3: In this game, Decrypt3 = Decrypt2 and Challenge3 = Challenge2. The only change is in Setup3,
in which the ABO function is chosen to have a lossy branch b∗ = vk∗ rather than b∗ = 0v. Formally,
in G we replace (s′, t′)← Sabo(0v) with (s′, t′)← Sabo(vk∗).

Note that Decrypt3 still decrypts using the injective function trapdoor t, and that the ABO function
trapdoor t′ is never used in this experiment.

Game4: In this game, Setup4 = Setup3 and Challenge4 = Challenge3. The only change is in Decrypt4, in
which decryption is now done using the ABO trapdoor t′. Formally, in D we replace x = F−1

ltdf (t, c1)
with x = G−1

abo(t′, vk, c2).

Note that Decrypt4 still first rejects if vk = vk∗ (as in Decrypt2), and performs all the consistency
checks of D. Also note that the injective function trapdoor t is never used in this experiment.

Game5: In this game, Decrypt5 = Decrypt4 and Challenge5 = Challenge4. The only change is in Setup5,
in which we replace the injective function with a lossy one. Formally, in G we replace (s, t)← Sinj
with (s,⊥)← Sloss.

Game6: In this game, Setup6 = Setup5 and Decrypt6 = Decrypt5. The only change is in Challenge6,
where the c3 component of its output ciphertext c∗ is replaced by a uniform and independent value
c3 = r ← {0, 1}`. Formally, in the call to E by Challenge6, we replace c3 = mb ⊕ h(x) with
c3 = r ← {0, 1}`.

First observe that, as desired, the adversary’s view in Game6 is identical for either choice of b ∈ {0, 1},
because b is never used in the experiment. We now state and prove a sequence of indistinguishability results
that establish the main theorem.
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Claim 4.3. The adversary’s views in Game1 and Game2 are computationally indistinguishable, assuming
the strong one-time existential unforgeability of the signature scheme.

Proof. We begin by observing that the views in Game1 and Game2 are identical unless a certain event F
happens, which is that the adversary A makes a legal (i.e., not equal to c∗) decryption query of the form
c = (vk = vk∗, c1, c2, c3, σ), where Ver(vk, (c1, c2, c3), σ) = 1. We show that event F happens with
negligible probability.

Consider a simulator S that mounts a (one-time) chosen message attack against the signature scheme
as follows: on input vk generated by Gen, it emulates Setup by letting vk∗ = vk and letting (pk, sk)← G,
and gives pk to A. Upon any decryption query from A of the form c = (vk = vk∗, c1, c2, c3, σ) such
that Ver(vk, (c1, c2, c3), σ) = 1, S immediately outputs ((c1, c2, c3), σ) as a forgery and returns ⊥ to A.
Otherwise, S returns m← D(sk, c) to A.

When A asks to be challenged on two messages m0,m1 ∈ {0, 1}`, S creates the challenge ciphertext
c∗ = (vk∗, c∗1, c

∗
2, c
∗
3, σ
∗) by running E(pk,mb), except that the signature σ∗ is generated by querying S’s

signing oracle on the message (c∗1, c
∗
2, c
∗
3), instead of running Sign.

It is clear by construction that S simulates Game2 perfectly to A. We now show that event F happens if
and only if S outputs a valid forgery. If F happens during the first query phase (before A is challenged on
c∗), then S outputs a valid signature without making any queries, which is a forgery. If F happens during the
second query phase (after A receives c∗) via a query c = (vk∗, c1, c2, c3, σ), then because c 6= c∗ we must
have either (c1, c2, c3) 6= (c∗1, c

∗
2, c
∗
3) or σ 6= σ∗. In either case, S’s output ((c1, c2, c3), σ) differs from its

single signature query ((c∗1, c
∗
2, c
∗
3), σ∗), and hence is a forgery.

Because the signature scheme is one-time strongly unforgeable, we conclude that event F happens with
negligible probability, as desired.

Claim 4.4. The adversary’s views in Game2 and Game3 are computationally indistinguishable, assuming
the hidden lossy branch property of the ABO TDF collection.

Proof. We show that the adversary’s views in Game2 and Game3, conditioned on any fixed value of the
signature keypair (vk∗, sk∗σ) ← Gen, are computationally indistinguishable. Because the distribution of
(vk∗, sk∗σ) is identical in both Game2 and Game3, it follows by averaging over the choice of (vk∗, sk∗) that
the experiments in their entirety are indistinguishable.

Fix any (vk∗, sk∗σ). We define a PPT simulator S whose input is (vk∗, sk∗σ) and an ABO function index
s′ which was generated as either (s′, t′)← Sabo(0v) or (s′, t′)← Sabo(vk∗). Because the two types of inputs
are computationally indistinguishable, the output of S in the two cases will be as well. We construct S so
that its output is identical to Game2 or Game3, respectively.
S operates by implementing Setup, Decrypt, and Challenge to create a view. To implement Setup, it

executes the remainder of G, i.e., it lets (s, t)← Sinj and h← H, and outputs pk = (s, s′, h). It implements
Decrypt and Challenge exactly as in Game2 and Game3 (which are identical in these respects). Note that S
can do so because it is given the signing key sk∗ as input and it generates the injective function trapdoor t
itself.

One can verify by construction that the view generated by S is exactly Game2 when s′ is generated by
Sabo(0v), and is exactly Game3 when s′ is generated by Sabo(vk∗), thus the proof is complete.

Claim 4.5. The adversary’s views in Game3 and Game4 are identical (or statistically close, if either the
lossy or ABO TDF collection is almost-always).
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Proof. The only difference between Game3 and Game4 is in the implementation of Decrypt. We show that
Decrypt is equivalent in the two games (with overwhelming probability, if the lossy or ABO collections are
almost-always).

First recall that if the trapdoor systems are almost-always, then the injective, invertible, and lossy
properties hold for all inputs simultaneously, with overwhelming probability over the choice of s and s′.
From now on we assume that this is so.

We now analyze Decrypt in both games on an arbitrary query c = (vk, c1, c2, c3, σ). Since Decrypt
always outputs ⊥ in both games if vk = vk∗, we may assume that vk 6= vk∗. Additionally, both implementa-
tions check that c1 = Fltdf(s, x) = fs(x) and c2 = Gabo(s′, vk, x) = gs′,vk(x) for some x that they compute
(in different ways), and output ⊥ if not. Therefore we need only consider the case in which such x exists. It
suffices to show that this x is unique, and that both implementations of Decrypt find it.

In both games, (s, t) is generated by Sinj and (s′, t′) is generated by Sabo(vk∗). Therefore fs(·) and
gs′,vk(·) are both injective (in the latter case, because vk 6= vk∗). Therefore there is a unique x such that
(c1, c2) = (fs(x), gs′,vk(x)). Decrypt3 finds that x by computing F−1

ltdf (t, c1), while Decrypt4 finds it by
computing G−1

abo(t′, c2), and the proof is complete.

