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Abstract

We construct public-key cryptosystems that are secure assuming the worst-case hardness of ap-
proximating the minimum distance on n-dimensional lattices to within small poly(n) factors. Prior
cryptosystems with worst-case connections were based either on the shortest vector problem for a special
class of lattices (Ajtai and Dwork, STOC 1997; Regev, J. ACM 2004), or on the conjectured hardness of
lattice problems for quantum algorithms (Regev, STOC 2005).

Our main technical innovation is a reduction from variants of the shortest vector problem to corre-
sponding versions of the “learning with errors” (LWE) problem; previously, only a quantum reduction
of this kind was known. As an additional contribution, we construct a natural chosen ciphertext-secure
cryptosystem having a much simpler description and tighter underlying worst-case approximation factor
than prior schemes.

Keywords: Lattice-based cryptography, learning with errors, quantum computation

∗Computer Science Lab, SRI International, Menlo Park, CA, cpeikert@alum.mit.edu. This material is based upon
work supported by the National Science Foundation under Grants CNS-0716786 and CNS-0749931. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.



1 Introduction

The seminal work of Ajtai in 1996 revealed the intriguing possibility of basing cryptography on worst-case
complexity assumptions related to lattices [Ajt04]. (An n-dimensional lattice is a discrete additive subgroup
of Rn.) Since then, basic cryptographic primitives such as one-way functions and collision-resistant hash
functions, along with other notions from “Minicrypt” [Imp95], have been based on the conjectured hardness
of important and well-studied lattice problems. Perhaps the most well-known of these, the shortest vector
problem GapSVP, is to approximate the minimum distance of a lattice, i.e., the length of its shortest nonzero
vector. Another, called the short independent vectors problem SIVP, is (informally) to find a full-rank set of
lattice vectors that are relatively short.

For public-key encryption (and related strong notions from “Cryptomania”), however, the underlying
worst-case lattice assumptions are somewhat more subtle. The ground-breaking cryptosystem of Ajtai
and Dwork [AD97] and subsequent improvements [Reg04b, AD07] are based on a special case of the
shortest vector problem, called “unique-SVP,” in which the shortest nonzero vector of the input lattice
must be significantly shorter than all other lattice vectors that are not parallel to it. Compared to other
standard problems, the complexity of unique-SVP is not as well-understood, and there is theoretical and
experimental evidence [Cai98, GN08] that it may not be as hard as problems on general lattices (for matching
approximation factors), due to the extra geometric structure.

A different class of cryptosystems (and the only other known to enjoy worst-case hardness) stem from a
work of Regev [Reg05], who defined a very natural intermediate problem called learning with errors (LWE).
The LWE problem is a generalization of the well-known “learning parity with noise” problem to larger
moduli. It is parameterized by a dimension n, a modulus q, and an error distribution χ over Zq; typically,
one considers a Gaussian-like distribution χ that is relatively concentrated around 0. In the search version
of LWE, the goal is to solve for an unknown vector s ∈ Znq (chosen uniformly at random, say), given any
desired m = poly(n) independent “noisy random inner products”

(ai , bi = 〈ai, s〉+ xi) ∈ Znq × Zq, i = 1, . . . ,m,

where each ai ∈ Znq is uniformly random and each xi is drawn from the error distribution χ. In the decision
version, the goal is merely to distinguish between noisy inner products as above and uniformly random
samples from Znq × Zq. It turns out that when the modulus q is prime and bounded by poly(n), the search
and decision variants are equivalent via an elementary reduction [Reg05]. (As we shall see later on, the
hypotheses on q can be relaxed somewhat).

The LWE problem is amazingly versatile. In addition to its first application in a public-key cryptosys-
tem [Reg05], it has provided the foundation for many cryptographic schemes, including chosen ciphertext-
secure cryptosystems [PW08], identity-based encryption [GPV08], and others [PVW08, AGV09, CPS09],
as well as for hardness of learning results relating to halfspaces [KS06]. We emphasize that all of the above
cryptographic applications are based on the presumed hardness of decision-LWE.

The main result of [Reg05] is a remarkable connection between lattices and the learning with errors
problem, namely: the search version of LWE is at least as hard as quantumly approximating GapSVP and
SIVP on n-dimensional lattices, in the worst case. (The exact approximation factor is Õ(n/α), where the
error distribution has standard deviation ≈ α · q for parameter α = α(n) ∈ (0, 1).) In other words, there is a
polynomial-time quantum algorithm (a reduction) that solves standard lattice problems, given access to an
oracle that solves search-LWE. This is an intriguing and nontrivial connection, because despite significant
research efforts, efficient quantum algorithms for the lattice problems in question have yet to be discovered.
Under the plausible conjecture that no such algorithms exist, it follows that LWE is hard and all of the above
cryptographic constructions are secure (even against quantum adversaries).
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Due to the relative novelty of quantum computing, however, it may still be premature to place a great deal
of confidence in such conjectures, and in any case, it is worthwhile to base hardness results and cryptographic
schemes on the weakest possible assumptions. The central question left open in [Reg05] is whether there is a
classical reduction from lattice problems to LWE. More generally, basing a public-key cryptosystem on any
“conventional” worst-case lattice assumption has remained an elusive open question.

1.1 Results

Our main result is the first public-key cryptosystem whose security is based on the conjectured worst-case
hardness of approximating the shortest vector problem GapSVP on arbitrary lattices. The core technical
innovation is a classical reduction from certain lattice problems to corresponding versions of the learning
with errors problem. In more detail:

• We show that for large moduli q ≥ 2n/2, the search version of LWE is at least as hard as approximating
GapSVP in the worst case, via a classical (probabilistic polynomial-time) reduction. As in [Reg05], the
approximation factor for GapSVP is Õ(n/α), where (roughly speaking) α · q is the standard deviation
of the Gaussian error distribution over Zq.
More generally, our reduction actually implies that for moduli as small as (say) q ≥ n/α, search-LWE
is at least as hard as classically approximating a novel variant of the shortest vector problem on general
lattices (in the worst case, to within Õ(n/α) factors). The new problem, which we call ζ-to-γ-GapSVP,
is (informally) to approximate the minimum distance to within a γ factor, given a promise that it lies
within a range having gap ζ > γ. This problem is equivalent to standard GapSVP for ζ ≥ 2n/2; for
smaller ζ it is no harder than GapSVP, yet even for ζ = poly(n) it still appears to be exponentially
hard in the dimension n, given the state of the art in lattice algorithms. In our reduction, the modulus q
depends linearly on ζ, so relying on an easier variant of GapSVP allows a smaller choice of q.

• We then consider prior LWE-based schemes, such as public-key cryptosystems [Reg05, PVW08] and
identity-based encryption [GPV08], in the context of the above classical hardness results. Generally
speaking, the security of these schemes is based on the hardness of decision-LWE, which (as mentioned
above) is equivalent to the search version for prime modulus q = poly(n). While this suffices for
basing security on the ζ-to-γ-GapSVP problem for ζ = poly(n), it is not enough to give a connection
to standard GapSVP, due to the large modulus q ≥ 2n/2 needed by our reduction.