Claim 4.6. The adversary’s views in Game4 and Game5 are computationally indistinguishable, assuming
the indistinguishability of injective and lossy functions of the lossy TDF collection.

Proof. We prove this claim by describing a PPT simulator algorithm S that, on input s, simulates Game4

perfectly if s was generated by Sinj, and that simulates Game5 perfectly if s was generated by Sloss. By the
indistinguishability of injective and lossy functions, the claim follows.

The simulator S(s) operates by implementing Setup, Decrypt, and Challenge. It implements Setup
is implemented in a manner similar to Game4 by choosing (vk∗, sk∗σ) ← Gen, (s′, t′) ← Sabo(vk∗), and
h ← H, and outputting a public key pk = (s, s′, h). We stress that the s part of the public key comes
from S’s input. We also point out that S knows the ABO trapdoor t′, but does not know the trapdoor t
corresponding to s (if it even exists).

Decrypt and Challenge are implemented just as in Game4 and Game5, which are identical in these
respects. Note that the only secret information Decrypt needs to operate is t′, which the simulator generated
itself. By construction, S therefore perfectly simulates Game4 or Game5, depending on whether s is the
index of an injective or lossy function (respectively), as desired.

Claim 4.7. The adversary’s views in Game5 and Game6 are statistically indistinguishable.

Proof. Fix all the random coins (including the adversary’s) in Game5 and Game6, except for the choice of
the hash function h and the randomness x used by Challenge when producing the ciphertext c∗. We show
that for every such value of the fixed coins, the views in Game5 and Game6 are statistically indistinguishable;
the claim follows by averaging over the choice of the random coins.

We first observe that fs(·) = Fltdf(s, ·) and gs′,vk∗(·) = Gabo(s′, vk∗, ·) are lossy functions with image
sizes at most 2n−k and 2n−k

′
, respectively. (When the lossy and/or ABO collections are almost-always,

then the claim holds with overwhelming probability over the choice of s, s′.) Therefore the random variable
(c∗1, c

∗
2) = (fs(x), gs′,vk∗(x)) can take at most 2r+r

′ ≤ 2n−κ values by our hypothesis in (1).
By Lemma 2.1 and the independence of x from s, s′, we have

H̃∞(x|c∗1, c∗2, s, s′) ≥ H∞(x|s, s′)− (n− κ) = n− (n− κ) = κ.

Now by the hypothesis that ` ≤ κ− 2 lg(1/ε) and Lemma 2.2, we have

∆((c∗1, c
∗
2, h, h(x)), (c∗1, c

∗
2, h, r

′)) ≤ ε = negl(λ),
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where r′ ← {0, 1}` is uniform and independent of all other variables. In Game5, we have c3 = h(x)⊕mb,
whereas in Game6, we have c3 = r ← {0, 1}`, which is identically distributed to r′ ⊕mb (because r′ is
uniform and independent). Therefore the two games are statistically indistinguishable, and this completes the
proof.

4.5 Discussion and Alternate Constructions

We stress that in all the games except the last (in which m0 and m1 are never used), the challenge ciphertext
c∗ is created in the same way by “honestly” running the encryption algorithm E(pk,mb). The only difference
between games is instead in how the public key is formed and how decryption queries are answered. This is
in contrast to prior constructions, in which the hybrid experiments always involve valid public keys, but the
simulator does not know the underlying randomness of the challenge ciphertext it produces. This difference
is what allows our decryption algorithm to test well-formedness of a ciphertext by recovering randomness.

The use of a one-time strongly unforgeable signature scheme for full CCA2 security (and in particular,
non-malleability) dates back to the work of Dolev, Dwork, and Naor [20], and is technically similar to its
use in the work of Canetti, Halevi, and Katz [15] in their construction of CCA2-secure encryption from
identity-based cryptosystems. We point out that for weaker CCA1 (“lunchtime”) security, the one-time
signature in our encryption algorithm is not needed, and vk can simply be replaced by a uniformly random
value in {0, 1}v that specifies the branch on which the ABO function is to be evaluated. The proof of security
remains essentially the same, where Game1 and Game2 now become statistically indistinguishable because
the value of vk∗ is statistically hidden (it is uniform and independent of the adversary’s view) during the
query phase, before the challenge ciphertext c∗ is produced.

Finally, we point out that the choice of the hash function h← H can be deferred from the key generation
algorithm to the encryption algorithm, with a fresh choice of h chosen for (and included in) each ciphertext,
with no change in the proof. (The same holds for our basic CPA-secure construction.) Because in most
systems it is typical to encrypt many messages under a single public key, this alternate construction is less
efficient in terms of communication (but it may have other applications).

5 Realization from DDH-Hard Groups

We now present constructions of lossy TDFs and all-but-one TDFs using groups in which the decisional
Diffie-Hellman (DDH) problem is hard. The construction will illustrate our core ideas and will also serve as
a template for the lattice-based constructions in the next section.

We begin by giving a brief overview of the DDH problem. Then we show how to build lossy TDFs from
DDH-hard groups, and how to extend the construction to build all-but-one TDFs.

5.1 Background

Let G be a an algorithm that takes as input a security parameter λ and outputs a tuple G = (p,G, g) where p
is a prime, G is a cyclic group of order p, and g is a generator of G.

Our construction will make use of groups for which the DDH problem is conjectured to be hard. The
DDH assumption is that the ensemble

{
(G, ga, gb, gab)

}
λ∈N is computationally indistinguishable from{

(G, ga, gb, gc)
}
λ∈N, where G = (p,G, g)← G(λ), and a, b, c← Zp are uniform and independent.
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5.2 Preliminary Tools

For the remainder of this section, we implicitly assume that a group description G = (p,G, g)← G is fixed
and known to all algorithms. (In our TDF constructions, this group will be generated by the function sampler
Sltdf and made part of the function description.)

An ElGamal-like encryption primitive. First we review a (well-known) variant of the ElGamal cryptosys-
tem, which is additively homomorphic. A secret key is chosen as z ← Zp, and the public key is h = gz . To
encrypt an m ∈ Zp, choose an r ← Zp and create the ciphertext Eh(m; r) = (gr, hr · gm). To decrypt a
ciphertext c = (c1, c2), output Dz(c) = logg(c2/c

z
1); when c encrypts a bit m ∈ {0, 1} (or any small value

m) this discrete logarithm may be computed easily by enumeration. It is well-known (and straightforward to
prove) that this cryptosystem is semantically secure under the DDH assumption.