Fortunately, an argument communicated by Regev [Reg08] implies that search and decision are also
equivalent when q is the product of many small primes. By adapting prior cryptosystems to different
sizes of q, we obtain semantically secure cryptosystems based on the worst-case hardness of GapSVP
and its ζ-to-γ variant.1 See Section 1.2.1 for a detailed summary and comparison to prior works.

• As an additional contribution, we construct a very natural LWE-based cryptosystem that is secure under
the strong notion of an adaptive chosen-ciphertext attack. This provides an alternative to a recent
construction of Peikert and Waters [PW08], with the advantages of a much simpler description and
analysis, and tighter underlying approximation factors (which are only slightly worse than those of the
semantically secure schemes; see Figure 1).

1A preliminary version of this work [Pei08b] constructed a different style of cryptosystem based directly on the search version of
LWE, which gave a connection to standard GapSVP without needing a search/decision equivalence for large q. However, systems
based on decision-LWE seem more natural and flexible; see Section 1.2.1 for further discussion.
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Cryptosystem Public key Expansion Worst-case problem Approximation

LWE, q = 2O(n) O(n4) O(log n) GapSVP Õ(n2)

Ajtai-Dwork [AD97, AD07] O(n4) O(n) unique-SVP∗ Õ(n2)

Regev [Reg04b] O(n4) O(n2) unique-SVP∗ Õ(n1.5)

LWE, q = poly(n) Õ(n2) O(log n)
poly(n)-to-γ-GapSVP

Õ(n1.5)
GapSVP/SIVP (quantum)

CCA: q = poly(n) [PW08] n2+δ O(log n) same as above ↑ n5+δ

new CCA: q = poly(n) n2+δ O(log n) same as above ↑ Õ(n2)

new CCA: q = 2O(n) n4+δ O(log n) GapSVP Õ(n4)

Figure 1: Efficiency measures and underlying problems for lattice-based cryptosystems with worst-case
connections. “Expansion” is the best known amortized ratio of ciphertext length to plaintext length, for
many-bit messages (we omit log n factor improvements that are sometimes possible at the expense of slightly
looser approximation factors). The final three rows describe known chosen ciphertext-secure cryptosystems,
all of which are based on LWE; δ denotes an arbitrary positive constant that varies from entry to entry. ∗See
Section 1.2.1 for discussion of a recently discovered connection between GapSVP and unique-SVP.

Our classical hardness results for LWE are incomparable to the quantum connections demonstrated by
Regev [Reg05]. The reason is that our reduction solves the decision problem GapSVP when q is very large,
as well as progressively easier variants of GapSVP for smaller values of q. In contrast, Regev’s reduction
approximates both the search problem SIVP as well as GapSVP for small q, but using the extra power of
quantum computation.

1.2 Discussion

1.2.1 Efficiency, Approximation Factors, and Prior Cryptosystems

In adapting prior LWE-based (semantically secure) cryptosystems [Reg05, PVW08, GPV08] to our hardness
results, the modulus q is the main parameter governing efficiency, as well as the underlying worst-case
problem and approximation factor. The public key size is O(n2 log2 q), and the amortized plaintext-to-
ciphertext expansion factor can be made as small as O(log n). The underlying worst-case approximation
factor for GapSVP (or its ζ-to-γ variant) is γ = Õ(n1.5

√
log q). Figure 1 summarizes the efficiency and

underlying problems for LWE-based cryptosystems (for selected interesting values of q) and those based on
the unique-SVP problem [AD97, Reg04b, AD07].

Using a core component of our reduction and several other ideas, Lyubashevsky and Micciancio [LM09]
recently showed that the γ-unique-SVP and (γ ·

√
n

logn)-GapSVP problems are actually equivalent. This

implies that prior cryptosystems based on unique-SVP [AD97, Reg04b, AD07] are also secure under the
worst-case hardness of GapSVP, with a Θ̃(

√
n) relaxation in the underlying approximation factor. Con-

sidering the top three lines of Figure 1, we see that all these systems are therefore nearly identical with
respect to key size and security, though LWE-based schemes enjoy the “best of all worlds” with respect to
approximation factors and plaintext expansion.
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A preliminary version of this work [Pei08b] also included a more technical reduction showing that partic-
ular bits of the LWE secret s are “hard-core” (pseudorandom). The purpose was to construct cryptosystems
(enjoying both semantic and chosen-ciphertext security) based on the search version of LWE, due to the lack
of a search/decision equivalence for large q at the time. With such an equivalence now in hand (for q of a
certain form), it is more convenient and natural to base cryptosystems on decision-LWE, and we consider the
other cryptosystems obsolete.

1.2.2 Open Problems

Our core reduction from lattice problems to LWE is non-adaptive (all queries to the LWE oracle can be
prepared in advance), and seems to be limited to solving variants of the decision version GapSVP of the
shortest vector problem. In contrast, the quantum reduction of [Reg05] and prior classical reductions for
Minicrypt primitives (e.g., [Ajt04, MR07]) are iterative. That is, they work by adaptively using their oracles
to find shorter and shorter lattice vectors, which also lets them approximate search problems such as SIVP. A
key question that remains open is whether a classical, iterative reduction exists for LWE.

It would be very interesting to study the complexity of the new ζ-to-γ variant of GapSVP (and other
decision problems), in which a gap of intermediate quality is already promised, and a tighter approximation
is desired. For example, are such problems NP-hard for any nontrivial values of ζ? Are there reductions from
larger to smaller values of ζ, possibly by trading off against γ? In the other direction, are there algorithms
that perform better as ζ decreases toward γ?

1.3 Technical Overview

1.3.1 Background

We start by giving a brief, high-level description of the common approach underlying prior cryptosys-
tems [AD97, Reg04b, Reg05, AD07]. These works deal with two types of probability distributions over some
domain: the uniform distribution, and distributions that are highly concentrated, or “lumpy,” over certain
parts of the domain. The two types of distributions are used in the construction and analysis of public-key
cryptosystems (the details of which are not relevant at this point).

The heart of each work is a reduction from solving some worst-case lattice problem to distinguishing
between the two types of distributions (uniform and lumpy). In order to guarantee that the reduction produces
the prescribed kind of lumpy distributions, it has so far been necessary for the input to obey some kind of
geometric constraint during some phase of the reduction. For instance, in the work of Ajtai and Dwork and
its improvements [AD97, Reg04b, AD07], the input is a lattice that must have a “unique” shortest vector.

Regev’s quantum reduction for LWE [Reg05] is more subtle, and because we will be relying on one of its
components, we describe it in more detail. The reduction has two parts that alternately feed back to each other.
The first is entirely classical (non-quantum), and has the following form: given access to an LWE oracle and
many lattice points drawn from a certain distribution, it solves a bounded-distance decoding (BDD) problem
to within a certain radius. The goal of the BDD problem is to find the unique lattice vector that is closest to a
given target point, under the promise that the target is within some small fraction of the lattice’s minimum
distance. (This promise is the geometric constraint imposed by the reduction.) The second component of the
reduction is quantum, and uses an oracle for the BDD problem to generate lattice points according to a more
concentrated distribution. These are then fed back to the first component of the reduction to solve BDD for a
larger decoding radius, and so on.
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The main obstacle to obtaining a purely classical reduction seems to be in making use of an oracle for
the BDD problem. Quoting [Reg05], “. . . it seems to us that the only way to generate inputs to the oracle is
the following: somehow choose a lattice point y and let x = y + z for some perturbation vector z of length
at most d [a small fraction of the minimum distance]. Clearly, on input x the oracle outputs y. But this is
useless since we already know y!” In contrast, the quantum reduction uses the BDD oracle to uncompute y
from x, which turns out to be very powerful.

1.3.2 Our Approach

Briefly stated, we find a way to use the BDD oracle to solve a lattice problem, classically. The main idea is to
imagine, as a complementary case, a lattice whose minimum distance is significantly less than the decoding
radius d that the oracle handles. If the reduction generates a point x = y + z as described above, then the
original lattice point y is statistically hidden from the oracle. Of course, this process does not result in a valid
instance of the BDD problem (and the subsequent reduction will not produce valid LWE samples), but this
is of no consequence — no matter what the BDD oracle does, it must fail to guess y with some noticeable
probability. On the other hand, when the minimum distance is large enough relative to d, the oracle is obliged
to return y with overwhelming probability. The reduction can therefore distinguish between lattices having
small and large minimum distance, thereby solving GapSVP.

We note that this is exactly the main idea behind the Arthur-Merlin protocol for coGapSVP of Goldreich
and Goldwasser [GG00]. In effect, our reduction and the BDD oracle play the roles of the verifier and
unbounded prover, respectively, in their protocol. To our knowledge, this is the first use of the technique
in a worst-case to average-case reduction; prior works solve GapSVP by dealing with the dual lattice. The
approach is also closely related to the concept of “lossy (trapdoor) functions” [PW08], which influence our
new chosen ciphertext-secure cryptosystems (described below).

The discussion so far has ignored one very important subtlety: the classical reduction from BDD to
LWE requires not only an LWE oracle, but also several lattice points drawn from a certain Gaussian-like
distribution. In [Reg05], these points are iteratively produced by the quantum component of the reduction,
which is unavailable in the classical setting (so we unfortunately lose the iterative nature of the overall
reduction). Instead, we use a Gaussian sampling algorithm recently developed in [GPV08]. When run on
an LLL-reduced lattice basis [LLL82] (which may always be computed in polynomial time), the quality
of the resulting distribution induces a large modulus q = 2O(n) for the LWE problem. For the ζ-to-γ
variant of GapSVP, the standard deviation of the Gaussian distribution decreases with ζ, and we can use
a correspondingly smaller value of q. (We note that the sampling algorithm from [GPV08] is especially
important in this case to get a tight connection between ζ and q.)

1.3.3 Chosen Ciphertext-Secure Cryptosystems

Here we summarize the ideas behind a new, very natural cryptosystem that enjoys CCA-security, i.e., security
under active chosen-ciphertext attacks. At its heart is a collection of injective trapdoor functions based on
LWE. This collection was defined in the recent work of Gentry, Peikert, and Vaikuntanathan [GPV08], and is
closely related to an earlier proposal by Goldreich, Goldwasser, and Halevi [GGH97].

The description of a function gA from the collection is a matrix A ∈ Zn×mq made up of m uniformly
random and independent vectors ai ∈ Znq , for some large enough m. The function gA is typically evaluated
on a random input, which comes in two parts: a uniformly random s ∈ Znq , and an error vector x ∈ Zmq
whose entries xi are chosen independently from the error distribution χ of the LWE problem. The function is
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defined simply as
b = gA(s,x) = Ats + x ∈ Zmq .

Note that each entry of the output vector is bi = 〈ai, s〉+ xi, so inverting gA (respectively, distinguishing
its output from uniform) is syntactically identical to solving search-LWE (resp., decision-LWE) given m
noisy inner products. As shown in [GPV08], the function gA has a trapdoor with which the input s may be
efficiently recovered from b (when χ is sufficiently concentrated). Concretely, the trapdoor is a “short” basis
for a certain lattice defined by A, and the two can be generated together so that A has the required (nearly)
uniform distribution [Ajt99, AP09].

Our CCA-secure scheme relies on the recent “witness-recovering decryption” approach of [PW08], some
additional perspectives due to Rosen and Segev [RS09], and a few more techniques that are particular to the
use of LWE. The key observation is that k independent functions gA1 , gA2 , . . . , gAk

remain pseudorandom
even when evaluated on the same input s and independent error vectors x1, . . . ,xk, because the output
simply consists of k ·m samples from the LWE distribution. (This fact was also independently observed
by Goldwasser and Vaikuntanathan.) For injective trapdoor functions, one-wayness under such “correlated
inputs” immediately yields chosen-ciphertext security (for short messages), as shown in [RS09]. However,
the precise meaning of “injective” turns out to be quite subtle in this context, and our LWE-based trapdoor
functions must be carefully modified to satisfy the required conditions. In addition, we show how to use the
pseudorandomness of LWE to handle any desired message length.

2 Preliminaries

We denote the set of real numbers by R and the set of integers by Z. For a positive integer n, define
[n] = {1, . . . , n}. We extend any real function f(·) to any countable set A by defining f(A) =

∑
x∈A f(x).

The main security parameter throughout the paper is n, and all other quantities are implicitly functions
of n. We use standard O(·), o(·), Ω(·), and ω(·) notation to describe the growth of functions, and write
f(n) = Õ(g(n)) if f(n) = O(g(n) · logc n) for some fixed constant c. We let poly(n) denote an unspecified
polynomial function f(n) = O(nc) for some constant c. A function f(n) is negligible, written negl(n), if
f(n) = o(n−c) for every constant c. We say that a probability is overwhelming if it is 1− negl(n).

Vector spaces. By convention, all vectors are in column form and are named using bold lower-case letters
(e.g., x), and xi denotes the ith component of x. Matrices are named using bold capital letters (e.g., X),
and xi denotes the ith column vector of X. We identify a matrix X with the (ordered) set of its column
vectors. For a set S ⊆ Rn, point x ∈ Rn, and scalar c ∈ R, we define S + x = {y + x : y ∈ S} and
cS = {cy : y ∈ S}.