Note that the cryptosystem is additively homomorphic in the following way:

Eh(m; r)� Eh(m′; r′) = Eh(m+m′; r + r′),

where � denotes coordinate-wise multiplication of ciphertexts. Similarly, for x ∈ Zp,

Eh(m; r)x = Eh(mx; rx)

where exponentiation of a ciphertext is also coordinate-wise. Finally, we note that without even knowing
the public key under which a ciphertext was created, one can add any scalar value v ∈ Zp to the underlying
plaintext (we will need this only for our ABO construction):

Let c = (c1, c2) = Eh(m; r). Then c� v := (c1, c2 · gv) = Eh(m+ v; r).

Encrypting matrices. We now describe a special method for encrypting a matrix M = (mi,j) ∈ Zn×np and
generating a corresponding decryption key. First choose n independent secret/public keypairs zj , hj = gzj

for j ∈ [n] (according to the ElGamal variant above), and n independent exponents ri ← Zp for i ∈ [n].
The encryption of M consists of the matrix C = (ci,j) of ciphertexts ci,j = Ehj (mi,j ; ri) for all i, j ∈ [n].
(Note that we need not publish the public keys hj .) The decryption key is the collection of secret keys zj for
j ∈ [n].

Note that because every ciphertext in row i uses the same randomness ri, we can represent the encrypted
matrix somewhat more compactly via matrices C1 and C2, where

C1 =

g
r1

...
grn

 C2 =

h
r1
1 · gm1,1 hr12 · gm1,2 · · · hr1n · gm1,n

...
. . .

...
hrn1 · gmn,1 hrn2 · gmn,2 · · · hrnn · gmn,n


We point out that if we ignore the message terms gmi,j , the matrix C2 (consisting solely of the hrij terms) is a
synthesizer, as defined by Naor and Reingold [37]. Specifically, the n2 values hrij are indistinguishable from
n2 uniform and independent elements of G, under the DDH assumption. This is the essential reason why the
matrix encryption remains semantically secure.

Lemma 5.1. The matrix encryption scheme described above produces indistinguishable ciphertexts under
the DDH assumption.
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Proof. Intuitively, the lemma follows for the fact that it is secure to reuse randomness when encrypting under
several independent public keys, because given only gr one can still produce a ciphertext having randomness
r if one knows the secret key z. We now proceed more formally. (A tighter security reduction is also possible
using the random self-reducibility of DDH; see, e.g., [37]. We give a looser reduction for self-containment
and simplicity.)

Let L = (`i,j),M = (mi,j) ∈ Zn×np be any two arbitrary matrices. We first define a set of hybrid
experiments H0, . . . ,Hn2 . In experiment Hk, the output is a matrix C = (ci,j) chosen in the following way:
choose secret/public keypairs zj ∈ Zp, hj = gzj for j ∈ [n] and exponents ri ← Zp for i ∈ [n] as above.
Then for the first k pairs (i, j) ∈ [n]2 (where we order the pairs lexicographically), let ci,j = Ehj (`i,j ; ri).
For the remaining pairs (i, j), let ci,j = Ehj (mi,j ; ri).

Observe that experiment H0 produces an encryption of the matrix L and Hn2 produces an encryption
of the matrix M. Below we argue that for every k ∈ [n], experiments Hk−1 and Hk are computationally
indistinguishable. Then because n = poly(λ), H0 and Hn2 are also indistinguishable, and the claim follows.

For any k ∈ [n]2, let (i∗, j∗) be the lexicographically kth pair in [n]2. Consider the following simulator
algorithm S: the input is a public key h∗ [= gz

∗
] from the ElGamal variant and a ciphertext c∗ = (c∗1, c

∗
2) [=

Eh∗(?; r∗) = (gr
∗
, gr
∗z∗ · g?)], where c∗ is an encryption (under h∗) of either `i,j or mi,j . S produces an

encrypted matrix C = (ci,j) in the following way. First, for every j 6= j∗ it chooses secret/public keys
zj ← Zp, hj = gzj as above, and for every i 6= i∗ it chooses random exponents ri ← Zp.

For rows i 6= i∗, S “encrypts normally.” That is, for i < i∗ and all j ∈ [n], let ci,j = Ehj (`i,j ; ri);
similarly for i > i∗ and all j ∈ [n], let ci,j = Ehj (mi,j ; ri).

For row i = i∗, S “encrypts using the secret key zj .” That is, for column j < j∗, let

ci,j = (c∗1, (c
∗
1)zj · g`i,j ) = (gr

∗
, gr
∗zj · g`i,j ) = Ehj (`i,j ; r

∗),

and similarly for j > j∗ (encrypting mi,j). Finally, for i = i∗ and j = j∗, let ci,j = c∗.
One can see that S’s output is distributed according to either Hk−1 or Hk, depending on whether c∗ was

an encryption of `i,j or mi,j (respectively). Because these two cases are indistinguishable by the security of
the ElGamal variant, so are Hk−1 and Hk, and we are done.

5.3 Lossy TDF

We now describe the function generation, evaluation, and inversion algorithms for our lossy TDF.

• Sampling an injective/lossy function. The injective function generator Sinj first selects G = (p,G, g)←
G. The function index is a matrix encryption C (as described above) of the identity I ∈ Zn×np (and
implicitly the group description G). The trapdoor information t consists of the the corresponding
decryption keys zj for j ∈ [n].

The lossy function generation algorithm Sloss likewise selects G← G. The function index is a matrix
encryption C of 0 ∈ Zn×np (and G’s description). There is no trapdoor output.

• Evaluation algorithm. Fltdf takes as input (C,x), where C is a function index (a matrix encryption of
some M = (mi,j) ∈ Zn×np ) and x ∈ {0, 1}n is an n-bit input interpreted as a vector. The output is
the vector of ciphertexts y = xC, where the linear product is interpreted in the natural way using the
homomorphic operations of the cryptosystem. By construction of C and the homomorphic properties
of the cryptosystem, we have

yj :=
⊙
i∈[n]

cxii,j = Ehj ((xM)j ; R := 〈x, r〉) ,
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where r = (r1, . . . , rn) is the vector of random exponents used to construct C.

Note that if the function index C was generated by Sinj (i.e., M = I), we have yj = Ehj (xj ;R),
whereas if C was generated by Sloss (i.e., M = 0) we have yj = Ehj (0;R). Note also that the
randomness R inherent in yj is the same for all j ∈ [n]; therefore, we may represent y more compactly
using n+ 1 group elements in a manner similar to that for matrix encryption.

• Inversion algorithm. F−1
ltdf takes as input (t,y) where the trapdoor information t consists of the

decryption keys (z1, . . . , zn). The output is x ∈ {0, 1}n where xj = Dzj (yj).

Shorter outputs. Our basic construction takes an n-bit input as a binary string and has an output of n
ciphertexts (which can be represented compactly using n+ 1 group elements). We note that it is possible
to achieve somewhat shorter output size by parsing the input into messages from a space of size 2α. In
this generalization, function outputs consist of dn/αe+ 1 group elements. However, there is a trade-off in
the inversion time, as the ElGamal decryption algorithm needs to enumerate over the 2α possible values.
Therefore, this generalization is polynomial-time only for small values of α, i.e., α = O(log λ).