The Euclidean (or `2) norm on Rn is ‖x‖ =
√∑

i x
2
i . The open unit ball Bn ⊂ Rn (in the `2 norm) is

defined as Bn = {x ∈ Rn : ‖x‖ < 1}.
For any (ordered) set S = {s1, . . . , sn} ⊂ Rn of linearly independent vectors, let S̃ = {s̃1, . . . , s̃n}

denote its Gram-Schmidt orthogonalization, defined iteratively as follows: let s̃1 = s1, and for each
i = 2, . . . , n, let s̃i be the projection of si onto span⊥(s1, . . . , si−1), i.e., s̃i = si −

∑i−1
j=1 µi,j s̃j , where

µi,j = 〈si, s̃j〉/〈s̃j , s̃j〉.

Probability. The statistical distance between two distributions X and Y over D (or two random variables
having those distributions) is defined as ∆(X,Y ) = maxA⊆D |fX(A)− fY (A)|. Statistical distance is
a metric on probability distributions; in particular, it obeys the triangle inequality. Applying a (possibly
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randomized) function g cannot increase the statistical distance: ∆(g(X), g(Y )) ≤ ∆(X,Y ). The uniform
distribution over D is denoted U(D).

For any positive integer n and real r > 0, define the n-dimensional Gaussian function ρ(n)
r : Rn → R

with parameter r as ρ(n)
r (x) = exp(−π(‖x‖/r)2). (We often omit n when it is clear from context.) The

total measure associated to ρr is
∫

Rn ρr(x) dx = rn, so we can define a continuous Gaussian probability
distribution over Rn by its density function Dr(x) = ρr(x)/rn. The Gaussian distribution Dr is spherically
symmetric, and its projection onto any unit vector is D(1)

r . For x ∈ R distributed according to D(1)
r and any

t ≥ 1, a standard tail inequality is that |x| < r · t except with probability at most exp(−πt2).
It is possible to sample efficiently from Dr to within any desired level of precision. It is also possible

to sample efficiently from U(Bn); see, e.g., [GG00]. For simplicity, we use real numbers in this work and
assume that we can sample from Dn

r and U(Bn) exactly; all the arguments can be made rigorous by using a
suitable amount of precision.

We need the following lemma, which says that for two n-dimensional balls whose centers are relatively
close, the uniform distributions over the balls have statistical distance bounded away from 1.

Lemma 2.1 ([GG00]). For any constants c, d > 0 and any z ∈ Rn with ‖z‖ ≤ d and d′ = d ·
√
n/(c log n),

we have ∆(U(d′ · Bn), U(z + d′ · Bn)) ≤ 1− 1/ poly(n).

2.1 Learning with Errors

Let T = R/Z be the additive group on the real interval [0, 1) with modulo 1 addition. For positive integers
n and q ≥ 2, a vector s ∈ Znq , and a probability distribution φ on T, define As,φ to be the distribution on
Znq × T obtained by choosing a vector a ∈ Znq uniformly at random, choosing an error term e ∈ T according
to φ, and outputting (a, 〈a, s〉/q + e), where the addition is performed in T.

We are primarily concerned with error distributions φ over T that are derived from Gaussians. For α > 0,
define Ψα to be the distribution on T obtained by taking a sample from the one-dimensional Gaussian Dα

and reducing modulo 1.

Definition 2.2. For an integer function q = q(n) and an error distribution φ on T, the goal of the learning
with errors problem LWEq,φ in n dimensions is to find s ∈ Znq (with overwhelming probability) given access
to any desired poly(n) number of samples from As,φ for some arbitrary s.

2.2 Lattices

An n-dimensional lattice is a discrete additive subgroup of Rn. Equivalently, let B = {b1, . . . ,bn} ⊂ Rn

consist of n linearly independent vectors; the lattice Λ generated by the basis B is

Λ = L(B) = {Bc =
∑

i∈[n]
ci · bi : c ∈ Zn}.

(Technically, this is the definition of a full-rank lattice, which is all we are concerned with in this work.)
The minimum distance λ1(Λ) of Λ (in the `2 norm) is the length of its shortest nonzero vector: λ1(Λ) =

min0 6=x∈Λ‖x‖. It is well-known, and easy to show, that the minimum distance λ1(Λ) ≥ mini‖b̃i‖ for any
basis B of Λ.

The dual lattice of Λ, denoted Λ∗, is defined as Λ∗ = {x ∈ Rn : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}. By symmetry,
it can be seen that (Λ∗)∗ = Λ. If B is a basis of Λ, it can be seen that the dual basis B∗ = (B−1)t is in fact a
basis of Λ∗. The following standard fact relates the Gram-Schmidt orthogonalizations of a basis and its dual
(a proof can be found in [Reg04a, Lecture 8]).
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Lemma 2.3. Let {b1, . . . ,bn} be an (ordered) basis, and let {d1, . . . ,dn} be its dual basis in reversed
order (i.e., di = b∗n−i+1). Then d̃i = b̃i/‖b̃i‖2 for all i ∈ [n]. In particular, ‖d̃i‖ = 1/‖b̃i‖.

Computational problems.

Definition 2.4 (Shortest Vector Problem). For a function γ(n) ≥ 1, an input to the shortest vector problem
GapSVPγ is a pair (B, d), where B is a basis of an n-dimensional lattice Λ = L(B) and d > 0 is a real
number. It is a YES instance if λ1(Λ) ≤ d, and is a NO instance if λ1(Λ) > γ(n) · d.

Note that given an oracle for GapSVPγ , the minimum distance λ1 of any lattice can be computed to
within a factor of (say) 2γ by binary search on the value d.

We now define a generalization of the shortest vector problem, which is actually the problem that our
main worst-case to average-case reduction will be based upon.

Definition 2.5 (ζ-to-γ-GapSVP). For functions ζ(n) ≥ γ(n) ≥ 1, an input to ζ-to-γ shortest vector problem
GapSVPζ,γ is a pair (B, d), where:

• B is a basis of an n-dimensional lattice Λ = L(B) for which λ1(Λ) ≤ ζ(n),

• mini‖b̃i‖ ≥ 1, and

• 1 ≤ d ≤ ζ(n)/γ(n).

It is a YES instance if λ1(Λ) ≤ d, and is a NO instance if λ1(Λ) > γ(n) · d.

A few remarks about this definition are in order. First, note that the second condition min‖b̃i‖ ≥ 1
implies that λ1(Λ) ≥ 1, and is without loss of generality by scaling the basis B. Similarly, the last condition
1 ≤ d ≤ ζ(n)/γ(n) is without loss of generality, because the instance is trivially solvable when d lies outside
that range.

The first condition is the interesting one. For any ζ(n) ≥ 2n/2, GapSVPζ,γ is equivalent to the standard
GapSVPγ problem, because an arbitrary basis B′ of Λ can be reduced in polynomial time using the LLL
algorithm [LLL82] to another basis B of Λ so that λ1(Λ) ≤ ‖b1‖ ≤ 2n/2 ·mini‖b̃i‖.

For smaller functions ζ(n), particularly ζ(n) = poly(n), the condition is nontrivial and more interesting.
The nature of the problem is to approximate the minimum distance to within a gap γ(n), given a promise that
it lies within a looser range having gap ζ(n). The promise could be made efficiently verifiable by restricting
to “high quality” bases that contain (or guarantee the existence of) a vector of length at most ζ(n), though
this is not necessary and could potentially make the problem easier. To our knowledge, none of the lattice
algorithms in the literature (e.g., [AKS01]) are able to solve GapSVPζ,γ for γ(n) < ζ(n) = poly(n) in time
better than 2Ω(n), even when the promise is verifiable efficiently, and even when, say, ζ(n) = 2γ(n).

Gaussians on lattices. Micciancio and Regev [MR07] introduced a lattice quantity called the smoothing
parameter, and related it to the minimum distance of the dual lattice.

Definition 2.6. For an n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is
defined to be the smallest r such that ρ1/r(Λ∗\{0}) ≤ ε.

Lemma 2.7 ([MR07, Lemma 3.2]). For any n-dimensional lattice Λ, we have η2−n(Λ) ≤
√
n/λ1(Λ∗).
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For an n-dimensional lattice Λ and real r > 0, define the discrete Gaussian probability distribution
over Λ with parameter r as DΛ,r(x) = ρr(x)/ρr(Λ) for all x ∈ Λ. Note that the denominator in the above
expression is merely a normalization factor. Our reduction uses, as a subroutine, an efficient algorithm that
generates samples from discrete Gaussian distributions.

Proposition 2.8 ([GPV08, Theorem 4.1]). There exists a probabilistic polynomial-time algorithm that, given
any basis B of an n-dimensional lattice Λ and any r ≥ maxi‖b̃i‖ · ω(

√
log n), outputs a sample from a

distribution that is within negl(n) statistical distance of DΛ,r.

3 Classical Hardness of LWE

In this section we show that certain forms of the learning with errors problem are at least as hard as classically
solving corresponding versions of the shortest vector problem.

3.1 Main Theorem

Theorem 3.1. Let α = α(n) ∈ (0, 1) be a real number and γ = γ(n) ≥ n/(α
√

log n). Let ζ = ζ(n) ≥ γ
and q = q(n) ≥ (ζ/

√
n) · ω(

√
log n).

There is a probabilistic polynomial-time reduction from solving GapSVPζ,γ in the worst case (with
overwhelming probability) to solving LWEq,Ψα using poly(n) samples.

Note that GapSVPζ,γ is potentially hard in the worst case whenever ζ > γ, so Theorem 3.1 allows for a
choice of q as small as

q ≥ (γ/
√
n) · ω(

√
log n) = ω(

√
n/α).

We also mention that using results from [Pei08a], Theorem 3.1 can easily be generalized to work for
GapSVPζ,γ in any `p norm, 2 ≤ p ≤ ∞, for essentially the same approximation factor γ. We defer the
details to the full version.

3.1.1 Regev’s Classical Reduction

We rely crucially on the classical component of Regev’s quantum reduction, restated here.

Proposition 3.2 ([Reg05, Lemma 3.4]). Let ε = ε(n) be a negligible function, q = q(n) ≥ 2 be an integer,
α = α(n) ∈ (0, 1) and φ = Ψα. There is a classical probabilistic polynomial-time reduction RW,D(B, r,x)
that, given as input a basis B of an n-dimensional lattice Λ = L(B), a number r ≥

√
2q · ηε(Λ∗), and a

target point x within distance αq/(
√

2r) of Λ, and given access to

1. an oracle W that solves LWEq,φ using poly(n) samples, and

2. an oracle D that generates samples from DΛ∗,r,

finds (the unique) v ∈ Λ closest to x with overwhelming probability.

For completeness, we give a brief description of the reduction R described in Proposition 3.2 (however,
this is not required to understand the proof of Theorem 3.1 and may be safely skipped). Suppose s =
B−1v mod q is the coefficient vector of v reduced modulo q. To generate a sample from As,φ, the reduction
uses its oracle D to obtain a sample y from DΛ∗,r, lets a = (B∗)−1y = Bty mod q, and outputs

(a , b = 〈y,x〉/q + e) ∈ Znq × T,
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where e ∈ R is a small extra error term chosen from a continuous Gaussian. Omitting many details, this
faithfully simulates the LWE distribution for two reasons: first, a is essentially uniform over Znq since
r ≥ q · ηε(Λ), and second,

〈y,x〉 ≈ 〈y,v〉 = 〈Bty,B−1v〉 = 〈a, s〉 mod q.

(The error distribution in the 〈y,x〉 term above requires some care to analyze precisely; we refer the reader
to [Reg05] for the full details.) The oracle W solves for s = B−1v mod q by hypothesis, and the entire
vector v can be obtained by iterating the procedure as described in [Reg05, Lemma 3.5].

3.1.2 Proof of Main Theorem

Conceptually, the reduction claimed in Theorem 3.1 has two components. The first piece reduces GapSVP to
a version of the bounded-distance decoding (BDD) problem. The second part is the reduction R from BDD
to LWE described in Proposition 3.2, with a concrete implementation of the oracle D. Due to the additional
hypotheses of the GapSVPζ,γ problem that are needed throughout, we elect to present one integrated reduction,
but remark that the GapSVP to BDD component has been abstracted out in [LM09].

In more detail, our reduction works as follows: given a lattice Λ, it perturbs a point v ∈ Λ, invokes the
reduction R from Proposition 3.2 on the perturbed point, and checks whether R successfully recovers v.
When λ1(Λ) is large, R must indeed recover v by hypothesis. When λ1(Λ) is small, v is statistically hidden
and R must guess incorrectly with some non-negligible probability. (In effect, the reduction R is playing the
role of the unbounded prover in the interactive Arthur-Merlin proof of Goldreich and Goldwasser [GG00].)

Proof of Theorem 3.1. The input to our reduction is an instance of GapSVPζ,γ , i.e., a pair (B, d) where
min‖b̃i‖ ≥ 1, the minimum distance λ1(L(B)) ≤ ζ, and 1 ≤ d ≤ ζ/γ. Let Λ = L(B).

The reduction runs the following procedure some large number N = poly(n) times.

1. Choose a point w uniformly at random from the ball d′ · Bn where d′ = d ·
√
n/(4 log n), and let

x = w mod B.

2. Invoke the reduction R from Proposition 3.2 on B and x with parameter

r =
q ·
√

2n
γ · d

,

where the oracle D for sampling from DΛ∗,r is implemented by the algorithm from Proposition 2.8 on
the reversed dual basis D of B. Let v be R’s output.

If v 6= x−w in any of the N iterations, then accept. Otherwise, reject.
We now analyze the reduction. First recall that maxi‖d̃i‖ = 1/mini‖b̃i‖ ≤ 1, and the parameter

r =
q ·
√

2n
γ · d

≥ q ·
√

2n
ζ

≥ ω(
√

log n)

by hypothesis on d and q, so the algorithm from Proposition 2.8 correctly samples from a distribution that is
within negligible statistical distance of DΛ∗,r.