Theorem 5.2. The algorithms described above give a collection of (n, n− lg p)-lossy TDFs under the DDH
assumption for G.

Proof. We have shown invertibility for injective functions via the trapdoor information, and indistinguishabil-
ity between injective and lossy functions follows by Lemma 5.1. It remains to show the lossiness property.

Recall that for a function generated by Sloss, for any input x the output y is such that yj = Ehj (0;R) for
some fixed R ∈ Zp (dependent on x) and fixed hj . Therefore the number of possible function outputs is at
most p, the residual leakage r is at most lg p, and the lossiness is k = n− r ≥ n− lg p.

5.4 All-But-One TDF

For a cyclic group of order p, the residual leakage of our lossy TDF is at most lg p bits. For large enough
values of n, we can use the generic transformation (see Section 3.3) from lossy to all-but-one TDFs to obtain
an ABO collection with many branches, based on the DDH assumption. However, the generic transformation
is rather inefficient. Here we demonstrate a more efficient ABO collection where the number of branches can
be as large as p. The construction is an extension of our lossy TDF construction.

Let the set of branches Bλ = [q], where q is at most the smallest value of p produced by G (we often omit
the dependence of Bλ on λ). When a cyclic group G of order p is clear from context, we interpret a branch
value b ∈ B as a distinct element of Zp.

• Sampling an ABO function. The function generator Sabo(b∗ ∈ B) first selects G = (p,G, g) ← G.
The function index is a matrix encryption C of the matrix −(b∗I) ∈ Zn×np (and implicitly the group
description G). The trapdoor information t consists of the corresponding decryption keys zj for j ∈ [n],
along with the lossy branch value b∗.

• Evaluation algorithm. Gabo takes as input (C, b,x) where C is a function index, b ∈ B is the
desired branch, and x is an n-bit input interpreted as a vector. The output is the vector of ciphertexts
y = x(C� bI), where the homomorphic scalar addition operation � applies entry-wise to the matrices,
and the linear product x is interpreted in the same way as in the lossy TDF construction.

By the homomorphic properties of the encryption and the construction of C, the jth coordinate of y is

yj = Ehj ((b− b∗)xj ; R := 〈x, r〉) ,
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where r = (r1, . . . , rn) is the vector of random coefficients used in the creation of C. Note that if
b = b∗, each yj = Ehj (0;R). Also note that as before, the output y can be compactly represented
using n+ 1 group elements.

• Inversion algorithm. G−1
abo takes as input (t, b,y) where t is the trapdoor information (decryption keys

zj for j ∈ [n] and the lossy branch b∗), b 6= b∗ is the evaluated branch, and y is the function output.
G−1

abo outputs x where xj = Dzj (yj)/(b − b∗). Note that yj can be efficiently decrypted because its
plaintext is only one of two values (either 0 or b− b∗). Note also that the inversion algorithm is defined
only for b 6= b∗.

Theorem 5.3. The algorithms described above give a collection of (n, n− lg p)-all-but-one TDFs, under
the DDH assumption for G.

Proof. We have shown invertibility above. The hidden lossy branch property follows by Lemma 5.1. The
lossiness property follows from the fact that when b = b∗, each yj = Ehj (0;R) is completely determined by
a single value R ∈ Zp, of which there are only p possibilities.

6 Realization from Lattices

Here we construct lossy and all-but-one TDFs based on the hardness of the learning with errors (LWE)
problem, as defined by Regev [47]. The LWE problem is a generalization to larger moduli of the learning
parity with noise problem (see, e.g., [7]). It can be viewed as an (average-case) “bounded-distance decoding”
problem on a certain family of random lattices under a natural error distribution, and is conjectured (along
with learning parity with noise) to be hard on the average. Very interestingly, Regev showed that LWE is
indeed hard on the average if standard lattice problems (like approximating the shortest vector problem) are
hard in the worst case for quantum algorithms [47]. No efficient (or even subexponential-time) quantum
algorithms are known for the associated worst-case lattice problems, despite significant research efforts.
Our results rely solely on the conjectured average-case hardness of LWE, and inherit Regev’s worst-case
connection as a “black box.” We stress that although the underlying worst-case lattice assumption relates to
quantum algorithms, the LWE problem and our constructions based on it are entirely classical.

Our lossy TDF based on LWE uses the same basic ideas as our DDH-based construction: using an
additively homomorphic cryptosystem, the function computes an encrypted linear product xM, where
M = 0 in the lossy case. However, we must overcome additional technical challenges stemming chiefly
from the fact that LWE involves extra random error terms. This requires careful trade-offs between the lossy
and injective cases: in the lossy case, the error terms leak additional information; in the injective case, the
size of the error terms determines the amount of recoverable information that can “fit into” a ciphertext, and
affects the correctness of decryption after performing homomorphic operations.

By calibrating the parameters appropriately, we can obtain lossy TDFs that lose any desired constant
fraction (e.g., 99%) of the input. Unfortunately, this is not strong enough to obtain all-but-one TDFs having
more than a constant number of branches via the parallel black-box construction of Section 3.3, because the
residual leakage of the parallel construction is multiplied by the the logarithm of the number of branches.
Fortunately, by generalizing our lossy TDF construction and using some additional ideas, we are able to
construct ABO TDFs directly from the LWE assumption (see Section 6.4 for details).
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6.1 Background

We start by introducing the notation and computational problems that are relevant to this section, for the most
part following [47].

For any x, y ∈ R with y > 0 we define x mod y to be x−bx/ycy. For x ∈ R, bxe = bx+ 1/2c denotes
the nearest integer to x (with ties broken upward). We define T = R/Z, i.e., the group of reals [0, 1) with
modulo 1 addition.

Lattices. A (full-rank) d-dimensional lattice Λ ⊂ Rd can be defined as the set of all integer linear
combinations of some set of d linearly independent basis vectors B = {b1, . . . ,bd} ⊂ Rd:

Λ =
{∑
i∈[d]

cibi : c1, . . . , cd ∈ Zd
}
.

A given lattice has infinitely many bases (when d ≥ 2), which are related to each other by unimodular
transformations over the integers. Computationally, a lattice is typically represented to an algorithm by some
choice of basis.

Probability distributions. The normal distribution with mean 0 and variance σ2 (or standard deviation σ)
is the distribution on R having density function 1

σ·
√

2π
exp(−x2/2σ2). It is a standard fact that the sum of two

independent normal variables with mean 0 and variances σ2
1 and σ2

2 (respectively) is a normal variable with
mean 0 and variance σ2

1 + σ2
2 . We also need a standard tail inequality: a normal variable with variance σ2 is

within distance t · σ (i.e., t standard deviations) of its mean, except with probability at most 1
t · exp(−t2/2).