Now consider the case when (B, d) is a NO instance, i.e., λ1(Λ) > γ · d. Then by Lemma 2.7, we have

ηε(Λ∗) ≤
√
n

γ · d
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for ε(n) = 2−n = negl(n). Therefore r ≥
√

2q · ηε(Λ∗) as required by Proposition 3.2. Now because
x−w ∈ Λ, the distance from x to Λ is at most

d′ = d ·
√

n

4 log n
≤ α · γ · d√

4n
=

αq√
2r
,

by hypothesis on γ and the definition of r. Moreover, λ1(Λ) > γ · d > 2d′, so the reduction from
Proposition 3.2 must return v = x−w in each of the iterations (with overwhelming probability), and the
reduction rejects as desired.

Finally, consider the case when (B, d) is a YES instance, i.e., λ1(Λ) ≤ d. Let z ∈ Λ have norm
‖z‖ = λ1(Λ). Consider an alternate experiment in which of w is replaced by w′ = z + w for w chosen
uniformly from d′ · Bn, so x′ = w′ mod B and R is invoked on x′. Then by Lemma 2.1 and the fact that
statistical distance cannot increase under any randomized function, we have

Pr[R(x) = x−w] ≤ 1− 1
poly(n) + Pr[R(x′) = x′ −w′]

≤ 2− 1
poly(n) − Pr[R(x′) = x′ −w].

But now notice that x′ = z + w = w mod B, so x′ is distributed identically to x in the real experiment, and
can replace x in the above expression. Rearranging, it follows that Pr[R(x) = x−w] ≤ 1− 1/ poly(n).
Then for a sufficiently large N = poly(n), we have v 6= x−w in at least one iteration and the reduction
accepts, as desired.

3.2 Variants of LWE

The next two lemmas reduce the worst-case search version of LWE to an average-case decision problem,
which is more useful in cryptographic applications. The search to decision reduction in Lemma 3.3 is related
to one given in [Reg05], which required the modulus q to be prime and bounded by poly(n). The new lemma
works for moduli that are the product of distinct poly(n)-bounded primes. Interestingly, it applies to the
continuous version of LWE and requires the error distribution to be Gaussian, whereas the prior lemma
worked for an arbitrary discrete distribution over Zq.

Lemma 3.3 (Worst-Case Search to Decision [Reg08]). Let n ≥ 1 be an integer, let α = α(n) ∈ (0, 1) and
φ = Ψα, and let q = q1 · · · qt for distinct primes qj = poly(n) such that qj ≥ ω(

√
log n)/α. There is a

probabilistic polynomial-time reduction from solving LWEq,φ with overwhelming probability to distinguishing
between As,φ and U(Znq × T) for arbitrary s ∈ Znq with overwhelming advantage.

Proof. The factorization q1 · · · qt of q may computed efficiently because all the factors qj are bounded by
poly(n). It is enough to give a method for checking whether the ith coordinate si ∈ Zq of s is congruent to 0
modulo qj , for arbitrary i ∈ [n] and j ∈ [t]. This is because by transforming As,φ in the natural way, we can
efficiently “shift” si by each value modulo qj to discover si mod qj (because every qj = poly(n)), and then
recover each entry si ∈ Zq via the Chinese remaindering.

To check if si = 0 mod qj , consider the following transformation: given a pair (a, b) ∈ Znq × T, replace
ai with a random value modulo qj , leaving its value modulo q/qj the same. That is, let a′ = a+ ei · r · (q/qj)
for some uniformly random r ∈ Zqj (where ei ∈ Znq is the ith standard basis vector), and let b′ = b. If
si = 0 mod qj , then the transformation maps As,φ to itself. Now suppose si 6= 0 mod qj . Clearly a′ is
uniformly random; fix its value from here on. Because qj is prime, b′ is of the form

b′ = 〈a′, s〉/q + (r′/qj + e) ∈ T
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for uniformly random r′ ∈ Zqj and e← φ = Ψα. Because α ≥ ω(
√

log n) · 1/qj ≥ ηε(Z · 1/qj) for some
ε = negl(n), the distribution of r′/qj + e mod 1 is within negl(n) statistical distance of uniform over T
by [MR07, Lemma 4.1]. Distinguishing between the two cases therefore identifies whether si = 0 mod qj ,
and we are done.

Lemma 3.4 (Worst-Case to Average-Case Decision [Reg05, Lemma 4.1]). Let n, q ≥ 1 be integers and let φ
be an arbitrary distribution on T. There is a probabilistic polynomial-time reduction from distinguishing
between As,φ and U(Znq × T) with overwhelming advantage for arbitrary s ∈ Znq , to distinguishing between
As,φ and U(Znq × T) with non-negligible advantage for uniformly random s ∈ Znq .

Proof. The proof is via a standard amplification argument: repeatedly randomize the secret s by transforming
samples (a, b) ∈ Znq × T from As,φ into (a, b+ 〈a, t〉/q) from As+t,φ for a uniformly random t ∈ Znq . Full
details can be found in [Reg05].

4 Public-Key Cryptosystems

There are several prior LWE-based cryptosystems that enjoy semantic security against passive eavesdropping
attacks [GM84]: the original scheme of Regev [Reg05], a more efficient amortized version [PVW08], and
a “dual” (amortized) scheme that is the foundation for identity-based encryption [GPV08]. The security
proofs for these schemes rely solely on the hypothesis that the (discretized) LWE distribution used in the
scheme is pseudorandom, i.e., indistinguishable from uniform on the average. In Section 3 we established this
pseudorandomness property (for moduli q of a certain form) assuming the worst-case hardness of GapSVPζ,γ ,
so all the prior proofs go through under that same assumption.

When using a large value of q (e.g., q = 2O(n)), however, the efficiency of the prior schemes is suboptimal,
because the plaintext expansion factor (even in the amortized schemes) is at least lg q. Fortunately, improved
efficiency is possible by discretizing the LWE distribution more “coarsely” using a relatively small modulus
q′ = poly(n). Specifically, for any distribution D over Znq × T, define D̄ to be the discretized distribution
over Znq × Zq′ obtained by drawing a sample (a, b) from D and outputting (a, b̄ = bq′ · be mod q′). Clearly,
if D is uniform then D̄ is also uniform. Therefore, the discretized distribution Ās,φ is pseudorandom over
Znq × Zq′ if the continuous distribution As,φ is pseudorandom over Znq × T.

4.1 Example Scheme (Passive Security)

Due to the simplicity of its security proof and the similarity to our chosen ciphertext-secure schemes below,
here we adapt a version of the “dual” cryptosystem from [GPV08] to our setting, and analyze it briefly. (The
other schemes from [Reg05, PVW08] work out similarly.)

The parameters of the scheme are as follows. Fix integers n and q ∈ [2, 2O(n)]. Let m = (1 + δ)n lg q
for some constant δ > 0, let q′ ≥ 2(m+ 1) be bounded by poly(n), and let ` be the message length (in bits).
Fix α ∈ (0, 1) such that 1/α ≥

√
m+ 1 · ω(

√
log n), and let φ = Ψα.