Finally, it is possible to sample efficiently from a normal variable to any desired level of accuracy.
For α ∈ R+ we define Ψα to be the distribution on T of a normal variable with mean 0 and standard

deviation α/
√

2π, reduced modulo 1. For any probability distribution φ : T→ R+ and an integer q ∈ Z+

(often implicit) we define its discretization φ̄ : Zq → R+ to be the discrete distribution over Zq given by
bq · φe mod q.

For an integer q ≥ 2 and some probability distribution χ : Zq → R+, an integer dimension d ∈ Z+ and a
vector z ∈ Zdq , define Az,χ as the distribution on Zdq × Zq of the variable (a, 〈a, z〉 + e) where a ← Zdq is
uniform and e← χ are independent, and all operations are performed in Zq.

Learning with errors (LWE). For an integer q = q(d) and a distribution χ on Zq, the goal of the learning
with errors problem LWEq,χ is to distinguish (with nonnegligible probability) between the distribution Az,χ

for some secret uniformly random z ← Zdq , and the uniform distribution on Zdq × Zq, given access to any
poly(d) number of samples from the unknown distribution. The assumption that “LWE is hard” can be
restated more succinctly as “Az,χ is pseudorandom” (for z← Zdq chosen uniformly at random).

The conjectured hardness of LWE is parametrized chiefly by the dimension d. Therefore, in this section
we let d be the security parameter (rather than λ as before), and let all other parameters (e.g., q, α, n, and
several others) implicitly be functions of this parameter.

Regev showed that for certain normal error distributions, LWE is as hard as several standard worst-case
lattice problems, for quantum algorithms. We state a version of the main theorem here:

Proposition 6.1 ([47]). Let α = α(d) ∈ (0, 1) and let q = q(d) be a prime such that α · q > 2
√
d. There is

a quantum polynomial-time reduction from solving either of the two lattice problems in the worst-case to
solving LWEq,Ψ̄α on the average:
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• SIVP: In any lattice of dimension d (represented by a basis), find a set of d linearly independent lattice
vectors, the longest of which has length (in the Euclidean `2 norm) within at most an Õ(d/α) factor of
optimal.

• GapSVP: In any lattice of dimension d (represented by an arbitrary basis), approximate the length (in
the Euclidean `2 norm) of a shortest nonzero lattice vector to within a Õ(d/α) factor.

The SIVP and GapSVP problems appear to be quite hard in the worst case: to obtain some poly(d)
approximation factor, known classical (and quantum) algorithms require time and space that are exponential in
d [3]; known polynomial-time algorithms obtain approximation factors that are only slightly subexponential
in d [36, 51]. We add that Proposition 6.1 was recently strengthened by Peikert [41] to apply to the SIVP and
GapSVP problems in any `p norm, 2 < p ≤ ∞, for essentially the same Õ(d/α) approximation factors.

We first define our lossy and ABO functions in terms of the LWE problem, without explicitly taking into
account the connection to lattices (or the hypotheses on the parameters required by Proposition 6.1). Then
in Section 6.5, we instantiate the parameters appropriately, invoking Proposition 6.1 to obtain a quantum
worst-case hardness guarantee.

6.2 Basic Tools

Encrypting based on LWE. Here we construct a cryptosystem based on the hardness of the LWE problem.
The cryptosystem itself is symmetric key (not public key) and has certain limited homomorphic properties
over a small message space, which is sufficient for our purposes in constructing lossy TDFs. This basic
cryptosystem is similar to, but somewhat simpler than, Regev’s public key cryptosystem [47] and a multibit
variant [35].

The message space of our cryptosystem is Zp for some p ≥ 2. For every message m ∈ Zp, define the
“offset” for m to be cm = m

p ∈ T. We let χ denote an unspecified error distribution, which we instantiate
later.

Except where noted, all operations are performed in Zq for some integer q > p. The secret key is a
uniform z ← Zdq . To encrypt an m ∈ Zp, choose uniform a ← Zdq and an error term e ← χ. Define the
rounding error u = bqcme − qcm ∈ [−1/2, 1/2]. Then the ciphertext is

Ez(m,u; a, e) := (a, 〈a, z〉+ qcm + u+ e) ∈ Zdq × Zq.

Note that we treat u as an explicit input to the encryption algorithm (even though it is normally determined
by m), because it is convenient to treat Ez(m,u; a, e) as a well-defined expression even for u 6∈ [−1/2, 1/2].
In cases where u is simply derived from m in the manner described, we often omit it and write

Ez(m; a, e) := (a, 〈a, z〉+ bqcme+ e).

For a ciphertext c = (a, c′), the decryption algorithmDz(c) computes t = (c′−〈a, z〉)/q ∈ T and outputs
an m ∈ Zp such that t− cm ∈ T is closest to 0 modulo 1. Note that for any ciphertext c = Ez(m,u; a, e), as
long as the absolute total error |e+ u| < q/2p, the decryption Dz(c) is correct.

The cryptosystem is homomorphic:

Ez(m,u; a, e) + Ez(m′, u′; a′, e′) = Ez(m+m′, u+ u′; a + a′, e+ e′)

Furthermore, even without knowing the secret key under which a ciphertext was created, one can add
any scalar value v ∈ Zp to its plaintext (we need this property only for our ABO construction). Let
c = (a, c′) = Ez(m,u; a, e), and define u′ = bqcve − qcv ∈ [−1/2, 1/2]. Then

c� v := (a, c′ + bqcve) = Ez(m+ v, u+ u′; a, e).
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Encrypting matrices. We now describe a special extension of the encryption scheme to matrices M =
(mi,j) ∈ Zh×wp of an arbitrary height h and width w.

• Secret key. For each column j ∈ [w], choose independent zj ← Zdq . The tuple Z = (z1, . . . , zw)
forms the secret key.

• Encryption. To encrypt a matrix M ∈ Zh×wp , do the following: for each row i ∈ [h], choose
independent ai ← Zdq , forming a matrix A ∈ Zh×dq whose ith row is ai. Generate an error matrix
E = (ei,j) ∈ Zh×wq by choosing independent error terms ei,j ← χ. Let U = (ui,j) be a matrix of
rounding errors, where ui,j = bqcmi,je − qcmi,j ∈ [−1/2, 1/2].

The matrix encryption of M is denoted

C = (ci,j) = EZ(M,U; A,E),

where ci,j = Ezj (mi,j , ui,j ; ai, ei,j). We omit the U argument when it is determined by M.

Note that each ciphertext uses an independent error term ei,j , but that the randomness ai is reused
across row i, and the secret key zj is reused across each column j. The encrypted matrix can be
represented more compactly as (A,C′), where c′i,j = 〈ai, zj〉+ qcmi,j + ui,j + ei,j .

• Decryption. An encrypted matrix C = (ci,j) of size h′ × w (whose width w must match the secret
key, but whose height h′ can be arbitrary) is decrypted as the matrix M = (mi,j) = DZ(C) ∈ Zh′×wp ,
where mi,j = Dzj (ci,j).

• Linear operations. By the homomorphism of the underlying cryptosystem, all linear operations
(addition of ciphertexts, multiplication and addition by scalars) extend naturally to linear operations
involving encrypted matrices. For example, say C = EZ(M,U; A,E) is an encryption of some
M ∈ Zh×wp . Then for any x ∈ Zhp ,

xC = EZ(xM,xU; xA,xE).

Likewise, if V ∈ Zh×wp is a matrix of scalars inducing a matrix of rounding errors U′, then

C � V = EZ(M + V,U + U′; A,E).

Lemma 6.2. For any height and width h,w = poly(d), the matrix encryption scheme described above
produces indistinguishable ciphertexts under the assumption that LWEq,χ is hard.

Proof. It is most convenient to work with the compact representation (A,C′) of matrix encryptions. It
suffices to show that for any M ∈ Zh×wp , a proper encryption EZ(M; A,E) of M is indistinguishable from
a “uniform” encryption EZ(M; A,R) where the error matrix R ← Zh×wq is uniform, because the latter’s
two components (A,C′) are uniform and independent.

We define a set of hybrid experiments H0, . . . ,Hw. In experiment Hk, the output is a (compact)
encryption EZ(M; A,E) where the entries in the first k columns of E are chosen independently from χ, and
the remainder are uniform and independent. Observe that experiment H0 produces a proper encryption of M,
while experiment Hw produces a uniform encryption. Below we show that experiments Hk−1 and Hk are
computationally indistinguishable. Then because the number of columns w = poly(d), the claim follows.

For any k ∈ [w], consider the following simulator algorithm SO, where O produces samples either
from the distribution Az,χ for some z ← Zdq , or from the uniform distribution on Zdq × Zq. First, for all
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j 6= k, S chooses independent secret keys zj ← Zdq . Then for each i ∈ [h], S queries O, obtaining a sample
(ai, bi). S lets A be the matrix whose ith row is ai, and lets ci,k = bi + bqcmi,ke. Then for all columns
j < k and for all i ∈ [h], S chooses independent error terms ei,j ← χ; for all columns j > k and for all
i ∈ [h], S chooses uniform and independent error terms ei,j ← Zq. For all j 6= k and all i ∈ [h], S lets
c′i,j = 〈ai, zj〉+ bqcmi,je+ ei,j . The output is (A,C′).

Observe that if the samples from O are uniform, S’s output is distributed according to Hk−1 because the
bi values are uniform. If the samples from O are drawn from Az,χ, S’s output is distributed according to Hk.
Under the assumption that LWEq,χ is hard, the distributionsAz,χ andU are computationally indistinguishable;
therefore, so are Hk−1 and Hk, and we are done.

We now show a technical lemma that is needed for both the correctness and lossiness properties of our
lossy TDF construction.

Lemma 6.3. Let q ≥ 4pn, let α ≤ 1/(16p(n + g)) for some positive g, and let E = (ei,j) ∈ Zn×wq be an
error matrix generated by choosing independent error terms ei,j ← χ = Ψ̄α. Then except with probability at
most w · 2−g over the choice of E, every entry of xE has absolute value less than q

4p for all x ∈ {0, 1}n.

Proof. It suffices to show that for each column eT of E, |〈x, e〉| < q/4p for all x simultaneously except with
probability at most 2−g over the choice of e. The lemma follows by a union bound over all w columns of E.

We show that for any fixed x ∈ {0, 1}n,

Pr
e

[|〈x, e〉| ≥ q/4p] ≤ 2−(n+g).

Taking a union bound over all x ∈ {0, 1}n, we can conclude that |〈x, e〉| < q/4p for all x ∈ {0, 1}n except
with probability at most 2−g.

Now by definition, ei = bqsie mod q where si are independent normal variables with mean 0 and
variance α2 for each i ∈ [n]. Then 〈x, e〉 is at most n/2 ≤ q/8p away from q(〈x, s〉 mod 1). Therefore it
suffices to show that |〈x, s〉| < 1/8p except with probability at most 2−(n+g).

Because the si are independent, 〈x, s〉 is distributed as a normal variable with mean 0 and variance at
most n · α2 ≤ (n+ g) · α2, hence a standard deviation of at most

√
n+ g · α. Then by the tail inequality on

normal variables and the hypothesis on α,

Pr
s

[
|〈x, s〉| ≥ 1

8p

]
≤ Pr

s

[
|〈x, s〉| ≥ 2

√
n+ g ·

(√
n+ g · α

)]
≤ exp(−2(n+ g))

2
√
n+ g

< 2−(n+g).

6.3 Lossy TDF

Our construction of a lossy TDF based on LWE uses the same ideas as our construction based on DDH. In
particular, evaluating the function involves computing an encrypted linear product xM, and in the lossy case
we have M = 0. However, additional challenges must be addressed, stemming chiefly from the fact that
ciphertexts now include extra error terms that can leak information (e.g., about the homomorphic operations
that produced them). The main difficulty is to ensure that (in the injective case) the decrypted plaintexts
contain more information than might be leaked (in the lossy case) by the error terms. We accomplish this by
exploiting the entire plaintext space Zp, rather than {0, 1} as before. However, doing this properly involves
some subtleties.

As a first attempt, we could let the input be a vector x ∈ Znp , and specify an injective function by an
encryption C of the identity matrix I ∈ Zn×np . The output of the function would be an encryption of xI = x,
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and each output ciphertext would correspond to log p bits of the input. The problem with this construction is
that when computing xC via the homomorphic operations, the error terms of C are also amplified by the
entries of x, which are values in Zp that can be as large as p. Therefore, in the lossy case, the errors term
in each output ciphertext might leak lg p bits (or more) due to the amplified error. Therefore, this simple
construction does not seem to work.

Instead, in our construction the output uses the entire message space Zp, but the input is still interpreted
in binary. This lets us recover the entire input from a relatively small number of output ciphertexts, but
also ensures that the error terms are not amplified too much by the homomorphic operations. Our method
uses a special (nonsquare) matrix instead of the identity matrix. Let ` = blg pc, assume without loss of
generality that n is divisible by `, and let m = n/`. Then we define a “tall and skinny” matrix B ∈ Zn×mp

as follows: in column j ∈ [m], the ((j − 1)` + k)th entry is 2k−1 ∈ [1, p] for k ∈ [`]. All other entries
are zero. Formally, B is the tensor (or Kronecker) product I ⊗ b, where I ∈ Zm×mp is the identity and
b = (1, 2, . . . , 2`−1)T ∈ Z`×1

p is the column vector containing increasing powers of 2.
This choice of B is motivated by the following fact: break an input vector x ∈ {0, 1}n into m chunks of

` bits each, and interpret the jth chunk as a value vj ∈ Zp by reading the chunk as a value in binary notation
(least significant bit first). Then each x ∈ {0, 1}n corresponds to a unique v = (v1, . . . , vm) ∈ Zmp . Most
importantly, by our definition of B, we have xB = vI = v.