• Key Generation. Choose A ∈ Zn×mq uniformly at random, and secret key X ∈ {0, 1}m×` uniformly

at random. The public key is (A,U = AX) ∈ Zn×(m+`)
q .

• Encryption. Given message g ∈ {0, 1}`, choose s ∈ Znq uniformly at random and e1 ← φm, e2 ← φ`.
Let b1 = (Ats)/q + e1 ∈ Tm and b2 = (Uts)/q + e2 + g/2 ∈ T`. Output the ciphertext
(b̄1, b̄2) ∈ Zm+`

q′ , where b̄i = bq′ · bie mod q′ for i = 1, 2.
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• Decryption. Given ciphertext (b̄1, b̄2) and secret key X, compute h = b̄2 −Xtb̄1 ∈ Z`q′ . For each
i ∈ [`], let gi = 0 if hi is closer to 0 modulo q′ than to bq′/2c, otherwise let gi = 1. Output g ∈ {0, 1}`.

We first analyze the efficiency of the scheme. The amortized efficiency is optimized when ` = O(m), so
suppose ` = m for simplicity. Then the public key size is O(n2 log2 q), and the plaintext expansion factor
is O(log q′) = O(log n). (As observed in [KTX07, PVW08], it is even possible to reduce the expansion to
O(1) by fitting Ω(log q′) bits into each component of g2, at the expense of a somewhat smaller α.)

Correctness of the scheme (with overwhelming probability) follows by a routine argument bounding the
accumulated error in the decryption algorithm, using the hypotheses on α and q′, the bound ‖xi‖ ≤

√
m on

each column of X, and the standard tail bound on Gaussians.
We briefly sketch the security proof. It relies solely on the hypothesis that As,φ is pseudorandom (for

uniform s ∈ Znq , which by the results of Section 3 follows from the worst-case hardness of (say) GapSVPζ,γ
for ζ = q > γ = Õ(n1.5

√
log q). By a standard argument using the leftover hash lemma, the public key

(A,U) is negligibly close to uniform. Then by construction, the public key together with the vectors b1,b2

(ignoring the g/2 component of b2) constitute m+ ` samples from As,φ, which are indistinguishable from
uniform by hypothesis. Therefore the view of the adversary is indistinguishable from uniform (for any
message g), which implies semantic security.

4.2 Chosen Ciphertext-Secure Scheme

4.2.1 Trapdoor Functions

Our CCA-secure cryptosystem is based on a collection of LWE-based injective trapdoor functions described
in [GPV08], which are related to a proposal of [GGH97]. For completeness, and due to some modifications
needed for the CCA application, we present a full description of the collection here.

The first component is a special algorithm for generating a (nearly) uniform matrix A ∈ Zn×mq that
serves as the index of the public function gA, together with a trapdoor T ∈ Zm×m made up of integer vectors
whose lengths are bounded by some relatively small L.2 Ajtai [Ajt99] gave the first such generation algorithm
with a somewhat loose bound L, and Alwen and Peikert [AP09] recently gave improved algorithms that yield
an optimal bound L (up to constant factors) for large enough m, or a somewhat looser bound for smaller m.

Proposition 4.1 ([AP09, Theorem 3.1 and 3.2]). There is a probabilistic polynomial-time algorithm that,
on input a positive integer n (in unary), positive integer q ≥ 2 (in binary), and a poly(n)-bounded positive
integer m ≥ 2n lg2 q, outputs a pair (A ∈ Zn×mq ,T ∈ Zm×mq ) such that:

• A is within negl(n) statistical distance of uniform,

• AT = 0 mod q, and

• ‖ti‖ ≤ 5
√
n lg q for every i ∈ [m].

Alternately, for m ≥ 3(1 + δ)n lg q for any δ > 0, there is another algorithm that outputs (A,S) as
above where ‖T‖ ≤ m · ω(

√
log n) with overwhelming probability.

Letm ≥ (1+δ)n lg q. A routine counting argument reveals that except with probability qn/2m = negl(n)
over the choice of a uniformly random matrix A ∈ Zn×mq , there does not exist any nonzero s ∈ Znq such

2As described in more detail in [Ajt99, GPV08, AP09], T can be seen as a full-rank set of short vectors in a certain lattice defined
by A, but that interpretation is not essential for this work.
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that Ats = 0 ∈ Zmq . That is, s ∈ Znq is uniquely determined by y = Ats/q ∈ Tm. Furthermore, s may be
recovered efficiently from A and y using, e.g., Gaussian elimination.

We now specify the family of trapdoor functions and their properties. The family {gA : Znq × Tm → Zmq′ }
is parameterized by moduli q, q′, a dimension m (satisfying the hypothesis in Proposition 4.1), and an error
parameter α ∈ (0, 1).

• Generation. On security parameter n (in unary), run the algorithm from Proposition 4.1 to generate
index A and trapdoor T.

• Evaluation. On index A and inputs s ∈ Znq chosen uniformly at random and x ∈ Tm chosen from
Ψm
α , compute b = Ats/q + x ∈ Tm. Output gA(s,x) = b̄ = bb · q′e mod q′.

• Inversion. To invert b̄ = gA(s,x) ∈ Zmq′ given the trapdoor T, let b′ = b̄/q′ ∈ Tm, compute

y = T−t · bTt · b′e mod 1,

and compute s′ from y as described above. Also output x′ = b′ − (Ats)/q ∈ Tm (the original
value of x cannot always be recovered from b̄ due to rounding, but any consistent x′ suffices for our
applications).

Lemma 4.2. Let q′ = q′(n) ≥ 2L
√
m and 1/α ≥ L · ω(

√
log n). Then for any s ∈ Znq and for x drawn

from Ψm
α , the inversion algorithm on b̄ = gA(s,x) correctly outputs s with overwhelming probability over

the choice of x.

Proof. We start with a few facts that we use later to analyze the rounding step. First, suppose w ∈ Rm is
such that |wi| ≤ 1/(2q′) for all i ∈ [m]. Then for all i ∈ [m], we have

|〈ti,w〉| ≤ ‖ti‖ · ‖w‖ ≤ L ·
√
m/(2q′) ≤ 1/4

by the Cauchy-Schwarz inequality and by hypothesis on ‖ti‖ and q′. Second, suppose x′ ∈ Rm is distributed
according to Dm

α . Then for all i ∈ [m], the inner product 〈ti,x′〉 is distributed according to Dr for
r = ‖ti‖ · α ≤ 1/ω(

√
log n) by hypothesis on ‖ti‖ and α. By the tail bound on Gaussian distributions,

|〈ti,x′〉| < 1/4 except with probability exp(−Ω(1/r2)) = negl(n).
Now consider the inversion algorithm on b̄ = gA(s,x) where x is chosen from Ψm

α . By the definition of
gA, there exist w ∈ Rm with |wi| ≤ 1/(2q′) for all i ∈ [m] and an x′ distributed according to Dm

α such that

b̄ = (Ats)/q + x′ + w mod 1.