Our injective trapdoor function is described by a matrix encryption of B. Evaluating the function on
x ∈ {0, 1}n corresponds to computing an encrypted product xB = v. This permits recovery of the entire
input by decrypting v and producing the corresponding x. At the same time, the output consists of only
m = n/` ciphertexts, which means that in the lossy case, less information is leaked overall via their error
terms. We obtain a lossy TDF by ensuring that the amount of information recoverable from each ciphertext
(namely, ` ≈ lg p bits) significantly exceeds the amount of information carried by its error term (which is
≈ lg n bits, due to the accumulated error from the n homomorphic operations).

We now describe the lossy TDF generation, evaluation, and inversion algorithms more formally.

• Sampling an injective/lossy function. The injective function generator Sinj generates a matrix encryption

C = EZ(B,U; A,E)

(with Z, U, A, and E chosen as described above), and outputs C as the function index. The trapdoor
information t consists of the secret keys Z = (z1, . . . , zw).

The lossy function generator Sloss outputs a matrix encryption

C = EZ(0,U; A,E)

of the all-zeros matrix 0. There is no trapdoor output.

• Evaluation algorithm. Fltdf takes as input (C,x) where C is the function index (an encryption of either
M = B or M = 0) and x ∈ {0, 1}n is an n-bit input interpreted as a vector. The output is the vector
of ciphertexts y = xC.

By the homomorphic properties, the output y is

y = EZ(xM,xU; xA,xE).

Note that every ciphertext yj is of the form (xA, y′j) ∈ Zdq×Zq, so we may represent y more compactly
using a single copy of xA ∈ Zdq and n values from Zq.
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• Inversion algorithm. F−1
ltdf takes as input (Z,y), where Z is the trapdoor information. It computes

v = DZ(y) ∈ Zmp , and outputs the unique x ∈ {0, 1}n such that v = xB.

Theorem 6.4. Instantiate the parameters of the above scheme as follows: let p = nc1 for some constant
c1 > 0, let q ∈ [4pn,O(pnc2)] for some constant c2 > 1, let n = dc3 for some constant c3 > 1, and let
χ = Ψ̄α where α ≤ 1/(32pn).

Then the algorithms described above give a collection of almost-always (n, k)-lossy TDFs under the
assumption that LWEq,χ is hard, where the residual leakage r = n− k is

r ≤
(
c2

c1
+ o(1)

)
· n.

Proof. First we show that the inversion algorithm F−1
ltdf is correct on all inputs y = Fltdf(C,x), with

overwhelming probability over the choice of C by Sinj. As observed above, we have

y = EZ(v = xB,xU; xA,xE).

Letting g = n in Lemma 6.3, we have |(xE)j | < q/4p for every x and j ∈ [m], except with probability
m · 2−n = negl(d) over the choice of E. Furthermore, |(xU)j | ≤ n/2 ≤ q/8p by the size of U’s entries.
Therefore the total error in yj is |(xE)j + (xU)j | < q/2p for all j, hence the decryption DZ(y) outputs v.

We now analyze the lossiness of a lossy function. For any input x,

y = EZ(0 = x0,xU; xA,xE).

As in the correctness argument, for every x and j ∈ [m] the absolute total error |(xU)j + (xE)j | < q/2p
(with overwhelming probability over E). Therefore for every j ∈ [m], yj is a ciphertext (xA, y′j) ∈ Zdq ×Zq,
where xA is the same randomness for all j and y′j = 〈xA, zj〉+ 0 + (xU)j + (xE)j can take at most q/p
possible values (for any fixed A and x). Then the total number of outputs of the lossy function is at most
qd · (q/p)m. The logarithm of this quantity is a bound on the residual leakage r = n− k:

r ≤ d · lg q +m · lgO(nc2)
≤ O(n1/c3 lg n) +m · (O(1) + c2 lg n)

≤ o(n) + n · O(1) + c2 lg n
bc1 lg nc

≤ n ·
(
c2

c1
+ o(1)

)
,

where we have crucially used the fact that m = n/blg pc = n/bc1 lg nc.
Finally, lossy functions are indistinguishable from injective ones by the security of matrix encryption

(Lemma 6.2).

6.4 All-But-One TDF

Our construction of an all-but-one TDF relies on all the ideas from our prior constructions, but also includes
some important technical differences. As always, evaluating the ABO function on an input x ∈ {0, 1}n
involves homomorphically computing an encrypted product vM, where v ∈ Zmp corresponds to x in the
manner described above, and M is some matrix that depends on the branch of the function being evaluated.
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We require that M = 0 for the lossy branch, and that v is recoverable from the product vM for all other
branches.

In our prior ABO construction based on DDH, the matrix M was some multiple (b− b∗)I of the identity,
for b, b∗ ∈ Zp. Because the matrices M had entries from an exponentially large group Zp, the construction
supported exponentially many branches.

In the current setting, our matrices M have entries from a smaller group Zp, where p = poly(d).
Therefore, simply using multiples of I does not yield enough branches. Instead, we generalize to matrices
M having full row rank (i.e., all their rows are linearly independent), which suffices for recovering v from
the product vM. We use a family of pairwise independent hash functions to generate the matrix M for the
desired branch, and arrange for M = 0 on the lossy branch. To ensure (with overwhelming probability)
that the Ms for all other branches simultaneously have full row rank, we use matrices having a few more
columns. This increases the leakage of the lossy branch of the function (because the output consists of more
ciphertexts, which each have error terms), but not by a significant amount.

The construction. As above, let ` = blg pc, assume ` divides n and let m = n/`, and let b =
(1, 2, . . . , 2`−1)T ∈ Z`×1

p be the column vector containing increasing powers of 2. For any x ∈ {0, 1}n we
associate a unique v ∈ Zmp (and vice versa) in the manner described in the previous section. Our construction
crucially uses the fact that x(M⊗ b) = vM for any M ∈ Zm×wp .

Let the branch set B = Bd = Ztp for some sufficiently large t we set later, and let w denote the width of
the encrypted matrices, which depends on the other parameters and the desired lossiness. Let H denote a
family of pairwise independent functions from B = Ztp to Zm×wp (note that these functions actually expand a
branch value into a large matrix in Zm×wp ).

• Sampling an ABO function. The function generator Sabo(b∗ ∈ B) first chooses a hash function h← H.
The function index consists of h and a matrix encryption

C = EZ(−h(b∗)⊗ b,U; A,E)

(where Z, U, A, and E are chosen in the usual way). The trapdoor information consists of the secret
keys Z, the lossy branch value b∗, and the hash function h.

• Evaluation algorithm. Gabo takes as input ((h,C), b,x) where (h,C) is the function index, b ∈ B is
the desired branch, and x ∈ {0, 1}n is an n-bit input interpreted as a vector. The output is

y := x(C � (h(b)⊗ b)).

Let H = h(b)− h(b∗). Then by the homomorphic properties and linearity of ⊗, we have

y = EZ(vH = x(H⊗ b),x(U + U′) ; xA,xE),

where U′ is the matrix of rounding errors (each in [−1/2, 1/2]) induced by the scalar matrix (h(b)⊗b).

• Inversion algorithm. G−1
abo takes as input ((Z, b∗, h), b,y), where (Z, b∗, h) is the trapdoor information,

b is the evaluated branch, and y is the function output. It first decrypts, yielding a vector m = DZ(y) ∈
Zmp . It then computes H = h(b) − h(b∗), and if possible, solves (via Gaussian elimination) for the
unique v ∈ Zmp such that vH = m. The output is the x ∈ {0, 1}n associated with v. (We show below
that such a unique v exists for all H with overwhelming probability.)
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Lemma 6.5. Let b∗ ∈ B be arbitrary and let p be prime. Then with probability at least 1− pm+t−w over
the choice of h← H, the matrix H = h(b)− h(b∗) ∈ Zm×wp has row rank m for every b ∈ B, b 6= b∗. In
particular, a unique solution v to the system vH = m can be found, if it exists.

Proof. It suffices to show that for any single b 6= b∗, H = h(b)− h(b∗) has row rank m with probability at
least 1− pm−w (over the choice of h). The lemma then follows by a union bound over all pt − 1 values of
b 6= b∗.

We observe that a uniformly random matrix H ∈ Zm×wp has row rank < m with probability at most
pm−w. This is because for any fixed nonzero v ∈ Zmp , we have PrH[vH = 0] = p−w (this is the only place
where we use the fact that p is prime). The observation follows by summing over all the pm − 1 nonzero
v ∈ Zmp using the union bound.

Now conditioned on the value h(b∗), the value h(b) is still uniformly random by pairwise independence.
Therefore, H = h(b)− h(b∗) is uniform, and we are done.

Theorem 6.6. Instantiate the parameters of the above scheme as follows: let p = nc1 be prime for some
constant c1 > 0, let q ∈ [4pn,O(pnc2)] for some constant c2 > 1, let n = dc3 for some constant c3 > 1, and
let χ = Ψ̄α where α ≤ 1/(32pn). Let the matrix width w = m+ t+ t′ = m+ 2d, letting (say) t = t′ = d.7

Then the algorithms described above give a collection of almost-always (n, k)-ABO TDFs with branch
set Ztp = Zdp (of size exponential in d) under the assumption that LWEq,χ is hard, where the residual leakage
r = n− k is

r ≤
(
c2

c1
+ o(1)

)
· n.

Proof. The proof is very similar to that of Theorem 6.4, adjusted to accommodate the larger matrix width w
and the pairwise independent matrices H.

The correctness of the inversion algorithm for all branches b 6= b∗ and on all values y (with overwhelming
probability over the choice of function) follows by Lemma 6.5. Specifically, for any output y, the absolute
total error in yj is < q/2p for all j ∈ [w] (with overwhelming probability), hence the decryption DZ(y)
outputs vH. Furthermore, with all but pm+t−w = p−d = negl(d) probability, every H = h(b)− h(b∗) has
full row rank, so v can be recovered from vH for all branches b 6= b∗.

We now analyze the lossiness. All ciphertexts yj are encryptions of 0 and carry the same randomness
xA ∈ Zdq . By Lemma 6.3, the total error in every yj has absolute value < q/2p (with overwhelming
probability over the choice of the function). Therefore the total number of outputs of the function on lossy
branch b∗ is at most qd · (q/p)w = qd · (q/p)m+2d. A calculation similar to the one from Theorem 6.4
yields the claimed lossiness, where the only difference is an extra additive term in the residual leakage of
2d lgO(nc2) = O(n1/c3 lg n) = o(n).

Finally, the hidden lossy branch property follows by the security of matrix encryption.

6.5 Worst-Case Connection

We now relate the security of our constructions to the conjectured worst-case (quantum) hardness of lattice
problems. The main statement is a connection between any desired constant lossiness rate K ∈ (0, 1) (larger
K means more information is lost) and the associated approximation factor for lattice problems. This merely
involves a somewhat tedious (but otherwise routine) instantiation of all of the parameters n, p, q, . . . to satisfy
the various hypotheses of the constructions.

7More generally, it suffices to let t, t′ be any functions of d growing faster than any constant and slower than n1−δ for some
δ > 0.
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Theorem 6.7. For any constant K ∈ (0, 1), the construction of Section 6.3 with prime q gives a family of
almost-always (n,Kn)-lossy TDFs for all sufficiently large n, assuming that SIVP and GapSVP are hard
for quantum algorithms to approximate to within Õ(dc) factors, where c = 2 + 3

2(1−K) + δ for any desired
δ > 0.

The same applies for the construction in Section 6.4, with prime q and p, of almost-always (n,Kn)-all-
but-one TDFs.

Proof. Using the notation from Theorem 6.4 (likewise Theorem 6.6), we let p = nc1 and let n = dc3 for
some constants c1 > 0, c3 > 1 that we set later, and let α = 1/(32pn). In order to invoke Proposition 6.1
(connecting LWE to lattice problems), we need to use some

q > 2
√
d/α = 64pn

√
d = 64pn1+1/(2c3).

Therefore we set c2 = 1 + 1/(2c3), so we may take q = O(pnc2).
Now invoking Theorem 6.4, we get that the lossy TDF collection has residual leakage

n ·
(
c2

c1
+ ε

)
= n ·

(
1 + 2c3

2c1c3
+ ε

)
for any ε > 0 and sufficiently large n.

Now by Proposition 6.1, LWE is hard for our choice of parameters, assuming the lattice problems are
hard to approximate to within Õ(d/α) = Õ(d1+c3(c1+1)) factors for quantum algorithms. With the constraint
on the residual leakage as 1+2c3

2c1c3
< (1−K), we get that c1 >

1+2c3
2c3(1−K) . This implies that the exponent in the

lattice approximation factor may be brought arbitrarily close to 1 + c3 + 1+2c3
2(1−K) . Then under the constraint

that c3 > 1, the exponent may be brought arbitrarily close to 2 + 3
2(1−K) , as desired.
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