Thus,
Tt · b̄ = (AT/q)t · s + Tt · (x′ + w) mod Tt.

Observe that (AT/q) = 0 mod 1 and Tt = 0 mod 1 by hypothesis on T. Therefore,

bTt · b′e = (AT/q)ts + bTt(x′ + w)e = Tt(Ats/q) mod Tt,

where the second inequality is with overwhelming probability over the choice of x′ by the bounds established
above. Finally, we see that y = T−t · bTt · b′e = (Ats/q) mod 1, and the inversion algorithm recovers s
from y.

We remark that the inversion algorithm presented above works in parallel by rounding each entry of
Tt · b′ independently. An iterative rounding scheme akin to the “nearest-plane” algorithm of Babai [Bab86]
can also be used, and succeeds (with overwhelming probability) whenever α(n) ≤ 1/(L̃ ·ω(

√
log n)), where

L̃ = maxi‖t̃i‖ is the norm of the longest vector in the Gram-Schmidt orthogonalization of T. (The proof is
virtually identical to the one given above.)
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4.2.2 Chosen-Output Security

As shown in Lemma 4.2, the trapdoor functions described above are injective (with high probability) if the
input is chosen from the prescribed distribution. However, when used in the context of an active chosen-
ciphertext attack, the adversary may construct output values b̄ ∈ Zmq′ adversarially. We therefore need the
functions to satisfy some additional properties.

Definition 4.3 (Chosen-Output Security). Let G be a collection of trapdoor functions and let V be a
deterministic polynomial-time algorithm, called the preimage verifier for G. We say that is (G,V ) is chosen-
output secure if the following properties hold with overwhelming probability over the choice of function g
and trapdoor t from the collection G:

1. Completeness. For x chosen from the input distribution of g, and x′ output by the inversion algorithm
given y = g(x) and t, V (g, x′, y) accepts with overwhelming probability over the choice of x.

2. Unique preimage. For every y, there is at most one legal preimage x of y under g, i.e., V (g, x, y)
accepts for at most one value of x.

3. Findable preimage. For any y, the inversion algorithm on input y and trapdoor t always outputs the
unique legal preimage x of y, i.e., the x that makes V (g, x, y) accept, if such x exists.

Chosen-output security ensures that for any value y in the range (possibly generated adversarially), the
following two processes behave identically: (1) on input x, y (and the description of g), accept if V (g, x, y)
accepts; (2) on input y and the trapdoor, run the inverter to obtain some x, and then accept if V (g, x, y)
accepts. This identical behavior is a crucial property in the security proof for chosen-ciphertext attacks.

Making the functions chosen-output secure. Note that in the above description of the collection {gA},
any value s ∈ Znq is (part of) a potential preimage of b′ ∈ Tm, under the (possibly very unlikely) error
vector x = b′ − (Ats)/q ∈ Tm. Therefore, we need to restrict the notion of a legal preimage to satisfy
Definition 4.3.

Define |·| on T = [0, 1) as |x| = min{x, 1− x}, and extend it coordinate-wise to Tm. The preimage
verifier V depends on the parameter α associated with the collection, and some arbitrary t = t(n) =
ω(
√

log n). Define V (A, (s,x), b̄) as follows: compute b′ = b̄/q′ ∈ Tm, and accept if every entry of |x| is
strictly less than α · t, and if b′ = (Ats)/q + x ∈ Tm.

Lemma 4.4. For q′ ≥ 1/(α · t) ≥ 2L ·
√
m ≥ 8, the preimage verifier V for the collection {gA} satisfies

Definition 4.3.

Proof. For Property 1 (completeness), say s ∈ Znq is arbitrary and x is drawn from Ψα. Let b̄ = gA(s,x).
By Lemma 4.2 and construction, the inversion algorithm on b̄ outputs (s,x′) satisfying V ’s second test,
with overwhelming probability over the choice of x. Moreover, observe that for every i ∈ [m], we have
|xi| < α · t/2 with overwhelming probability by the Gaussian tail bound. Additionally, every entry of∣∣b′ − ((Ats)/q + x)

∣∣ is at most 1/(2q′) ≤ α · t/2, so the property holds by the triangle inequality.
Property 2 (unique preimage) follows by a simple fact that holds with all but qn/2m = negl(n) probability

over the choice of A: for every nonzero s ∈ Znq , (Ats)/q mod 1 has at least one entry with absolute value
greater than 1/4. (This can be seen by analyzing the probability for any fixed nonzero s, then invoking the
union bound.) Then for any b′ ∈ Tm computed by V , there can be at most one s ∈ Znq such that every entry
of
∣∣b′ − (Ats)/q

∣∣ is strictly less than α · t ≤ 1/8.
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For Property 3 (findable preimage), we observe that for any b̄ that has a legal preimage (s,x), we have
‖x‖ ≤

√
m · α · t and

b′ = (Ats)/q + x mod 1.

Then as in the proof of Lemma 4.2, we see that the inversion algorithm always correctly outputs (s,x)
because L ≤ 1/(2‖x‖) by hypothesis.

Note that the parameter α in Lemma 4.4 is smaller than the one in Lemma 4.2 by a factor of O(
√
m),

due to the “worst-case” inversion requirement imposed by the findable preimage property for chosen-output
security. This yields an underlying worst-case approximation factor of γ(n) = Õ(n/α) = Õ(n · L

√
m),

where L and m may be set according to Proposition 4.1.

4.2.3 Cryptosystem

To construct a cryptosystem that enjoys security under chosen-ciphertext attacks, we use the “witness recov-
ering decryption” paradigm recently proposed by Peikert and Waters [PW08], and additional perspectives
of Rosen and Segev [RS09]. The most important technical subtleties relating to LWE have already been
addressed in the previous subsection, and we defer a complete description and proof to the full version.

The main observation is that any k = poly(n) independently chosen functions gA1 , . . . , gAk
are pseu-

dorandom (assuming LWE is hard) even when evaluated on the same input s and independent x1, . . . ,xk
(respectively) from the error distribution Ψm

α . This is because the indices A1, . . . ,Ak and outputs b̄1 =
gA(s,x1), . . . , b̄k = gA(s,xk) can be simulated simply by drawing k · m samples from As,Ψα and dis-
cretizing. Essentially, this shows that our trapdoor functions are secure under “correlated inputs,” as defined
in [RS09]. For the CCA-secure cryptosystem constructed in [RS09], chosen-output security is sufficient
for the proof to remain sound with our trapdoor functions. Moreover, the efficiency may be dramatically
improved by observing that additional noisy inner products ui, 〈ui, s〉/q + ei ∈ T (for ei ← Ψα) are still
pseudorandom, even given the above view. As in the cryptosystem from Section 4.1, we may use ` such inner
products to encode an `-bit ciphertext.
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